
A Faster Combinatorial Approximation
Algorithm for Scheduling Unrelated Parallel

Machines ?

Martin Gairing, Burkhard Monien??, and Andreas Woclaw

Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany.

Email: {gairing,bm,wocland}@uni-paderborn.de

Abstract. We consider the problem of scheduling n independent jobs
on m unrelated parallel machines without preemption. Job i takes pro-
cessing time pij on machine j, and the total time used by a machine is
the sum of the processing times for the jobs assigned to it. The objec-
tive is to minimize makespan. The best known approximation algorithms
for this problem compute an optimum fractional solution and then use
rounding techniques to get an integral 2-approximation.
In this paper we present a combinatorial approximation algorithm that
matches this approximation quality. It is much simpler than the pre-
viously known algorithms and its running time is better. This is the
first time that a combinatorial algorithm always beats the interior point
approach for this problem. Our algorithm is a generic minimum cost
flow algorithm, without any complex enhancements, tailored to handle
unsplittable flow. It pushes unsplittable jobs through a two-layered bi-
partite generalized network defined by the scheduling problem. In our
analysis, we take advantage from addressing the approximation prob-
lem directly. In particular, we replace the classical technique of solving
the LP-relaxation and rounding afterwards by a completely integral ap-
proach. We feel that this approach will be helpful also for other applica-
tions.

1 Introduction

We consider the scheduling problem where n independent jobs have to be as-
signed to a set of m unrelated parallel machines without preemption. Processing
job i on machine j takes time pij . For each machine j, the total time used by ma-
? This work has been partially supported by the DFG-Sonderforschungsbereich 376

Massive Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen, by the Euro-
pean Union within the 6th Framework Programme under contract 001907 (DELIS)
and by the DFG Research Training Group GK-693 of the Paderborn Institute for
Scientific Computation (PaSCo)

?? Parts of this work were done while the author was visiting Università di Roma La
Sapienza at Rome and the University of Texas at Dallas

chine j is the sum of processing times pij for the jobs that are assigned to machine
j. The makespan of a schedule is the maximum total time used by any machine.
The objective is to find a schedule (assignment) that minimizes makespan. This
problem has many applications. Typically, they arise in the area of scheduling
multiprocessor computers and industrial manufacturing systems (see [18, 28]).

Related Work. There is a large amount of literature on scheduling inde-
pendent jobs on parallel machines (a collection of several approximation al-
gorithms can be found in [10]). A good deal of these publications concentrate
on scheduling jobs on unrelated machines. Horowitz and Sahni [11] presented a
(non-polynomial) dynamic programming algorithm to compute a schedule with
minimum makespan. Lenstra et al. [17] proved that unless P = NP, there is
no polynomial-time approximation algorithm for the optimum schedule with
approximation factor less than 3

2 . They also presented a polynomial-time 2-
approximation algorithm. This algorithm computes an optimal fractional solu-
tion and then uses rounding to obtain a schedule for the discrete problem with
approximation factor 2. Shmoys and Tardos [23] generalized this technique to
obtain the same approximation factor for the generalized assignment problem.
They also generalized the rounding technique to hold for any fractional solution.

The fractional unrelated scheduling problem can also be formulated as a gen-
eralized maximum flow problem, where the network is defined by the scheduling
problem and the capacity of some edges, that corresponds to the makespan, is
minimized. This generalized maximum flow problem is a special case of linear
programming. Using techniques of Kapoor and Vaidya [14] and by exploiting the
special structure of the problem, an optimum fractional solution can be found
with the interior point algorithm of Vaidya [27] in time O(|E|1.5|V |2 log(U)),
where U denotes the maximal pij .

In contrast to the linear programming methods, the aforementioned gener-
alized maximum flow problem can also be solved with a purely combinatorial
approach. Here, the makespan minimization is done by binary search. Computing
generalized flows has a rich history, going back to Dantzig [2]. The first combi-
natorial algorithms for the generalized maximum flow problem were exponential
time augmenting path algorithms by Jewell [13] and Onaga [19]. Truemper [26]
showed that the generalized maximum flow problem and the minimum cost flow
problem are closely related. More specifically, he transformed a generalized max-
imum flow problem into some minimum cost flow problem by setting the cost of
an edge to be the logarithm of the gain from the generalized maximum flow prob-
lem. Goldberg et al. [6] designed the first polynomial-time combinatorial algo-
rithms for the generalized maximum flow problem. Their algorithms were further
refined and improved by Goldfarb, Jin and Orlin [7] and later by Radzik [22].
Radzik’s algorithm is so far the fastest combinatorial algorithm with a running
time of O(|E| |V |(|E| + |V | log |V |) log U). In order to minimize makespan, this
algorithm has to be called at most O(log(nU)) times.

There exist fast fully polynomial-time approximation schemes for computing
a fractional solution [4, 12, 20, 21, 25]. Using the rounding technique from [23],
this leads to a (2 + ε)-approximation for the discrete problem. The approxima-

2

tion schemes can be divided into those that approximate generalized maximum
flows [4, 21, 25] and those that directly address the scheduling problem [12, 20].

Unrelated machine scheduling is a very important problem and many heuris-
tics and exact methods have been proposed. Techniques used here range from
combinatorial approaches with partial enumeration to integer programming with
branch-and-bound and cutting planes. For a selection we refer to [18, 24, 28] and
references therein.

Finding a discrete solution for the unrelated scheduling problem can be for-
mulated as an unsplittable generalized maximum flow problem. Several authors
[3, 15, 16] have studied the unsplittable flow problem for usual flow networks.
Kleinberg [15] formulated the problem of finding a solution with minimum
makespan for the restricted scheduling problem as an unsplittable flow prob-
lem. Here the restricted scheduling problem is a special case of our problem, in
which each job i has some weight wi, each machine j has some speed sj and
pij = wi

sj
or pij = ∞ holds for all i, j. Gairing et al. [5] exploited the special

structure of the network, gave a 2-approximation algorithm for the restricted
scheduling problem based on preflow-push techniques and also an algorithm for
computing a Nash equilibrium for the restricted scheduling problem on identical
machines.

Contribution. The algorithm presented in this paper computes an assignment
for the unrelated scheduling problem with makespan at most twice the optimum.
We prove that a 2-approximative schedule can be computed in
O(m2A log(m) log(nU)) time, where A is the number of pairs (i, j) with pij 6= ∞.
This is better than the previously known best time bounds of Vaidya’s [27] and
Radzik’s [22] algorithms. In particular, this is the first time that a combinatorial
algorithm always beats the interior point approach for this problem.

An essential element of our approximation algorithm is the procedure
Unsplittable-Blocking-Flow from [5]. This procedure was designed to solve the
unsplittable maximum flow problem in a bipartite network, which is defined by
the restricted scheduling problem. In this paper the connection to flow is more
tenuous. We solve an unsplittable flow problem in a generalized bipartite net-
work, which is defined by the unrelated scheduling problem. The generalized flow
problem can be transformed to a minimum cost flow problem. Our algorithm
uses the primal-dual approach combined with a gain scaling technique to ob-
tain a polynomial running time. To compute a flow among the edges with zero
reduced cost it uses the procedure Unsplittable-Blocking-Flow from [5] in the
inner loop.

Given some candidate value for the makespan, our algorithm finds an ap-
proximate solution for the generalized flow problem in the two-layered bipartite
network. Throughout execution the algorithm always maintains an integral as-
signment of jobs to machines. Each assignment defines a partition of the ma-
chines into underloaded, medium loaded and overloaded machines. Our over-
loaded machines are heavily overloaded, that is, their load is at least twice as
large as the candidate makespan.

The main idea of our algorithm is to utilize the existence of overloaded ma-

3

chines in conjunction with the fact that we are looking for an approximate in-
tegral solution. We use this idea twice. On the one hand this allows us to show
an improved lower bound on the makespan of an optimum schedule and thus
to overcome the (1 + ε) error usually induced by the gain scaling technique.
On the other hand this is also used to reduce the number of outer loops to
O(m log m), which is the main reason for the substantial running time improve-
ment. Our algorithm is a generic minimum cost flow algorithm without any
complex enhancements for generalized flow computation. Overloaded and un-
derloaded machines are treated as sources and sinks, respectively. The height
of a node is its minimum distance to a sink. In our algorithm the admissible
network, used for the unsplittable maximum flow computation, consists only of
edges and nodes which are on shortest paths from overloaded machines with
minimum height to underloaded machines. This modification to the primal-dual
approach is important to show the improved lower bound on the makespan of
an optimum schedule.

Our algorithm is simpler and faster than the previously known algorithms.
For the unrelated scheduling problem we have replaced the classical technique,
i.e., computing first a fractional solution and rounding afterwards, by a com-
pletely integral approach. Our algorithm takes advantage from addressing the
approximation problem directly. In particular, this allows us to benefit from an
unfavorable preliminary assignment. We feel that this might be helpful also in
other applications.

Identifying the connection to flow might be the key for obtaining combinato-
rial (approximation) algorithms for problems for which solving the LP-relaxation
and rounding is currently the (only) alternative. Our techniques and results do
not improve upon the approximation factor for the unrelated scheduling prob-
lem, however, we expect more exciting improvements for other hard problems.

Comparison of Running Times. We compare the running time of our algo-
rithm with the so far fastest algorithms of Vaidya [27] and Radzik [22]. Both
of the former approaches have been designed to solve the fractional generalized
maximum flow problem on a graph with node set V and edge set E. Rounding
the fractional solution yields the 2-approximation.
Technique and running time for computing a 2-approximative schedule:

– O(|E|1.5|V |2 log(U)): Interior Point approach for generalized flow problem
and rounding [27]

– O(|E| |V |(|E|+ |V | log |V |) log U log(nU)): Combinatorial algorithm for gen-
eralized flow problem and rounding [22]

– O(m2A log(m) log(nU)): The integral approach presented in this paper

To compare these bounds, note that in our bipartite network A = |E| = O(nm)
and |V | = n + m. Our algorithm is linear in A. It clearly outperforms the pre-
vious algorithms if n + m = o(A). In the case A = Θ(n + m) our algorithm is
better by a factor of Ω((n+m)0.5

log(n) log(m)) than Vaidya’s algorithm and by a factor
of Ω(log U) faster than Radzik’s algorithm. This is the first time that a com-
binatorial algorithm always beats the interior point approach for this problem.

4

The heuristics [18, 24, 28] consider instances where A = Θ(nm). In this case our
algorithm outperforms both former approaches by a factor almost linear in n.

The (1+ε)-approximation algorithms for the generalized maximum flow prob-
lem in [4, 21, 25] have all running time Õ(log ε−1|E|(|E|+ |V | log log U)), where
the Õ() notation hides a factor polylogarithmic in |V |. Again, an extra factor
of O(log(nU)) is needed for the makespan minimization. This running time is
not always better than ours. The fastest approximation scheme that directly
addresses the scheduling problem is due to Jansen and Porkolab [12] and has a
running time of O(ε−2(log ε−1)mn min{m,n log m} log m). Clearly, for constant
ε this algorithm is faster than our algorithm. However, for ε in the order of 1

m
and log(U) = O(n) their running times become comparable.

Roadmap. The rest of the paper is organized as follows. In Section 2, we
introduce notation and model. Section 3.1 presents our approximation algorithm
and Section 3.2 shows the analysis.

2 Notation

2.1 The scheduling problem

We consider the problem of scheduling a set J of n independent jobs on a set
M of m machines. The processing time of job i on machine j is denoted by pij .
Define the n×m matrix of processing times P in the natural way. Throughout
the paper we assume that pij is either an integer or ∞ for all i ∈ J and j ∈ M .
Define U = maxi∈J,j∈M{pij 6= ∞}. Furthermore, define A as the number of
pairs (i, j) with pij 6= ∞. An assignment of jobs to machines is denoted by a
function α : J 7→ M . We denote α(i) = j if job i is assigned to machine j. For
any assignment α, the load δj on machine j for a matrix of processing times P
is the sum of processing times for the jobs that are assigned to machine j, thus
δj(P, α) =

∑
i∈J,α(i)=j pij . We omit P in the notation of δj if P is clear from

the context.
Define the makespan of an assignment α for a processing time matrix P,

denoted Cost(P, α), as the maximum load on a machine, hence Cost(P, α) =
maxj∈M δj(α). Associated with a matrix of processing times P is the optimum
makespan, which is the least possible makespan of an assignment α, that is
OPT(P) = minα Cost(P, α). Following Graham’s notation [9], our problem is
equivalent to R| |Cmax.

2.2 Generalized Maximum Flows and Minimum Cost Flows

The generalized maximum flow problem is a generalization of the maximum
flow problem, where each edge (i, j) has some gain factor µij . If fij units of
flow are sent from node i to node j along edge (i, j), then µijfij units arrive
at j. More specifically, let G = (V,E) be a directed graph of the generalized
flow problem, µ : E 7→ R+ a gain function, and s and t source and sink node,
respectively. Furthermore, there is a capacity function on the edges. A gener-
alized flow f : E 7→ R is a function on the edges that satisfies the capacity

5

and antisymmetry constraints on all edges, and the conservation constraints∑
(j,i)∈E µjifji −

∑
(i,j)∈E fij = 0 on all nodes i ∈ V \ {s, t}. The value of the

flow f is defined as the amount of flow into the sink. Among all generalized flows
of maximum value, the goal is to find one that minimizes the flow out of the
source.

The fractional version of the scheduling problem can be converted into a
generalized maximum flow problem [20]. In order to check whether a fractional
schedule of length w exists, one can construct a bipartite graph with nodes rep-
resenting jobs and machines and introduce an edge from machine node i to job
node j with gain 1/pij . There is a source which is connected to all the machine
nodes with edges of unit gain and capacity w, and the job nodes are connected
to a sink with edges of unit gain and unit capacity. A generalized flow in this
network that results in an excess of n at the sink corresponds to a solution of
the fractional scheduling problem. If the maximum excess that can be generated
at the sink is below n, then the fractional scheduling problem is infeasible, i.e.,
the current value of w is too small.

Truemper [26] established a relationship between the generalized maximum
flow problem and the minimum cost flow problem. In his construction, he defined
the cost for each arc in the minimum cost flow problem as the logarithm of the
gain in the generalized maximum flow problem. In order to transform the gener-
alized maximum flow problem to a minimum cost flow problem with integral arc
costs, a gain rounding technique can be used (see e.g. [25]). Gains are rounded
down to integer powers of some base b > 1. The rounded gain of each residual arc
(i, j) is defined as γij = bcij where cij = blogb µijc. Antisymmetry is maintained
by setting γij = 1/γji and cij = −cji. The cost of arc (i, j) in the resulting
minimum cost flow problem equals cij . Using a potential function π : V 7→ R+,
the reduced costs cπ

ij of an arc (i, j) are defined as cπ
ij = cij−π(i)+π(j) (see [1]).

The Primal-Dual approach [1] for minimum cost flows can be used to com-
pute a generalized maximum flow (see e.g. [25]). The Primal-Dual approach
preserves the reduced cost optimality condition, i.e., cπ

ij ≥ 0 for each edge (i, j)
in the residual network. Because of the rounding, an optimum solution of the
minimum cost flow problem gives only a (1+ε)-approximation of the generalized
(fractional) maximum flow problem. Using techniques from [23], the fractional
solution can be transformed to an integral solution. This approach leads to a
(2 + ε)-approximation algorithm for the scheduling problem.

2.3 Our model

We also formulate the scheduling problem as a generalized maximum flow prob-
lem. However, we use a different construction as in [20]. We construct a bipartite
graph with nodes representing jobs and machines. There is an arc from job node
i to machine node j with unit capacity and gain µij = pij if pij ≤ w. The pa-
rameter w will be determined by binary search. Each job node i has supply 1. A
generalized flow f is a solution to the fractional version of the scheduling prob-
lem, if in f all supplies are sent to the machines. In this case, we call f a feasible
flow. A generalized flow in such a network creates excess on the machine nodes.

6

An excess on machine j corresponds to the load on machine j. Define δj(P, f)
as the load on machine j under the generalized flow f with gains defined by P.
If we require that the supply of each job is sent to exactly one machine, then we
get an integral solution to the scheduling problem. In this case, we call f a gener-
alized unsplittable flow and f corresponds to an assignment α, i.e., assigning job
i to machine j corresponds to sending one unit of flow along edge (i, j). We are
interested in finding a generalized unsplittable flow f such that the maximum
excess over all machines is at most 2w. This is not always possible, however, if
we can’t find such a flow, we can still derive the lower bound OPT(P) ≥ w + 1.

Following the construction from Section 2.2, we formulate this generalized
maximum unsplittable flow problem as a minimum cost flow problem. For the
gain rounding, we choose b = (1 + z) where z = 1

m . If (i, j) is an edge from
job node i to machine node j then the cost cij and the rounded gain γij is
defined by cij = blogb(pij)c, and γij = bcij . For any path W , we define
γ(W) =

∏
(i,j)∈W γij . In the same way we define γ(K) for some cycle K. In the

following, denote C = (cij) and Γ = (γij). In order to solve the minimum cost
flow problem we use the well known Primal-Dual approach [1].

For a given assignment α, a positive integer w and a matrix of processing
times P, we now define the residual network Gα(w) (Definition 1) and we parti-
tion the machines, with respect to their loads, into three subsets (Definition 2).

Definition 1. Let α be an assignment and w ∈ N. We define a directed bi-
partite graph Gα(w) = (V,Eα(w)) where V = M ∪ J and each machine is
represented by a node in M , whereas each job defines a node in J . Further-
more, Eα = E1

α ∪ E2
α with E1

α = {(j, i) : j ∈ M, i ∈ J, α(i) = j, pij ≤ w} and
E2

α = {(i, j) : j ∈ M, i ∈ J, α(i) 6= j, pij ≤ w}.

Definition 2. Let w ∈ N and α be an assignment. We partition the set of
machines M into three subsets:

M−(α) = {j : δj(P, α) ≤ w}
M0(α) = {j : w + 1 ≤ δj(P, α) ≤ 2w}
M+(α) = {j : δj(P, α) ≥ 2w + 1}

In our setting, at each time, nodes from M− can be interpreted as sink nodes,
whereas nodes from M+ as source nodes.

We now give a lemma that generalizes the path decomposition theorem to
generalized flows. The proof of a similar decomposition theorem can be found
in [8]. Note, that a fractional generalized flow on a path is defined as a flow
that fulfills the flow conservation constraints on the inner nodes. Similarly, a
generalized flow on a cycle fulfills the flow conservation constraints on all nodes
in the cycle except one.

Lemma 1 (Decomposition theorem). Let f and g be two generalized feasible
flows in G = (J ∪M,E). Then g equals f plus fractional flow: on some directed

7

cycles in Gf , and on some directed paths in Gf with end points in M and with
the additional property that no end point of some path is also the starting point
of some other path.

2.4 Unsplittable Blocking Flows
Our approximation algorithm will make use of the algorithm Unsplittable-
Blocking-Flow introduced in [5]. Unsplittable-Blocking-Flow was de-
signed for a restricted scheduling problem on identical machines. Here, each job
i has some weight wi and is only allowed to use a subset Ai of the machines. This
is a special case of the unrelated scheduling problem considered in this paper,
where pij = wi if j ∈ Ai and pij = ∞ otherwise. Given an assignment α and
an integer w, Unsplittable-Blocking-Flow(α, w) computes an assignment
β, where there is no path from M+(β) to M−(β) in Gβ(w).

We use Unsplittable-Blocking-Flow for arbitrary processing times pij .
In order to make clear that Unsplittable-Blocking-Flow runs on the orig-
inal processing times (pij) we include P in the parameter list. Furthermore,
we allow Unsplittable-Blocking-Flow only to reassign jobs according to
some graph G0

α(w), which can be any subgraph of Gα(w). These adaptations do
not influence the correctness and the running time of algorithm Unsplittable-
Blocking-Flow.

Lemma 2 and Theorem 1 are derived from [5] and state properties of algo-
rithm Unsplittable-Blocking-Flow that are used in the discussion of our
approximation algorithm.

Let G0
α(w) be any subgraph of Gα(w). Let β be the assignment computed

by Unsplittable- Blocking-Flow(α, G0
α(w),P, w). In this call jobs are reas-

signed by pushing them through edges of G0
α(w). We define G0

β(w) as the graph
that results from G0

α(w) after this reassignments.

Lemma 2 ([5, Lemma 4.2]). Let β be the assignment computed by
Unsplittable-Blocking-Flow(α, G0

α(w),P, w). Then
(a) j ∈ M−(α) ⇒ δj(P, β) ≥ δj(P, α)
(b) j ∈ M0(α) ⇒ w + 1 ≤ δj(P, β) ≤ 2w
(c) j ∈ M+(α) ⇒ δj(P, β) ≤ δj(P, α).

Theorem 1 ([5, Lemma 4.4/Theorem 4.5]). Unsplittable-Blocking-
Flow(α, G0

α(w),P, w) takes time O(mA) and computes an assignment β, having
the property, that there is no path from M+(β) to M−(β) in G0

β(w).

3 Approximation Algorithm

We now present our approximation algorithm, Unsplittable-Truemper, which
will be used to compute an assignment α where Cost(P, α) ≤ 2 · OPT(P). We
always maintain an unsplittable flow, i.e., an integral solution. We loose a fac-
tor of 2 by allowing some gap for the machine loads. The special structure of
our algorithm allows us to compensate the error, introduced by the gain scaling
technique, by a better lower bound on OPT(P). We stop the computation as
soon as we get this better lower bound. This improves also the running time.

8

3.1 Algorithm Unsplittable-Truemper

We formulate the scheduling problem as a generalized maximum unsplittable
flow problem with rounded gain factors as described in Section 2.2. In order
to solve this generalized unsplittable flow problem we use the Primal-Dual
approach for computing a minimum cost flow [1]. Our algorithm maintains the
reduced cost optimality condition. In our setting this means that it does not
create negative cost cycles in the residual network. In order to achieve this,
Unsplittable-Truemper iteratively computes a shortest path graph G0

α(w),
which we define below, and uses Unsplittable-Blocking-Flow to compute
a blocking flow on this shortest path graph. While the costs in Unsplittable-
Truemper refer to the rounded processing times, it operates on the original
processing times. It is important to note, that both the costs as well as the
original processing times are integer. Because of Theorem 1, there is no path
from a machine from M+ to a machine from M− in G0

α(w) after termination of
Unsplittable-Blocking-Flow. We stop this procedure, when we can either
derive a good lower bound on OPT(P) (see Theorem 2) or we found an assignment
α with M+ = ∅.

Unsplittable-Truemper(α,P,C, w)

Input: assignment α with each job i assigned to a machine from B(i),
matrix of processing times P, matrix of edge costs C,

positive integer w
Output: assignment β

// Gα(w) is the graph corresponding to α and w.
π := 0;
while ∃ machine in M+ with a path to some machine in M− in Gα(w)

and ∀u ∈ M+ : π(u) < logb(m)
{

determine shortest path distances d(·) from all nodes to the set

of sinks M− in Gα(w) with respect to the reduced costs cπ
ij;

update π := π + d;
define M+

min as the set of machines from M+ with minimum distance

to a node in M− with respect to the costs cij;

define G0
α(w) as the admissible graph, consisting only of edges on

shortest paths from M+
min to M− in Gα(w);

β := Unsplittable-Blocking-Flow(α, G0
α(w),P, w);

update α := β;
}

return α;

We now describe our algorithm in more detail. Unsplittable-Truemper starts
with an assignment α. In α, each job i ∈ J is assigned to some machine j ∈ B(i),
where its processing time is minimum, i.e., B(i) = {j ∈ M : pij ≤ pik,∀k ∈ M}.
Arc capacities are given by P whereas arc costs are given by C (as defined in
Section 2). Furthermore, Unsplittable-Truemper gets as input an integer
w. Assignment α and integer w define a graph Gα(w) as in Definition 1, and

9

a partition of the machines as in Definition 2. At all times, Unsplittable-
Truemper maintains a total assignment, that is all jobs are always assigned
to some machine. If a job gets unassigned from a machine, it is immediately
assigned to some other machine.

Our algorithm iteratively computes shortest path distances d(u) from each
node u to the set of sinks M−, with respect to the reduced costs cπ

ij . Then π
is updated, such that all arcs on shortest paths have zero reduced costs. For
each node u ∈ M , π(u) never decreases. After the update of π, π(u) holds the
minimum distance from u to M− for each node u with respect to the costs cij .
We define M+

min as the set of machines from M+ with minimum distance to a
node in M− with respect to the costs cij . Note, that M+

min consists of all ma-
chines u ∈ M+ where π(u) is minimum. G0

α(w) is then defined as the admissible
graph, consisting only of edges on shortest paths from M+

min to M− in Gα(w).
We will see in Section 3.2 that this is essential for our algorithm. Note, that
G0

α(w) consists only of arcs with zero reduced costs. Afterwards, Unsplittable-
Blocking-Flow is applied to the admissible graph G0

α(w). It reassigns jobs
from the admissible graph, such that after Unsplittable-Blocking-Flow re-
turns, there is no longer a path from a machine in M+

min to a machine in M−

in the admissible graph G0
α(w). Therefore, min{π(u);u ∈ M+} increases in the

next iteration of the while loop. The residual network Gα(w) is then updated
accordingly. The while-loop terminates when there exists no machine from M+

with a path to a machine from M− in Gα(w) or there exists a machine u ∈ M+

with π(u) ≥ logb(m).

3.2 Analysis
We now analyze the behavior of our algorithm. The main result in this section
is Theorem 2. A call of Unsplittable-Truemper(α,P,C, w) terminates if
M+(α) = ∅. In this case, we know that Cost(P, α) ≤ 2w. We will see, that we
can take also some advantage from an assignment α which is still unfavorable,
i.e., for which M+(α) 6= ∅ holds.

The reduced cost optimality condition cπ
ij ≥ 0 holds for all (i, j) ∈ Eα(w)

during the whole computation. It implies γ(K) ≥ 1 for each cycle K in Gα(w).
This property does not necessarily hold for every path. Lemma 3 is of crucial
importance in our analysis. It shows that γ(W) ≥ 1 holds for every path W
connecting some node from M+(α) to any other node from M in Gα(w). For
proving this result, we need that G0

α(w) was defined only by shortest paths from
nodes in M+

min to nodes in M−.

Lemma 3. Unsplittable-Truemper maintains the property, that for each
path W in Gα(w) from any machine in M+ to any other machine in M , we
have γ(W) ≥ 1.

The following lemma will be used to derive a lower bound on OPT(P).

Lemma 4. Let (G,Γ) denote a generalized maximum unsplittable flow problem
defined by network G and matrix of processing times Γ. Let f be a generalized fea-
sible unsplittable flow in (G,Γ), and let s, t ∈ R+. Suppose ∀u ∈ M : δu(Γ, f) ≥

10

s, and ∃û ∈ M : δû(Γ, f) ≥ s + t, and for each cycle K in Gf , γ(K) ≥ 1. If
on every path W in Gf from û to any other machine u ∈ M , γ(W) ≥ 1, then
OPT(Γ) ≥ s + t

m .

Theorem 2. Unsplittable-Truemper takes time O(m2A log(m)). Further-
more, if Unsplittable-Truemper(α,P,C, w) terminates with M+ 6= ∅ then
OPT(P) ≥ w + 1.

We will now show how to use Unsplittable-Truemper to approximate a
schedule with minimum makespan. We do series of calls to Unsplittable-
Truemper(α,P,C, w) where, by a binary search on w ∈ [1, nU], we identify
the smallest w such that a call to Unsplittable-Truemper(α,P,C, w) re-
turns an assignment with M+ = ∅. Afterwards we have identified a parameter w,
such that Unsplittable-Truemper(α,P,C, w) returns an assignment where
M+ 6= ∅ and Unsplittable-Truemper(α,P,C, w + 1) returns with M+ = ∅.

Theorem 3. Unsplittable-Truemper can be used to compute a schedule α
with Cost(P, α) ≤ 2 · OPT(P) in time O(m2A log(m) log(nU)).

Proof. We use Unsplittable-Truemper as described above. Let β1 be the
assignment returned by Unsplittable-Truemper(α,P,C, w) where M+ 6= ∅.
Let β2 be the assignment returned by Unsplittable-Truemper(α,P,C, w+1)
where M+ = ∅. From β1 we follow by Theorem 2 that OPT(P) ≥ w+1 and in β2

we have Cost(P, β2) ≤ 2(w + 1). Thus, Cost(P, β2) ≤ 2 · OPT(P). It remains to
show the running time of O(m2A log(m) log(nU)). Due to Theorem 2, one call
to Unsplittable-Truemper takes time O(m2A log(m)). The binary search
contributes a factor log(nU). This completes the proof of the theorem. ut

Acknowledgments. We would like to thank Thomas Lücking for many fruitful
discussions and helpful comments.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

2. G. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, New York, 1963.

3. Y. Dinitz, N. Garg, and M.X. Goemans. On the single-source unsplittable flow
problem. Combinatorica, 19(1):17–41, 1999.

4. L. Fleischer and K. D. Wayne. Fast and simple approximation schemes for gener-
alized flow. Mathematical Programming, 91(2):215–238, 2002.

5. M. Gairing, T. Lücking, M. Mavronicolas, and B. Monien. Computing Nash equi-
libria for scheduling on restricted parallel links. In Proceedings of the 36th Annual
ACM Symposium on the Theory of Computing (STOC’04), pages 613–622, 2004.

11

6. A.V. Goldberg, S.A. Plotkin, and E. Tardos. Combinatorial algorithms for the
generalized circulation problem. Math. of Operations Research, 16:351–379, 1991.

7. D. Goldfarb, Z. Jin, and J.B. Orlin. Polynomial-time highest-gain augmenting path
algorithms for the generalized circulation problem. Math. of Operations Research,
22:793–802, 1997.

8. M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, 1984.
9. R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical

Journal, 45:1563–1581, 1966.
10. D.S. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publish-

ing Co., 1996.
11. E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling non-

identical processors. Journal of the ACM, 23(2):317–327, 1976.
12. K. Jansen and L. Porkolab. Improved approximation schemes for scheduling un-

related parallel machines. Math. of Operations Research, 26(2):324–338, 2001.
13. W.S. Jewell. Optimal flow through networks with gains. Operations Research,

10:476–499, 1962.
14. S. Kapoor and P.M. Vaidya. Fast algorithms for convex quadratic programming

and multicommodity flows. In Proceedings of the 18th Annual ACM Symposium
on Theory of Computing (STOC’86), pages 147–159, 1986.

15. J. Kleinberg. Single-source unsplittable flow. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science (FOCS’96), pages 68–77, 1996.

16. S.G. Kolliopoulos and C. Stein. Approximation algorithms for single-source un-
splittable flow. SIAM Journal on Computing, 31:919–946, 2002.

17. J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.

18. E. Mokotoff and P. Chrétienne. A cutting plane algorithm for the unrelated parallel
machine scheduling problem. European Journal of Operational Research, 141:515–
525, 2002.

19. K. Onaga. Dynamic programming of optimum flows in lossy communication nets.
IEEE Transactions on Circuit Theory, 13:308–327, 1966.

20. S.A. Plotkin, D.B. Shmoys, and E. Tardos. Fast approximation algorithms for frac-
tional packing and covering problems. Math. of Operations Research, 20(2):257–
301, 1995.

21. T. Radzik. Faster algorithms for the generalized network flow problem. Math. of
Operations Research, 23:69–100, 1998.

22. T. Radzik. Improving time bounds on maximum generalised flow computations by
contracting the network. Theoretical Computer Science, 312(1):75–97, 2004.

23. D.B. Shmoys and E. Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical Programming, 62:461–474, 1993.

24. F. Sourd. Scheduling tasks on unrelated machines: Large neighborhood improve-
ment procedures. Journal of Heuristics, 7:519–531, 2001.

25. E. Tardos and K. D. Wayne. Simple generalized maximum flow algorithms. In
Proceedings of the 6th Integer Programming and Combinatorial Optimization Con-
ference (IPCO’98), pages 310–324, 1998.

26. K. Truemper. On max flows with gains and pure min-cost flows. SIAM Journal
on Applied Mathematics, 32(2):450–456, 1977.

27. P.M. Vaidya. Speeding up linear programming using fast matrix multiplication. In
Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(FOCS’89), pages 332–337, 1989.

28. S. L. van de Velde. Duality-based algorithms for scheduling unrelated parallel
machines. ORSA Journal on Computing, 5(2):182–205, 1993.

12

