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Abstract

In a discrete routing game, each of n selfish users employs a mixed strategy to ship her (unsplittable) traffic over
m parallel links. The (expected) latency on a link is determined by an arbitrary non-decreasing, non-constant and
convex latency function φ. In a Nash equilibrium, each user alone is minimizing her (Expected) Individual Cost, which
is the (expected) latency on the link she chooses. To evaluate Nash equilibria, we formulate Social Cost as the sum
of the users’ (Expected) Individual Costs. The Price of Anarchy is the worst-case ratio of Social Cost for a Nash
equilibrium over the least possible Social Cost. A Nash equilibrium is pure if each user deterministically chooses a
single link; a Nash equilibrium is fully mixed if each user chooses each link with non-zero probability. We obtain:

For the case of identical users, the Social Cost of any Nash equilibrium is no more than the Social Cost of the
fully mixed Nash equilibrium, which may exist only uniquely. Moreover, instances admitting a fully mixed Nash
equilibrium enjoy an efficient characterization.

For the case of identical users, we derive two upper bounds on the Price of Anarchy: For the case of identical
links with a monomial latency function φ(x) = xd, the Price of Anarchy is the Bell number of order d+ 1. For pure
Nash equilibria, a generic upper bound from the Wardrop model can be transfered to discrete routing games. For
polynomial latency functions with non-negative coefficients and degree d, this yields an upper bound of d+ 1.

For the case of identical users, a pure Nash equilibrium (and thereby an optimum pure assignment) can be
computed in time O(m logm logn). For the general case, computing the best or the worst pure Nash equilibrium is
NP-complete, even for identical links with an identity latency function.

Key words: Discrete Routing Games, Convex Latency Functions, Price of Anarchy, Fully Mixed Nash Equilibria

? A preliminary version of this work appeared in the Proceedings of the 31st International Colloquium on Automata, Languages
and Programming, pp. 645–657, Vol. 3142, Lecture Notes in Computer Science, Springer-Verlag, July 2004. This work has been

partially supported by the IST Program of the European Union under contracts IST-2001-33116 (FLAGS), 001907 (DELIS) and
015964 (AEOLUS), by research funds at University of Cyprus, and by the VEGA grant No. 2/3164/23.
∗ Corresponding author at: International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704, USA.

Email addresses: gairing@upb.de (Martin Gairing), luck@upb.de (Thomas Lücking), mavronic@ucy.ac.cy (Marios
Mavronicolas), bm@upb.de (Burkhard Monien), rode@upb.de (Manuel Rode).
1 The work of this author was done while at the University of Paderborn.
2 Part of the work of this author was done while visiting the University of Paderborn.
3 International Graduate School of Dynamic Intelligent Systems, University of Paderborn, Germany.



1. Introduction

1.1. Background

Nash equilibrium [39,40] is one of the most significant concepts in Non-Cooperative Game Theory. For a
given strategic game, a Nash equilibrium is a state where no player can improve her individual objective
by unilaterally changing its strategy. A Nash equilibrium is called pure if each player chooses exactly one
strategy; it is called mixed if each player makes her choice using a probability distribution over strategies. In
a fully mixed Nash equilibrium [36], each player chooses each strategy with non-zero probability. The Price
of Anarchy [31,41] is the worst-case ratio of the Social Cost in a Nash equilibrium and the least possible
Social Cost.

Much of the recent algorithmic work on Non-Cooperative Game Theory considered selfish routing, where
it focused on the KP model due to Koutsoupias and Papadimitriou [31] and the Wardrop model [48]. The
KP model was proposed only recently in the context of studying the effects of selfish traffic over the Internet;
in contrast, the Wardrop model dates back to the 1950s, when it was used for studying the economics of
transportation networks (see, e.g., [4,5,12]).
– In the KP model, each of n selfish users employs a mixed strategy, which is a probability distribution over
m parallel links, to ship its (unsplittable) traffic; so, the traffic of each user is shipped all together and
with no splitting. The (expected) latency on a link is linear in the (expected) total traffic of users choosing
it. The (Expected) Individual Cost of a user is the (expected) latency on the link it chooses. In a Nash
equilibrium, each user alone is minimizing its Expected Individual Cost. The Social Cost is the (expected)
maximum latency; the Optimum is the least possible maximum latency.

– In the Wardrop model, the network can be arbitrary. Modeled as a network flow from source to destination,
selfish traffic is infinitesimally splittable; this modeling rules out mixed strategies from consideration.
Associated with each link is a convex latency function, which determines the latency on the link for a
given traffic. In a Wardrop equilibrium [48], all used paths incur the same (total) latency. So, a Wardrop
equilibrium can be interpreted as a Nash equilibrium for a strategic game with infinitely many users,
each carrying an infinitesimal amount of traffic. The Individual Cost of each such user is the sum of link
latencies on the path it chooses; the Social Cost is the integral of the Individual Costs; so, it is the overall
cost incurred to the users.

1.2. Discrete Routing Games

In this work, we introduce the model of discrete routing games as a hybridization of the KP model and
the Wardrop model.

We follow the KP model to consider the parallel links network with m links and n users with unsplittable
traffics and mixed strategies. However, we allow arbitrary non-decreasing, non-constant and convex latency
functions, whereas latency functions for the KP model are linear. So, the latency function for a link is a
convex function of the total traffic of users choosing the link. The Social Cost is the sum of (Expected)
Individual Costs; the (Expected) Individual Cost of a user is the (expected) latency on the link it chooses.
So, as far as the generality of latency functions and the Social Cost are concerned, discrete routing games
lean towards the Wardrop model; however, the network structure and the unsplittability of traffics come
from the KP model.

The assumption of convex latency functions determines a very broad class of discrete routing games.
Restricted to monotone latency functions and pure Nash equilibria, discrete routing games were already
studied in [10]. Restricted to linear latency functions, they have been studied by Lücking et al. in [33],
where Social Cost was formulated as the sum of weighted Expected Individual Costs and called Quadratic
Social Cost ; so, the model in [33] is the special case of discrete routing games where latency functions are
linear and users are identical. To the best of our knowledge, discrete routing games represent the first model
to simultaneously consider mixed Nash equilibria and arbitrary (convex) latency functions.
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Discrete routing games are a particular instance of weighted congestion games [37,42], where each pure
strategy is an arbitrary (not necessarily singleton) set of links. It is known that all unweighted congestion
games admit a pure Nash equilibrium [42]. Hence, so do discrete routing games in the special case of
identical (unweighted) users. However, it is straightforward to verify through a lexicographic argument
(cf. [18, Theorem 1]) that discrete routing games admit a pure Nash equilibrium in the general case of
arbitrary (weighted) users.

1.3. Contribution

Our results for discrete routing games are partitioned into four major groups:

1.3.1. Fully Mixed Nash Equilibria
Which is the worst-case Nash equilibrium for discrete routing games with respect to Social Cost? This

is a very natural question, which we address for the special case of identical users. As our main result,
we prove that for any discrete routing game with convex latency functions, whenever a fully mixed Nash
equilibrium exists, it is a worst-case Nash equilibrium (Theorem 4.3). Therewith, we prove the Fully Mixed
Nash Equilibrium Conjecture for discrete routing games (but only for the special case of identical users)
4 . The proof relies critically on the convexity assumption for the latency functions; we provide a simple
counterexample to show that this assumption is essential (Proposition 4.4).

Furthermore, we prove that a fully mixed Nash equilibrium may exist only uniquely (Theorem 4.6). The
proof utilizes the assumption that the latency functions are non-decreasing and non-constant, but it does
not need the convexity assumption on them.

Finally, we provide a combinatorial characterization of instances admitting a fully mixed Nash equilibrium.
Specifically, we identify the classes of dead and special links, and we prove some combinatorial properties for
them (Lemmas 4.8 and 4.9). In turn, these properties are used for characterizing instances admitting a fully
mixed Nash equilibrium (Theorem 4.10). Furthermore, we prove a generalization of the Fully Mixed Nash
Equilibrium Conjecture for instances that do not admit a fully mixed Nash equilibrium (Theorem 4.11).

As our chief combinatorial instrument for the study of fully mixed Nash equilibria in discrete routing
games, we introduce and study a novel combinatorial function, called the binomial function (Section 2).

1.3.2. Price of Anarchy
We focus on the special case of identical users, for which we present two upper bounds on the Price of

Anarchy for mixed and pure Nash equilibria, respectively. We remind the reader that n and m are the
numbers of users and links, respectively.
– We first treat mixed Nash equilibria, where we consider the special case of identical links with a monomial

(convex) latency function φ(λ) = λd. We prove that the Price of Anarchy is less than the Bell number of
order d+ 1 (Theorem 5.1). When m = n and in the limit, this bound can be attained arbitrarily close but
not exactly.

– For pure Nash equilibria, we consider the case of arbitrary links. We revisit a generic upper bound on
the Price of Anarchy for the Wardrop model, which was shown by Roughgarden and Tardos [44]. We
utilize the assumption that latency functions are non-decreasing and non-constant to transfer this bound
to discrete routing games (Proposition 5.3).

For polynomial latency functions with non-negative coefficients and degree d ≥ 1, the transfered bound
immediately yields an upper bound of d+ 1 (Corollary 5.4).
Interestingly, both shown upper bounds on the Price of Anarchy are constant — independent of m and n.

4 The validity of the Fully Mixed Nash Equilibrium Conjecture for the general case of arbitrary users in discrete routing games

is left as an open problem. Apparently, the couterexample for the case of arbitrary users in the KP-model shown in [17] does

not apply to discrete routing games where Social Cost is defined in a different way.
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1.3.3. Algorithmic Results
We present algorithmic results for the case of identical users and arbitrary links. These results utilize the

assumption that latency functions are non-decreasing.
– We show that a pure Nash equilibrium can be computed in O(m logm log n) time (Theorem 6.1). This

improves on the simple approach of assigning users one-by-one to their respective best links which is
motivated by Graham’s classical LPT scheduling algorithm [27] (cf. [18, Section 3]); the approach applies
directly to the general case of arbitrary users, yielding a polynomial time algorithm. The improvement is
achieved by an algorithm running in log n phases; in each phase, user chunks of halving size are switched
together to a different link in order to improve their (common) Individual Cost. We show that the number
of such switches per phase is O(m), We use a suitable data structure for implementing each switch in
Θ(logm) time, for a total of O(m logm) time per phase; this implies that the total time is O(m logm log n).

– Under a certain convexity assumption on the latency functions, we exhibit a very simple, polynomial time
reduction from the problem of computing an optimum (pure) assignment to the problem of computing
a pure Nash equilibrium (Proposition 6.4). Together with our efficient algorithm for computing a pure
Nash equilibrium, this implies a corresponding efficient algorithm to compute an optimum assignment
(Corollary 6.5).

1.3.4. Complexity Results
We present some complexity results for the problems of computing the best-case and worst-case Nash

equilibrium (with respect to the particular Social Cost adopted for discrete routing games). Specifically, we
prove that in the general case of arbitrary users, both problems are NP-complete (Theorems 7.1 and 7.3,
respectively). Both NP-completeness results hold even for the case of identical links with an identity latency
function.

Both proofs use polynomial time transformations from the NP-complete PARTITION problem [29], whose
counting version is known to be #P-complete [45]. The employed transformations are parsimonious —
roughly speaking, they preserve the number of solutions (cf. [32, Definition 26.6]). This implies that the
problems of counting the best-case and worst-case pure Nash equilibria are both #P-complete as well
(Corollaries 7.2 and 7.4).

1.4. Related Work and Comparison

The KP model has received a lot of interest and attention – see, e.g., [10,11,13–15,18,21,24,30,34,36]. For
a survey of early work on the Wardrop model, see [5]. Inspired by the new interest in the Price of Anarchy,
Roughgarden and Tardos [44] initiated recently a reinvestigation of the Wardrop model; for recent results,
we refer the reader to the book [43] (and the references therein).

The fully mixed Nash equilibrium was originally introduced and analyzed by Mavronicolas and Spi-
rakis [36] for the KP model. For the KP model, it was shown that existence of a fully mixed Nash equilibrium
implies its uniqueness [36]. This result applies to the special case of discrete routing games where latency
functions are linear; hence, it is broadened by Theorem 4.6.

The original Fully Mixed Nash Equilibrium Conjecture for the KP model states that the worst-case Nash
equilibrium is the fully mixed Nash equilibrium for instances where the fully mixed Nash equilibrium exists.
This conjecture was originally motivated by some results in [18]; it was explicitly formulated in [24] and
further studied and extended to other related models in [16,17,22,26,33–35]. In particular, Lücking et al. [33]
proved the Fully Mixed Nash Equilibrium Conjecture for the special case of identical users and identical links
in their model (which is itself a special case of discrete routing games). Recently, Fischer and Vöcking [17]
provided a counterexample to the Fully Mixed Nash Equilibrium Conjecture for the special case of arbitrary
users and identical links in the KP model.

Bounds on the Price of Anarchy for the KP model are given in [11,14,30,31,36]. These include (tight)
bounds of Θ

(
logm

log logm

)
for the case of identical links [11,30,31,36] and of Θ

(
logm

log log logm

)
for the case of

arbitrary links [11]. Bounds on the Price of Anarchy for several variants and generalizations of the KP model
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were proved in [2,3,7,19–21,23,35,47].
Bounds on the Price of Anarchy for congestion games were proved in [1,2,8]. Christodoulou and Kout-

soupias [8] consider congestion games with unweighted players and under linear and polynomial latency
functions (of degree d and with non-negative coefficients); they define Social Cost as either the maximum
(Expected) Individual Cost or the sum of (Expected) Individual Costs. The upper bounds obtained for their
latter definition apply to discrete routing games as well. In particular, Christodoulou and Koutsoupias [8]
prove that the Price of Anarchy for Social Cost as sum of (Expected) Individual Costs is Θ(dd(1−o(1))).
(Exact values were later obtained in [1] for both cases of unweighted and weighted players.) Corollary 5.4
provides a much smaller upper bound of d+ 1 for the special case of discrete routing games where each pure
strategy is a singleton set (but restricted to pure Nash equilibria).

For the KP model, Fotakis et al. [18] showed that a pure Nash equilibrium can be computed in polynomial
time using Graham’s LPT scheduling algorithm [27]. This result applies to the special case of discrete routing
games where latency functions are linear; hence, it is broadened by Theorem 6.1.

Fotakis et al. [18] showed that computing the best-case and the worst-case (pure) Nash equilibria are
both NP-complete for the KP model where Social Cost is defined as the (expected) maximum latency; in
contrast, Theorems 7.1 and 7.3 apply to discrete routing games where Social Cost is defined as the sum of
(Expected) Individual Costs.

A result of Conitzer and Sandholm [9, Theorem 1] directly implies that it is NP-complete to decide if
an arbitrary strategic game has a (mixed) Nash equilibrium for which the sum of the (Expected) Individual
Costs is no more than some arbitrary number; this holds even if the game is symmetric and has only two
players. Theorem 7.1 is comparable to this result. On one hand, it restricts to a particular kind of strategic
games (namely, discrete routing games) and it applies even to the case with only three links; on the other
hand, it assumes an arbitrary number of players. Furthermore, Corollary 7.2 is comparable to [9, Corollary
12], which established the #P-completeness of the corresponding counting problem.

Subsequent to this work, Gairing et al. [22] introduced yet another hybridization of the KP model and the
Wardrop model, where Social Cost is the expectation of the sum (over links) of Latency Costs; each Latency
Cost is defined as a polynomial function of the total traffic of users choosing a link. For their model, Gairing
et al. [22] established the Fully Mixed Nash Equilibrium Conjecture for the special case of identical users
and identical links; they also proved several upper bounds on the Price of Anarchy. To do so, Gairing et
al. [22] showed further interesting properties of the binomial function. (In fact, we used one such property,
restated here as Lemma 2.3, to simplify some proofs in the preliminary version of this work.)

1.5. Notation and Preliminaries

Throughout, denote for any integer m ≥ 1, [m] = {1, . . . ,m}. Denote as 0 and 1 the vectors (of any
appropriate dimension) with all zeros and all ones, respectively. Denote as R+

0 and N0 the sets of non-
negative real and natural numbers, respectively. For a function φ : R+

0 → R+
0 , denote as φ̂ the function

defined by φ̂(λ) = φ(λ + 1). For a random variable X with associated probability distribution P, denote
as EP(X) the expectation of X (according to P). For an integer m ≥ 2 and a dimension j ∈ [m], the
j-characteristic m-dimensional vector χj has entry j equal to 1 and all other entries equal to 0.

Some of our analysis will bring into play some special numbers from classical combinatorics. Recall first
the Bell number of order d [6], denoted as Bd, which counts the number of partitions of a set with d elements
into blocks (non-empty subsets). It is known that Bd =

∑
k∈[d] S(d, k), where for each k ∈ [d], S(d, k), the

Stirling number of the second kind [46], counts the number of partitions of a set with d elements into exactly
k blocks. For any pair of integers r ≥ 1 and k ≥ 1, the falling factorial of r of order k, denoted as rk, is
given by rk = r(r − 1) · . . . · (r − (k − 1)), when r ≥ k. Otherwise (k ≥ r + 1), rk = 0.

1.6. Organization

In Section 2, we introduce the binomial function. Section 3 presents discrete routing games. The fully
mixed Nash equilibrium is studied in Section 4. Section 5 contains the bounds on the Price of Anarchy. Our
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algorithms for computing pure Nash equilibria and optimum pure assignments appear in Section 6. Section 7
contains the complexity results for best-case and worst-case pure Nash equilibria. We conclude, in Section 8,
with a discussion of our results and some open problems.

2. The Binomial Function

For a vector of probabilities p ∈ [0, 1]r, denote as p̃ the vector of probabilities with all entries equal to∑
i∈[r]

pi

r . We now define a combinatorial function:
Definition 2.1 (Binomial Function) For any integer r, consider a triple of a vector of probabilities p =
〈p1, . . . , pr〉, a vector w = 〈w1, . . . , wr〉 ∈ (R+

0 )r, and a function φ : R+
0 → R+

0 . For a subset U ⊆ [r], denote
wU =

∑
k∈U wk. The binomial function BF(p,w, φ) is defined by

BF(p,w, φ) =
∑
U⊆[r]

∏
k∈U

pk
∏
k/∈U

(1− pk) · φ(wU ) .

Roughly speaking, the binomial function BF represents the expectation of a function φ of a random variable
that follows some kind of a binomial distribution – hence, its name. Clearly, the binomial function is a
symmetric function in the probabilities p1, . . . , pr and the weights w1, . . . , wr – for each permutation π on
[r] that maps p to π(p) and w to π(w), BF(π(p), π(w), φ) = BF(p,w, φ). Moreover, the binomial function
BF is a continuous function in the probabilities p1, . . . , pr.

Say that the function φ is non-constant on the vector w if φ
(
mini∈[r] wi

)
6= φ

(∑
i∈[r] wi

)
. If φ is both

non-decreasing and non-constant on w, then φ
(
mini∈[r] wi

)
< φ

(∑
i∈[r] wi

)
. We now prove a significant

monotonicity property of the binomial function:
Lemma 2.1 (Monotonicity of Binomial Function) Assume that φ is a non-decreasing and non-constant
function on the vector w. Then, BF(p,w, φ) is strictly increasing in each probability pi, where i ∈ [r].

PROOF. Since BF is non-decreasing and non-constant, there is some index r′ ∈ [r] and some set U ⊆
[r] \ {r′} such that φ(wr′ +wU ) > φ(wU ). Assume, without loss of generality, that r′ = r so that U ⊆ [r− 1].
Since BF(p,w, φ) is a symmetric function in the probabilities pi, where i ∈ [r], it suffices to prove that
BF(p,w, φ) is strictly increasing in the probability pr. Clearly,

BF(p,w, φ) =
∑
U⊆[r]

∏
k∈U

pk
∏
k/∈U

(1− pk)φ(wU )

=
∑

U⊆[r−1]

∏
k∈U

pk
∏

k/∈U∪{r}

(1− pk) · [ pr · φ(wU + wr) + (1− pr) · φ(wU )]

=
∑

U⊆[r−1]

∏
k∈U

pk
∏

k/∈U∪{r}

(1− pk) · (φ(wU ) + pr · [φ(wU + wr)− φ(wU )]) .

Since φ is non-decreasing, φ(wU + wr) − φ(wU ) ≥ 0 for all U ⊆ [r − 1]. Moreover, by assumption, φ(wU +
wr)− φ(wU ) > 0 for some U ⊆ [r − 1]. It follows that BF(p,w, φ) is strictly increasing in pr, as needed.

A significant special case occurs when w is a constant vector with all entries equal to 1. In this case, we
abuse notation to write BF(p, r, φ) for BF(p,w, φ). For this special case, we prove a monotonicity property
of the binomial function with respect to averaging the probabilities:
Lemma 2.2 (Averaging Monotonicity of Binomial Function) Assume that the function φ is convex.
Then, BF(p, r, φ) ≤ BF(p̃, r, φ).

PROOF. Clearly, it suffices to prove that BF(p, r, φ) does not decrease when any two arbitrary probabilities
in the vector p are replaced by their average. Since BF(p, r, φ) is symmetric in the probabilities pi, with
i ∈ [r], it suffices to prove that BF(p, r, φ) does not decrease when p1 and p2 are replaced by their average
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p1+p2
2 . So, consider the vector of probabilities q = 〈q1, . . . , qr〉 with q1 = q2 = p1+p2

2 , and qi = pi for all
i ∈ [r] \ [2]. Write

BF(p, r, φ)

=
∑
U⊆[r]

∏
k∈U

pk
∏
k/∈U

(1− pk) · φ(|U|)

=
∑

U⊆[r]\[2]

∏
k∈U

pk
∏

k/∈U∪[2]

(1− pk) ·
[
(1− p1)(1− p2)φ(|U|)+

+ (p1(1− p2) + p2(1− p1))φ(|U|+ 1) + p1p2φ(|U|+ 2))
]

=
∑

U⊆[r]\[2]

∏
k∈U

pk
∏

k/∈U∪[2]

(1− pk) ·
[
p1p2

(
φ(|U|+ 2)− 2φ(|U|+ 1) + φ(|U|)

)
+

+ (p1 + p2) (φ(|U|+ 1)− φ(|U|)) + φ(|U|)
]
,

so that also

BF(q, r, φ)

=
∑

U⊆[r]\[2]

∏
k∈U

qk
∏

k/∈U∪[2]

(1− qk) ·
[
q1q2

(
φ(|U|+ 2)− 2φ(|U|+ 1) + φ(|U|)

)
+

+ (q1 + q2) (φ(|U|+ 1)− φ(|U|)) + φ(|U|)
]
.

Since pi = qi for all users i ∈ [r] \ [2], while q1 + q2 = p1 + p2, it follows that

BF(q, r, φ)− BF(p, r, φ)

=
∑

U⊆[r]\[2]

∏
k∈U

pk
∏

k/∈U∪[2]

(1− pk) ·
[
(q1q2 − p1p2) (φ(|U|+ 2)− 2φ(|U|+ 1) + φ(|U|))

]
.

Since q1 = q2 is the arithmetic mean of p1 and p2, it holds that q1q2 ≥ p1p2. Since the function φ is convex,
φ(|U|+1)−φ(|U|) ≤ φ(|U|+2)−φ(|U|+1); rearranging terms yields that φ(|U|+2)−2φ(|U|+1)+φ(|U|) ≥ 0.
Thus, BF(q, r, φ)− BF(p, r, φ) ≥ 0, as needed.

Another significant special case of the binomial function occurs when not only w is a constant vector
with all entries equal to 1, but also p is a constant vector with all entries equal to p > 0. We shall analyze
this special case under the additional assumption that φ is the monomial function φ(λ) = λd. We will then
abuse notation to write BF(p, r, d) for BF(p,w, λd). Clearly,

BF(p, r, d) =
∑

0≤k≤r

(
r

k

)
pk (1− p)r−k kd .

We shall later use a known fact about BF(p, r, d):
Lemma 2.3 (Gairing et al. [22]) For any integer d ≥ 1, BF(p, r, d) =

∑
k∈[d] S(d, k) · rk · pk .

3. Discrete Routing Games

We extend definitions for the KP model to accommodate features from the Wardrop model.

3.1. General

We consider a simple network consisting of m ≥ 2 parallel links 1, 2, . . . ,m from a source node to a
destination node. Each of n ≥ 2 users 1, 2, . . . , n wishes to route a particular amount of (unsplittable) traffic
along a (non-fixed) link from source to destination.

Denote as wi > 0 the traffic of user i ∈ [n]. Define the n × 1 traffic vector w in the natural way. For a
user i ∈ [n], eliminating wi from the vector w yields the (n − 1)-dimensional vector w−i. Associated with
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each link j ∈ [m] is a latency function φj : R+
0 → R+

0 , which is a non-decreasing and non-constant function
with φj(0) = 0. For each user i ∈ [n], define the function φij : R+

0 → R+
0 by φij(λ) = φj(wi +λ). We assume

that φ1(1) ≤ . . . ≤ φm(1); call link 1 the smallest link and say that link j is smaller than link k whenever
j < k. Define the m× 1 latency function vector Φ in the natural way. An instance is a pair 〈w,Φ〉.

In the case of identical users, all user traffics are 1 and an instance is a pair 〈n,Φ〉. In the case of identical
links, φj = φ for all links j ∈ [m], where φ is a non-decreasing and non-constant function (with φ(0) = 0);
in this case, an instance is a pair 〈w, 〈m,φ〉〉. For the case of identical users and identical links, an instance
is a pair 〈n, 〈m,φ〉〉. In the general case, we talk about arbitrary users and arbitrary links.

In the case of identical users, each latency function is a discrete function φj : [n] ∪ {0} → R+
0 φj(0) = 0;

clearly, φ̂j = φij for each (identical) user i ∈ [n]. In this case, say that the latency function φj is non-
constant on [n], or non-constant for short, if φj(1) 6= φj(n); since each φj is non-decreasing, this implies
that φj(1) < φj(n).

3.2. Convexity

For the case of identical users, we will often assume that the latency functions enjoy some property of
discrete convexity on the domain [n]∪ {0}. Formally, a function φ : [n]∪ {0} → R+

0 is convex if for all pairs
of integers x1, x2 ∈ [n − 1] with x1 < x2, φ(x1 + 1) − φ(x1) ≤ φ(x2 + 1) − φ(x2). Clearly, to establish that
such a function φ is convex, it suffices to prove that for any x ∈ [n− 1], φ(x)− φ(x− 1) ≤ φ(x+ 1)− φ(x).
Our definition of a convex function is the particular, one-dimensional case of a corresponding definition of
M-convex functions due to Murota [38]:

For B ⊆ Nm0 , a function φ : B → R is called M-convex if for all vectors x,y ∈ B and for all dimensions
j ∈ [m] with x(j) > y(j) there exists a dimension k ∈ [m] with x(k) < y(k) such that x − χj + χk ∈ B,
y + χj − χk ∈ B, and

φ(x) + φ(y) ≥ φ(x− χj + χk) + φ(y + χj − χk) .

We will later use a combinatorial property of M-convex functions, which was originally shown by Murota [38,
Theorem 2.2]:
Proposition 3.1 (Global Optimality = Local Optimality for M-Convex) Let φ be an M-convex func-
tion on B ⊆ Nm0 . Then, the vector x ∈ B minimizes φ over B if and only if for all pairs of dimensions
j, k ∈ [m], φ(x) ≤ φ(x− χj + χk).

3.3. Strategies and Assignments

A pure strategy for user i ∈ [n] is some specific link. A mixed strategy for user i ∈ [n] is a probability
distribution over pure strategies; so, it is a probability distribution over links.

A pure assignment is a tuple L = 〈`1, . . . , `n〉 ∈ [m]n; a mixed assignment is an n×m probability matrix
P of n ·m probabilities p(i, j), for all pairs of a user i ∈ [n] and a link j ∈ [m], where p(i, j) is the probability
that user i chooses link j; so, for each user i ∈ [n],

∑
j∈[m] p(i, j) = 1. We will cast a pure assignment as

a special case of a mixed assignment in which all (mixed) strategies are pure. The support of the mixed
strategy for user i ∈ [n] in the mixed assignment P, denoted as SupportP(i), is the set of pure strategies
which i chooses with strictly positive probability.

A mixed assignment F is fully mixed [36, Section 2.2] if f(i, j) > 0 for all pairs of a user i ∈ [n] and a link
j ∈ [m]. In the standard fully mixed assignment F, f(i, j) = 1

m for all users i ∈ [n] and links j ∈ [m].
Fix now a mixed assignment P. The load δj(P) on link j ∈ [m] is the total traffic of users choosing the

link (according to P); so, δj(P) is a random variable. For each link j ∈ [m], denote as θj(P) the expected load
on link j ∈ [m]; so, clearly, θj(P) =

∑
k∈[n] p(k, j)wk. Moreover, denote as θij(P) =

∑
k∈[n]\{i} p(k, j)wk,

the expected load on link j ∈ [m] excluding user i ∈ [n].
For a user i ∈ [n] and a link j ∈ [m], denote as pij the (n−1)-dimensional vector 〈p(1, j), . . . , p(i−1, j), p(i+

1, j), . . . , p(n, j)〉. The average probability p̃ij on link j excluding user i is defined as p̃ij =
∑

k∈[n]\{i}
p(k,j)

n−1 ;
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clearly, in the case of identical users, p̃ij = θij(P)
n−1 . It is straightforward to verify that

∑
j∈[m] p̃ij = 1. Denote

as p̃ij the (n− 1)-dimensional vector with all entries equal to p̃ij .

3.4. Costs

3.4.1. Individual Cost and Expected Individual Cost
For the pure assignment L, the Individual Cost for user i ∈ [n], denoted as ICi(L), is

ICi(L) = φ`i

 ∑
k∈[n]|`k=`i

wk

 ;

so, the Individual Cost for user i is the latency on the link it chooses.
Fix now a mixed assignment P. The Conditional Expected Individual Cost for user i ∈ [n] on link j ∈ [m],

denoted as ICij(P), is the expectation (according to P) of the Individual Cost for user i had it chosen link
j; thus,

ICij(P) =
∑

U⊆[n]\{i}

∏
k∈U

p(k, j)
∏

k 6∈U∪{i}

(1− p(k, j)) · φj(wi + wU ) .

Since the latency function φj is non-decreasing, it follows that for all pairs of a user i ∈ [n] and a link
j ∈ [m], ICij(P) ≥ φj(wi).

Using the binomial function, the Conditional Expected Individual Cost is expressed as

ICij(P) = BF(pij ,w−i, φij) .

For the special case of identical users, this expression reduces to

ICij(P) = BF(pij , n− 1, , φ̂j) .

For each user i ∈ [n], the Expected Individual Cost for user i, denoted as ICi(P), is the expectation (according
to P) of the Individual Cost of user i. Thus,

ICi(P) =
∑
j∈[m]

p(i, j) · ICij(P) ;

so, Expected Individual Cost is a convex combination of Conditional Expected Individual Costs.

3.4.2. Social Cost
Associated with an instance 〈w,Φ〉 and a mixed assignment P is the Social Cost, denoted as SCΣ(w,Φ,P),

which is the sum, over all users, of Expected Individual Costs; so,

SCΣ(w,Φ,P) =
∑
i∈[n]

ICi(P)

=
∑
i∈[n]

∑
j∈[m]

p(i, j)
∑

U⊆[n]\{i}

∏
k∈U

p(k, j)
∏

k 6∈U∪{i}

(1− p(k, j)) · φj(wi + wU ) .

3.4.3. Optimum
Associated with an instance 〈w,Φ〉 is the Optimum, denoted as OPTΣ(w,Φ), which is the least possible,

over all pure assignments, Social Cost; thus,

OPTΣ(w,Φ) = min
L∈[m]n

SCΣ(w,Φ,L) .

A pure assignment L is optimum for the instance 〈w,Φ〉 if SCΣ(w,Φ,L) = OPTΣ(w,Φ).
We note two obvious lower bounds on Optimum for the case of identical users and identical links with a

monomial latency function φ(λ) = λd, for some integer d ≥ 1. Assuming that n ≥ m, OPTΣ(n, 〈m,φ〉) ≥
n ·
(
n
m

)d; assuming that n ≤ m, OPTΣ(n, 〈m,φ〉) = n.

9



3.5. Nash Equilibria and Price of Anarchy

We are interested in a special class of mixed strategies called Nash equilibria [39,40]. Given an instance
〈w,Φ〉 with an associated mixed assignment P, a user i ∈ [n] is satisfied in P if ICij(P) = ICi(P) for all
links j ∈ SupportP(i), and ICij(P) ≥ ICi(P) for all links j 6∈ SupportP(i). So, a satisfied user has no incentive
to unilaterally deviate from its mixed strategy. The mixed assignment P is a Nash equilibrium if all users
i ∈ [n] are satisfied in P.

A fully mixed Nash equilibrium [36] is a fully mixed assignment that is a Nash equilibrium. Note that for
the case of identical links, the standard fully mixed assignment F is a (fully mixed) Nash equilibrium since
it satisfies that for all users i ∈ [n] and for all pairs of links j, l ∈ [m], ICij(P) = ICil(P); call it the standard
fully mixed Nash equilibrium.

The Price of Anarchy, denoted as PoAΣ, is the worst-case ratio SCΣ(w,Φ,P)
OPTΣ(w,Φ)

, over all instances 〈w,Φ〉 and
associated Nash equilibria P.

A worst-case (or worst for short) Nash equilibrium [31] is one which, on any fixed but arbitrary instance,
maximizes Social Cost. A best-case (or best for short) Nash equilibrium [18] is one which, on any fixed
but arbitrary instance, minimizes Social Cost. The Fully Mixed Nash Equilibrium Conjecture, henceforth
abbreviated as the FMNE Conjecture, states that a fully mixed Nash equilibrium is a worst-case Nash
equilibrium.

4. Fully Mixed Nash Equilibria

We now focus on fully mixed Nash equilibria; we restrict to the special case of identical users. A preliminary
property of fully mixed Nash equilibria is shown in Section 4.1. In Section 4.2, we formulate and prove the
Fully Mixed Nash Equilibrium Conjecture under the (essential) assumption of convex latency functions.
Furthermore, we establish in Section 4.3 that the fully mixed Nash equilibrium may only exist uniquely. In
Section 4.4, we prove a combinatorial characterization of instances admitting a fully mixed Nash equilibrium.

4.1. A Preliminary Property

We show a preliminary property of fully mixed Nash equilibria, which applies to the case of identical
users. Specifically, we prove that all (identical) users choose each fixed link with the same probability.
Lemma 4.1 (Same Probabilities) Consider the case of identical users and arbitrary links with non-
constant latency functions. Fix an instance 〈n,Φ〉 with an associated fully mixed Nash equilibrium F. Then,
for all pairs of users i, h ∈ [n] and for all links j ∈ [m], f(i, j) = f(h, j).

PROOF. Fix any pair of users i, h ∈ [n] and a link j ∈ [m]. Since F is a fully mixed Nash equilibrium,

ICi(F) = ICij(F)

=
∑

U⊆[n]\{i,h}

∏
k∈U

f(k, j)
∏

k∈[n]\(U∪{i,h})

(1− f(k, j)) ·
[
(1− f(h, j))φj(|U|+ 1) + f(h, j)φj(|U|+ 2)

]
and also

ICh(F) =
∑

U⊆[n]\{i,h}

∏
k∈U

f(k, j)
∏

k∈[n]\(U∪{i,h})

(1− f(k, j)) ·
[
(1− f(i, j))φj(|U|+ 1) + f(i, j)φj(|U|+ 2)

]
.

Hence,
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ICi(F)− ICh(F)

=
∑

U⊆[n]\{i,h}

∏
k∈U

f(k, j)
∏

k∈[n]\(U∪{i,h})

(1− f(k, j)) · (f(h, j)− f(i, j)) · (φj(|U|+ 2)− φj(|U|+ 1))

= (f(h, j)− f(i, j))
∑

U⊆[n]\{i,h}

∏
k∈U

f(k, j)
∏

k∈[n]\(U∪{i,h})

(1− f(k, j)) · (φj(|U|+ 2)− φj(|U|+ 1)) .

Since F is fully mixed,
∏
k∈U f(k, j)

∏
k∈[n]\(U∪{i,h})(1 − f(k, j)) > 0 for all (non-empty) subsets U ⊆

[n]\{i, h}. Since φj is non-decreasing and non-constant on [n], there is a (non-empty) subset U ⊆ [n]\{i, h}
such that φj(|U|+ 2) > φj(|U|+ 1). These imply that∑

U⊆[n]\{i,h}

∏
k∈U

f(k, j)
∏

k∈[n]\(U∪{i,h})

(1− f(k, j)) (φj(|U|+ 2)− φj(|U|+ 1)) > 0 .

It follows that ICi(F) > ICh(F) (resp., ICi(F) < ICh(F)) if and only if f(h, j) > f(i, j) (resp., f(h, j) <
f(i, j)). Since the link j ∈ [m] was chosen arbitrarily, this implies that ICi(F) > ICh(F) (resp., ICi(F) <
ICh(F)) if and only if for all links l ∈ [m], f(h, l) > f(i, l) (resp., f(h, l) < f(i, l)). Since, however,∑
l∈[m] f(h, l) =

∑
l∈[m] f(i, l) = 1, the latter is false. It follows that ICi(F) = ICh(F). This implies that

f(h, j) = f(i, j), as needed.

Lemma 4.1 implies that a fully mixed Nash equilibrium F can be identified with a sequence fj ∈ (0, 1),
j ∈ [m], such that for all pairs of a user i ∈ [n] and a link j ∈ [m], f(i, j) = fj .

4.2. The FMNE Conjecture

Convex latency functions are considered in Section 4.2.1. Section 4.2.2 considers arbitrary latency func-
tions. Throughout this section, we keep restricting to the case of identical users.

4.2.1. Convex Latency Functions
We prove:

Proposition 4.2 Consider the case of identical users and arbitrary links with non-constant and convex
latency functions. Fix an instance 〈n,Φ〉 with an associated fully mixed Nash equilibrium F. Then, for each
Nash equilibrium P and for each user i ∈ [n], ICi(P) ≤ ICi(F).

PROOF. By Lemma 4.1, there is, for each link j ∈ [m], some probability fj ∈ (0, 1) such that each user
chooses link j with probability fj . Denote as fj the (n−1)-dimensional vector of probabilities with all entries
equal to fj .

Since Expected Individual Cost is a convex combination of Conditional Expected Individual Costs, it
suffices to prove that for all pairs of a user i ∈ [n] and a link j ∈ SupportP(i), ICij(P) ≤ ICi(F).

Assume, by way of contradiction, that there is a user i ∈ [n] and a link j ∈ SupportP(i) such that
ICij(P) > ICi(F). Then,

ICij(P) = BF(pij , n− 1, φ̂j)

≤ BF(p̃ij , n− 1, φ̂j) (by Lemma 2.2) .

On the other hand,

ICi(F) = ICij(F) (since F is a fully mixed Nash equilibrium)

= BF(fj , n− 1, φ̂j) .

Since ICij(P) > ICi(F), it follows that BF(p̃ij , n− 1, φ̂j) > BF(fj , n− 1, φ̂j). Since φ̂j is non-decreasing and
non-constant, it follows from Lemma 2.1 that p̃ij > fj . Clearly,

∑
l∈[m] fl =

∑
l∈[m] f(i, l) = 1. Recall that∑

l∈[m] p̃il = 1. It follows that there is a link l ∈ [m] such that p̃il < fl. Thus,
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ICij(P) ≤ ICil(P) (since j ∈ SupportP(i) and P is a Nash equilibrium)

= BF(pil, n− 1, φ̂l)

≤ BF(p̃il, n− 1, φ̂l) (by Lemma 2.2)

< BF(fl, n− 1, φ̂l) (by Lemma 2.1 (since p̃il < fl))
= ICil(F)
= ICi(F) (since F is a fully mixed Nash equilibrium)
< ICij(P) (by assumption) ,

a contradiction.

Since Social Cost is the sum of Expected Individual Costs, Proposition 4.2 directly implies:
Theorem 4.3 (Convexity Implies the FMNE Conjecture) Consider the case of identical users and ar-
bitrary links with non-constant and convex latency functions. Then, the Fully Mixed Nash Equilibrium Con-
jecture is valid.

4.2.2. Arbitrary Latency Functions
We now provide a counterexample to Theorem 4.3. More specifically, we construct an instance involving

identical links with a non-decreasing and non-constant but not convex latency function for which Proposi-
tion 4.2 does not hold. We prove:
Proposition 4.4 Consider the case of identical users and identical links with an arbitrary latency func-
tion. Then, there is an instance 〈n, 〈m,φ〉〉 with associated pure Nash equilibrium L and fully mixed Nash
equilibrium F such that for all users i ∈ [n], ICi(L) > ICi(F).

PROOF. Consider the instance 〈4, 〈2, φ〉〉, where φ : [4]∪{0} → R+
0 is a (strictly increasing) function with

φ(1) = 1, φ(2) = 2, φ(3) = 13
6 and φ(4) = 7

3 . Since φ(3)− φ(2) < φ(2)− φ(1), φ is not convex. Consider any
arbitrary pure Nash equilibrium L and the standard fully mixed Nash equilibrium F, where f(i, j) = 1

2 for
each user i ∈ [4] and link j ∈ [2].

Fix any arbitrary user i ∈ [4]. We compare the Individual Cost ICi(L) and the Expected Individual Cost
ICi(F) for user i.

On one hand, note that since φ(2) < φ(3) and φ(1) < φ(4), the definition of Nash equilibrium implies
that in L, there is no link chosen by either 3 or 4 users. So, exactly two users choose each link in L; hence,
ICi(L) = φ(2) = 2. On the other hand, ICi(F) = 1

8 (φ(1)+3φ(2)+3φ(3)+φ(4)) = 95
48 . Since 2 > 95

48 . it follows
that ICi(L) > ICi(F), as needed.

Since Social Cost is the sum of Expected Individual Costs, Proposition 4.4 directly implies:
Corollary 4.5 (The FMNE Conjecture Needs Convexity) Consider the case of identical users and
identical links with an arbitrary latency function. Then, the FMNE Conjecture is not valid.
Corollary 4.5 implies that the assumption of convexity made for Theorem 4.3 is essential.

4.3. Uniqueness

We show:
Theorem 4.6 (Fully Mixed Nash Equilibrium Uniqueness) Consider the case of identical users and
arbitrary links with non-constant latency functions. Then, a fully mixed Nash equilibrium may exist only
uniquely.

PROOF. Assume, by way of contradiction, that there is an instance 〈n,Φ〉 with two distinct associated
fully mixed Nash equilibria F and G. Lemma 4.1 implies that for each link j ∈ [m], there is a probability
fj ∈ (0, 1) (resp., gj ∈ (0, 1)) such that for all users i ∈ [n], f(i, j) = fj (resp., g(i, j) = gj). For each link
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j ∈ [m], denote as fj (resp., gj) the (n − 1)-dimensional vector of probabilities with all entries equal to fj
(resp., gj).

Since F and G are distinct with
∑
l∈[m] fl =

∑
l∈[m] gl = 1, there are two distinct links j, l ∈ [m] such

that fj > gj and fl < gl. Fix any user i ∈ [n]. Clearly, for the fully mixed Nash equilibria F and G, the
Conditional Expected Individual Costs for user i on the link j ∈ [m] are ICij(F) = BF(fj , n − 1, φ̂j) and
ICij(G) = BF(gj , n− 1, φ̂j). Hence,

ICij(F) = ICil(F) (since F is a fully mixed Nash equilibrium)

= BF(fl, n− 1, φ̂l)

< BF(gl, n− 1, φ̂l) (by Lemma 2.1 (since fl < gl))
= ICil(G)
= ICij(G) (since G is a fully mixed Nash equilibrium)

= BF(gj , n− 1, φ̂j)

< BF(fj , n− 1, φ̂j) (by Lemma 2.1 (since gj < fj))
= ICij(F) ,

a contradiction.

Consider now the case of identical users and identical links, and recall the standard fully mixed Nash
equilibrium. Then, Theorem 4.6 immediately implies:
Corollary 4.7 Consider the case of identical users and identical links. Then, the standard fully mixed
assignment is the unique fully mixed Nash equilibrium.

4.4. Existence

We present a characterization of instances admitting a fully mixed Nash equilibrium. Recall our earlier
assumption that φ1(1) ≤ φ2(1) ≤ . . . ≤ φn(1).

Fix an instance 〈n,Φ〉. For each link k ∈ [m] and for each smaller link j ∈ [k − 1], denote as pj(k) the
probability such that

BF(pj(k), n− 1, φ̂j) = min {φj(n), φk(1)} ,

where pj(k) is the vector with n−1 entries equal to pj(k). We argue that this definition uniquely determines
a probability pj(k). Recall that BF(pj(k), n − 1, φ̂j) is the Conditional Expected Individual Cost for a
user on link j ∈ [m] in the case where p(i, j) = pj(k) for all remaining users i ∈ [n − 1]. In particular,
BF(0, n− 1, φ̂j) = φj(1) and BF(1, n− 1, φ̂j) = φj(n). Note that

φj(1) = min{φj(n), φj(1)} (since φj is non-decreasing)
≤ min{φj(n), φk(1)} (since φj(1) ≤ φk(1)) ,

while φj(n) ≥ min{φj(n), φk(1)}. So, φj(1) ≤ min{φj(n), φk(1)} ≤ φj(n). By Lemma 2.1, BF(pj(k), n−1, φ̂j)
is strictly increasing in pj(k). By continuity of the binomial function, this implies that BF attains exactly
once the intermediate value min{φj(n), φk(1)}. Hence, the definition uniquely determines a probability pj(k).

We now continue with two important definitions.
Definition 4.1 (Dead and Special Links)
– A link k ∈ [m] is dead for the instance 〈n,Φ〉 if either (i) φj(n) < φk(1) for some smaller link j ∈ [k−1],

or (ii)
∑
j∈[k−1] pj(k) > 1.

– A link k ∈ [m] is special for the instance 〈n,Φ〉 if
∑
j∈[k−1] pj(k) = 1.

We continue to prove some properties of dead and special links. The first of them shows that no user chooses
a dead link.
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Lemma 4.8 (No User Chooses a Dead Link) Consider the case of identical users and arbitrary links
with non-constant and convex latency functions. Fix an instance 〈n,Φ〉 with a dead link k ∈ [m] and an
associated Nash equilibrium P. Then, p(i, k) = 0 for all users i ∈ [n].

PROOF. Assume, by way of contradiction, that there is a user i ∈ [n] such that p(i, k) > 0. Since P is a
Nash equilibrium, this implies that for any link j ∈ [k − 1], ICik(P) ≤ ICij(P). Since φk(1) ≤ ICik(P). it
follows that φk(1) ≤ ICij(P).

Since k is a dead link, there are two cases to consider. For each case, we will derive a contradiction.
(i) Assume first that φl(n) < φk(1) for some smaller l ∈ [k − 1]. Then, by Lemma 2.1,

ICil(P) = BF(pil, n− 1, φ̂l)

≤ BF(p̃il, n− 1, φ̂l) (by Lemma 2.2)

≤ BF(1, n− 1, φ̂l) (by Lemma 2.1 (since p̃ij ≤ 1))
= φl(n)
< φk(1) (by assumption) ,

a contradiction.
(ii) Assume now that

∑
j∈[k−1] pj(k) > 1. Assume that for each smaller link j ∈ [k − 1], φk(1) ≤ φj(n)

(since otherwise the claim follows from the previous case). Note that
∑
j∈[k−1] p̃j ≤

∑
j∈[m] p̃j = 1. It

follows that there is some smaller link l ∈ [k − 1] such that pl(k) > p̃il. Hence,

ICil(P) = BF(pil, n− 1, φ̂l)

≤ BF(p̃il, n− 1, φ̂l) (by Lemma 2.2)

< BF(pl(k), n− 1, φ̂l) (by Lemma 2.1 (since p̃il < pl(k)))
= min{φl(n), φk(1)} (by definition of pl(k))
= φk(1) ,

a contradiction.
Since we derived a contradiction in all possible cases, the proof is now complete.

We continue to prove:
Lemma 4.9 (At Most One User Chooses a Special Link) Consider the case of identical users and
arbitrary links with non-constant and convex latency functions. Fix an instance 〈n,Φ〉 with an associated
Nash equilibrium P. Then, there is at most one user i ∈ [n] with p(i, k) > 0 for some special link k ∈ [m].

PROOF. Assume, by way of contradiction, that there are two distinct users i, h ∈ [n] and two (not
necessarily distinct) special links k, r ∈ [m], k ≤ r, with p(i, k) > 0 and p(h, r) > 0.

Since p(h, r) > 0, it follows that p̃ir ≥ p(h,r)
n−1 > 0. Since k ≤ r ≤ m, this implies that

∑
j∈[k−1] p̃ij <∑

j∈[m] p̃ij = 1. Since link k is special,
∑
j∈[k−1] pj(k) = 1. It follows that there is some link l ∈ [k− 1] such

that pl(k) > p̃il. So,

φk(1) ≤ ICik(P)
≤ ICil(P) (since p(i, k) > 0 and P is a Nash equilibrium)

= BF(pil, n− 1, φ̂l)

≤ BF(p̃il, n− 1, φ̂l) (by Lemma 2.2)

< BF(pl(k), n− 1, φ̂l) (by Lemma 2.1 (since pil < pl(k)))
= min {φl(n), φk(1)} (by definition of pl(k))
≤ φk(1) ,

a contradiction.
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We are now ready to prove:
Theorem 4.10 (Existence of Fully Mixed Nash Equilibria) Consider the case of identical users and
arbitrary links with non-constant and convex latency functions. Then, there is a fully mixed Nash equilibrium
if and only if there are neither dead nor special links.

PROOF. Throughout, fix an instance 〈n,Φ〉.
Assume first that 〈n,Φ〉 admits a fully mixed Nash equilibrium F. By definition, f(i, j) > 0 for all pairs

of a user i ∈ [n] and a link j ∈ [m]. Lemma 4.8 implies that there is no dead link; since n ≥ 2, Lemma 4.9
implies that there is no special link either, and we are done.

Assume now that there are neither dead nor special links for the instance 〈n,Φ〉. We will determine a fully
mixed Nash equilibrium F for 〈n,Φ〉 with f(i, j) = fj for all users i ∈ [n] and links j ∈ [m].

For each link j ∈ [m], define ∆φj = φj(n)− φm(1). Clearly, ∆φj ≤ φj(n). Since there are no dead links,
it follows that ∆φj ≥ 0. So, 0 ≤ ∆φj ≤ φj(n).

Fix now a link j ∈ [m− 1]. For any value x ∈ [0,∆φj ], denote ψj(x) the value such that

BF(ψj(x), n− 1, φ̂j) = φm(1) + x ,

where ψj(x) is the (n−1)-dimensional vector with all entries equal to ψj(x). We argue that ψj(x) is uniquely
determined by this definition.

Note that BF(ψj(x), n− 1, φ̂j) is the Conditional Expected Individual Cost for a user on link j ∈ [m− 1]
in the case where all remaining users i ∈ [n−1] choose link j with probability ψj(x). In particular, BF(0, n−
1, φ̂j) = φj(1) ≤ φm(1) and BF(1, n− 1, φ̂j) = φj(n). Note also that

φm(1) + x ≤ φm(1) + ∆φj (since x ≤ ∆φj)
= φm(1) + φj(n)− φm(1)
= φj(n) ,

while

φm(1) + x ≥ φm(1) .

By Lemma 2.1, BF(ψj(x), n− 1, φ̂j) is strictly increasing in ψj(x). By continuity of the binomial function,
this implies that BF attains exactly once the intermediate value φm(1) + x. Hence, the definition uniquely
determines ψj(x).

Note that the definition of ψj(x) and Lemma 2.1 imply together that ψj(x) is strictly increasing in
x ∈ [0,∆φj ], where j ∈ [m− 1]; in particular, this implies that for any x ∈ (0,∆φj), 0 < ψj(x) < 1.

Now for the link m, for each x ∈ [0,minj∈[m−1] ∆φj ], set

ψm(x) = 1−
∑

j∈[m−1]

ψj(x) .

Clearly, ψm(x) is strictly decreasing in x for x ∈ [0,minj∈[m−1] ∆φj ]. Moreover, ψm(x) < 1 for all x ∈
(0,minj∈[m−1] ∆φj ].

Define

x̂ = max
{
x ∈ [0, min

j∈[m−1]
∆φj ] | ψm(x) ≥ 0

}
;

thus, ψm(x̂) = 0.
Consider the function BF(ψm(x), n−1, φ̂m), where ψm(x) is the (n−1)-dimensional vector with all entries

equal to ψm(x), for x ∈ [0, x̂]. Since ψm(x) is strictly decreasing in x for x ∈ [0, x̂], Lemma 2.1 implies that
BF(ψm(x), n− 1, φ̂m) is strictly decreasing in x for x ∈ [0, x̂].

Note that by definition of ψm(x),

ψm(0) = 1−
∑

j∈[m−1]

ψj(0) .
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Recall also that for each link j ∈ [m− 1], ψj(0) is (uniquely) determined by the equation

BF(ψj(0), n− 1, φ̂j) = φm(1) .

Since there are no dead links, this equation is equivalent to

BF(ψj(0), n− 1, φ̂j) = min {φj(n), φm(1)} .

By definition of pj(m), it follows that ψj(0) = pj(m). Hence,

ψm(0) = 1−
∑

j∈[m−1]

pj(m) .

Since there are neither dead nor special links, it follows that
∑
j∈[m−1] pj(m) < 1, so that ψm(0) > 0. Thus,

BF(ψm(0), n− 1, φ̂m) > BF(0, n− 1, φ̂m) (by Lemma 2.1 (since ψm(0) > 0))
= φm(1) .

On the other hand,

BF(ψm(x̂), n− 1, φ̂m) = BF(0, n− 1, φ̂m) (since ψm(x̂) = 0)
= φm(1)
< φm(1) + x̂ (since x̂ > 0) .

Since BF(ψm(x), n− 1, φ̂m) is a continuous, strictly decreasing function in x for x ∈ [0, x̂], the Mean Value
Theorem implies that there is some x0 ∈ (0, x̂) such that

BF(ψm(x0), n− 1, φ̂m) = φm(1) + x0 .

We are now ready to determine a fully mixed Nash equilibrium F for the instance 〈n,Φ〉:
– For each user i ∈ [n] and link j ∈ [m], set f(i, j) = ψj(x0).
It remains to show that F is a fully mixed Nash equilibrium:
– We first prove that F is a fully mixed assignment. We need to prove that for each link j ∈ [m], 0 <
ψj(x0) < 1.
· For a link j ∈ [m−1], note that 0 < x0 < x̂ ≤ minj∈[m−1] ∆φj ≤ ∆φj . Thus, 0 < ψj(x0) < 1, as needed.
· For the link m, note that 0 < x0 < x̂ ≤ minj∈[m−1] ∆φj . Thus, ψm(x0) < 1. Since ψm(x) is strictly

decreasing in x with ψm(x̂) = 0, while x0 < x̂, it follows that ψm(x0) > 0. So, 0 < ψm(x0) < 1, as
needed.

– We finally prove that F is a Nash equilibrium. Recall that by construction of x0, B
(
ψm(x0), n− 1, φ̂m

)
=

φm(1) +x0. By definition of the value ψj(x) for each link j ∈ [m− 1], BF(ψj(x0), n− 1, φ̂j) = φm(1) +x0.
It follows that BF(ψj(x0), n− 1, φ̂j) = φm(1) +x0 for all links j ∈ [m]. Since for each pair of a user i ∈ [n]
and a link j ∈ [m],

ICij(F) = BF(fij , n− 1, φ̂j)

= BF(ψj(x0), n− 1, φ̂j) (by construction of F)
= φm(1) + x0 ,

it follows that ICij(F) is constant over all links j ∈ [m], so that F is a Nash equilibrium.
The proof is now complete.

By the definition of dead and special links, it follows that Theorem 4.10 provides an efficient characteri-
zation of instances admitting a fully mixed Nash equilibrium.

We now broaden Theorem 4.3 by proving an upper bound on the Social Cost for the case where the fully
mixed Nash equilibrium does not exist. To state and prove this upper bound, we need first to introduce some
simple notation. For a given instance 〈n,Φ〉, denote as SD the set of all special and dead links. Moreover,
denote as 〈n,Φ \ SD〉 the restriction of the instance 〈n,Φ〉 to links outside SD. We prove:
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Theorem 4.11 Consider the case of identical users and arbitrary links with non-constant and convex
latency functions. Consider an instance 〈n,Φ〉 with an associated Nash equilibrium P, and the instance
〈n,Φ \ SD〉 with an associated fully mixed Nash equilibrium F. Then,

SCΣ (n,Φ,P) ≤ SCΣ (n,Φ \ SD,F) .

PROOF. If there are neither dead nor special links, then SCΣ (n,Φ \ SD,F) = SCΣ (n,Φ,F) and the claim
follows from Theorem 4.3. So, assume that there are either dead or special links. Lemma 4.8 implies that
no user is assigned (with non-zero probability) by P to a dead link, while Lemma 4.9 implies that at most
one user is assigned (with non-zero probability) by P to a special link. If no user is assigned (with non-zero
probability) by P to a special link, then SCΣ (n,Φ \ SD,F) = SCΣ (n,Φ,F) and the claim follows again from
Theorem 4.3. So, assume that there is a single user assigned (with non-zero probability) by P to a special
link.

Consider any user i ∈ [n]. Note that∑
j∈[m]\SD

θij(F) =
∑

j∈[m]\SD

∑
k∈[n]\{i}

f(k, j)

=
∑

k∈[n]\{i}

∑
j∈[m]\SD

f(k, j)

=
∑

k∈[n]\{i}

1

= n− 1 ,

while ∑
j∈[m]\SD

θij(P) =
∑

j∈[m]\SD

∑
k∈[n]\{i}

p(k, j)

=
∑

k∈[n]\{i}

∑
j∈[m]\SD

p(k, j)

≤
∑

k∈[n]\{i}

1

= n− 1 .

So,
∑
j∈[m]\SD θij(F) ≥

∑
j∈[m]\SD θij(P). It follows that there is some link j0 ∈ [m] \ SD such that

θij0(F) ≥ θij0(P), or f̃ij0 ≥ p̃ij0 Hence, we obtain that

ICi(P) ≤ ICij0(P) (since P is a Nash equilibrium)

= BF(pij0 , n− 1, φ̂j0)

≤ BF(p̃ij0 , n− 1, φ̂j0) (by Lemma 2.2)

≤ BF(f̃ij0 , n− 1, φ̂j0) (by Lemma 2.1 (since p̃ij0 ≤ f̃ij(F)))

= BF(fij0 , n− 1, φ̂j0) (by Lemma 4.1)
= ICij0(F) (since j0 ∈ [m] \ SD)
= ICi(F) (since F is a fully mixed Nash equilibrium) .

Since Social Cost is the sum of Expected Individual Costs, the claim now follows.

5. Price of Anarchy

We now present our bounds on the Price of Anarchy for the case of identical users. The case of identical
links with a monomial latency function is treated in Section 5.1. The more general case of arbitrary links
is treated in Section 5.2. We prepare the reader that Section 5.1 deals with mixed Nash equilibria, while
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Section 5.2 deals with pure Nash equilibria; the corresponding bound on the Price of Anarchy in Theorem 5.1
applies to a special case of latency functions (namely, monomial latency functions), while the bound on the
Price of Anarchy in Corollary 5.4 applies to the more general case of polynomial latency functions. However,
it turns out the bound in Corollary 5.4 is smaller than the bound in Theorem 5.1.

5.1. Identical Links with a Monomial Latency Function

In this section, we assume that there is some integer d ≥ 1 such that the latency function of each link is
the monomial function φ(x) = xd. We prove:
Theorem 5.1 Consider the case of identical users and identical links with a monomial latency function
φ(x) = xd, for any integer d ≥ 1. Then, PoAΣ < Bd+1 and supm=n→∞ PoAΣ = Bd+1.

PROOF. Since the function φ(x) = xd is strictly increasing and convex, Theorems 4.3, 4.10 and 4.6 imply
together that the worst-case Nash equilibrium is the unique fully mixed Nash equilibrium. Clearly, the
standard fully mixed assignment F is a Nash equilibrium; so, it is the unique fully mixed Nash equilibrium.

We shall proceed as follows. First, we shall derive a formula for the Social Cost of F; then, we shall use
this formula to prove the claim. So,

SCΣ(n,Φ,F) =
∑
i∈[n]

∑
j∈[m]

f(i, j)
∑

U⊆[n]\{i}

∏
k∈U

f(k, j)
∏

k 6∈U∪{i}

(1− f(k, j)) · φ̂(|U|)

=
∑
i∈[n]

∑
j∈[m]

∑
B⊆[n]|i∈B

∏
k∈B

f(k, j) ·
∏
k 6∈B

(1− f(k, j)) · φ(|B|)

=
∑
j∈[m]

∑
B⊆[n]

|B| ·
∏
k∈B

f(k, j) ·
∏
k 6∈B

(1− f(k, j)) · φ(|B|)

=
∑
j∈[m]

∑
k∈[n]

∑
B⊆[n]||B|=k

|B| ·
∏
t∈B

f(t, j) ·
∏
t 6∈B

(1− f(t, j)) · φ(|B|)

=
∑
j∈[m]

∑
k∈[n]

(
n

k

)
k

(
1
m

)k
·
(

1− 1
m

)n−k
· kd

=
∑
j∈[m]

∑
k∈[n]

(
n

k

) (
1
m

)k
·
(

1− 1
m

)n−k
· kd+1

= m · BF(
1
m
,n, d+ 1)

= m ·
∑

k∈[d+1]

S(d+ 1, k) · nk ·
(

1
m

)k
(by Lemma 2.3)

=
∑

k∈[d+1]

S(d+ 1, k) · nk

mk−1

It follows that

SCΣ(n,Φ,F)
OPTΣ(n,Φ)

=
∑

k∈[d+1]

S(d+ 1, k) · nk

mk−1OPTΣ(n,Φ)
.

We proceed by case analysis on the relation between n and m.
(i) Assume first that n ≥ m. Then, for each index k ∈ [d+ 1],
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nk

mk−1OPTΣ(n,Φ)
≤ nk

mk−1 · n
(
n
m

)d (since OPTΣ(n,Φ) ≥ n
(
n
m

)d)
=
nk

nk
·
(m
n

)d+1−k

< 1 (since n ≥ m and nk < nk) ,

while also

lim
m=n→∞

nk

mk−1OPTΣ(n,Φ)
= 1 .

(ii) Assume now that n < m. Then, for each index k ∈ [d+ 1],

nk

mk−1OPTΣ(n,Φ)
≤ nk

mk−1n
(since OPTΣ(n,Φ) = n)

<
nk

nk
(since n < m)

< 1 (since nk < nk) .

It follows that PoAΣ <
∑
k∈[d+1] S(d+ 1, k) = Bd+1, while limm=n→∞ PoAΣ = 1, as needed.

5.2. Arbitrary Links

In this section, we consider the case of arbitrary links. We start with a preliminary technical claim.
Proposition 5.2 (Global Optimality = Local Optimality) For any integer n ≥ 2, consider the set
Xn = {〈x1, . . . , xm〉 ∈ Nm0 |

∑
l∈[m] xj = n}, and a family of convex functions φl : [n] ∪ {0} → R+

0 , where
l ∈ [m]. Then, the vector 〈x1, . . . , xm〉 ∈ Xn minimizes the function

∑
l∈[m] φl(xl) over Xn if and only if for

all pairs of links j, k ∈ [m],

φj(xj) + φk(xk) ≤ φj(xj + 1) + φk(xk − 1) .

It is straightforward to verify that Proposition 5.2 is a particular case of Proposition 3.1. We now prove:
Proposition 5.3 Consider the case of identical users and arbitrary links. Fix an instance 〈n,Φ〉 such that
for all links j ∈ [m] and for all integers k ∈ [n],

kφj(k) ≤ α
∑
t∈[k]

φj(t) .

Then, for any pure Nash equilibrium L,

SCΣ(n,Φ,L) ≤ α · OPTΣ(n,Φ) .

PROOF. Fix an optimum pure assignment G for the instance 〈n,Φ〉. For all integers k ∈ [n] and links
j ∈ [m], define the function

ψj(k) =
∑
t∈[k]

φj(t) .

We first show that for each link j ∈ [m], the function ψj is convex. Fix a link j ∈ [m] and an integer
k ∈ [n− 1]. Clearly, ψj(k + 1)− ψj(k) = φj(k + 1) and ψj(k)− ψj(k − 1) = φj(k). Since the function φj is
non-decreasing, it follows that ψj(k + 1)− ψj(k) ≥ ψj(k)− ψj(k − 1), so that ψj is convex.

We now show that the vector 〈δ1(L), . . . , δm(L)〉 minimizes the function
∑
j∈[m] ψj(xj) under the restric-

tion that
∑
j∈[m] xj = n. By definition of Nash equilibrium, we have that φj(δj(L) + 1) ≥ φk(δk(L)) for all

pairs of links j, k ∈ [m]. Hence,

ψj(δj(L) + 1) + ψk(δk(L)− 1)
= ψj(δj(L)) + φj(δj(L) + 1) + ψk(δk(L))− φk(δk(L)) (by definition of ψj(x) and ψk(x))
≥ ψj(δj(L)) + ψk(δk(L)) (since φj(δj(L) + 1) ≥ φk(δk(L))) .
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By Proposition 5.2, this implies that the pure assignment L induces loads δ1(L), . . . , δm(L) which minimize
the function

∑
j∈[m] ψj(δj(L)) under the restriction that

∑
l∈[m] xl = n; call L a minimizing assignment.

Thus,

SCΣ(n,Φ,L) =
∑
j∈[m]

δj(L)φj(δj(L))

≤
∑
j∈[m]

α ·
∑

t∈[δj(L)]

φj(t) (by assumption on φ)

= α
∑
j∈[m]

ψj(δj(L)) (by definition of ψj)

≤ α
∑
j∈[m]

ψj(δj(G)) (since L is a minimizing assignment)

= α
∑
j∈[m]

∑
t∈[δj(G)]

φj(t) (by definition of ψj)

≤ α
∑
j∈[m]

δj(G)φj(δj(G)) (since φj is non-decreasing)

= α · OPTΣ(n,Φ) , (since G is an optimum assignment) ,

as needed.

We remark that the proof of Proposition 5.3 is a straightforward adaptation of the corresponding proof
for [44, Corollary 2.10] from the continuous setting with splittable flows and continuous latency functions to
the discrete setting with unsplittable traffics and discrete latency functions. We conclude this section with
a simple application of Proposition 5.3.
Corollary 5.4 Consider the case of identical users. Assume that all latency functions are (non-zero) poly-
nomials with non-negative coefficients and maximum degree d. Then, for pure Nash equilibria,

PoAΣ ≤ d+ 1 .

PROOF. Consider any latency function φ(x) =
∑d
k=0 akx

k with ak ≥ 0 for all indices k ∈ [d] ∪ {0}. By
Proposition 5.3, it suffices to prove that

xφ(x)∑
t∈[x] φ(t)

≤ d+ 1

for all integers x ∈ [n]. Clearly,

xφ(x)∑
t∈[x] φ(t)

=
∑d
k=0 akx

k+1∑d
k=0 ak

(∑
t∈[x] t

k
)

We shall use the following simple inductive claim:
Lemma 5.5 For all integers k ≥ 0 and x ≥ 1,

∑
t∈[x] t

k ≥ xk+1

k+1 .
So, by Lemma 5.5,

xφ(x)∑
t∈[x] φ(t)

≤
∑d
k=0 akx

k+1∑d
k=0

akxk+1

k+1

≤ d+ 1 ,

as needed.

We remark that Corollary 5.4 is a discrete analog of [44, Corollary 2.11], which held for splittable flows
and continuous latency functions.
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6. Computing Pure Nash Equilibria and Optimal Assignments

In this section, we provide a fast algorithm to compute a pure Nash equilibrium for the case of identical
users and arbitrary links. This algorithm is presented and analyzed in Section 6.1. Section 6.2 establishes
that this algorithm can also be used to compute an optimum (pure) assignment for the same case.

6.1. Pure Nash Equilibria

A simple approach to compute a pure Nash equilibrium is to assign the (identical) users one by one to
their respective best links. This approach is motivated by the classical LPT scheduling algorithm due to
Graham [27]; the algorithm had been already employed by Fotakis et al. [18, Section 3] for the case of the
KP model (where latency functions are linear). The resulting greedy algorithm can be implemented to run
in time O((n+m) logm) if the link latencies are maintained in a priority queue, which is updated after the
assignment of each user.

We present an algorithm ComputeNash to compute a pure Nash equilibrium under the assumption of
arbitrary, non-decreasing latency functions. We shall establish that the running time of ComputeNash is
O(m log n logm); this improves on the naive approach if m = o

(
n

logn

)
.

We start with an informal description of the algorithm ComputeNash. A pseudocode description of
the algorithm ComputeNash appears in Figure 1. The algorithm takes as input an arbitrary initial pure
assignment L and gives as output a pure Nash equilibrium L′. It does so by moving chunks of users at a
time. The first chunk contains all users. In each phase, the chunk size is halved until a chunk contains one
user only, in which case a Nash equilibrium has been reached. All users in a moved chunk improve their
Individual Costs.

Algorithm ComputeNash

Input: an instance 〈w,Φ〉, and an (arbitrary) pure assignment L
Output: a Nash equilibrium L′

(1) begin
(2) L′ ← L:
(2a) for j = 1, . . . ,m do
(2b) δj(L′)← δj(L);
(3) for δ = n, dn2 e, d

n
4 e, . . . , 1 do

(4) while ∃s, t ∈ [m] with δs(L′) ≥ δ and φs(δs(L′)) > φt(δt(L′) + δ) do
(5) choose such t ∈ [m] so that φt(δt(L′) + δ) is minimum;
(6) choose such s ∈ [m] so that φs(δs(L′)) is maximum;
(7) transfer δ users from s to t:
(7a) δs(L′)← δs(L′)− δ;
(7b) δt(L′)← δt(L′) + δ;
(8) return L′;
(9) end

Fig. 1. Algorithm ComputeNash

We prove:
Theorem 6.1 Consider the case of identical users and arbitrary links. Then, ComputeNash computes a
pure Nash equilibrium in O(m logm log n) time.

PROOF. After the last iteration of the algorithm ComputeNash (with δ = 1), it holds that φs(δs(L′)) ≤
φt(δt(L′) + 1) for all pairs of links s, t ∈ [m]. This implies that L′ is a (pure) Nash equilibrium. We continue
to analyze the running time of the algorithm ComputeNash. To do so, we first prove an invariant of the
algorithm.
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Lemma 6.2 (Only Increases or Only Decreases) During each iteration of the for loop, the load on a
link is either increased or decreased but not both.

PROOF. By way of contradiction, assume otherwise for some iteration of the for loop with chunk size δ.
Then, two cases are possible.

(i) The load on some link t ∈ [m] is decreased after it has been increased.
Consider an increase to the load on link t and the earliest decrease to the load on link t following
the increase. By the algorithm, there is some link u whose load is increased simultaneously with the
decrease to the load on link t. Denote δt and δu, and δ̂t and δ̂u the loads on links t and u before the
increase (to the load on link t) and before the decrease (to the load on link t), respectively. Note that
δ̂t = δt + δ.

For the increase to the load on link t, the choice of t by the algorithm implies that φt(δt + δ) ≤
φu(δu + δ). For the decrease to the load on link t, the algorithm implies that φt(δ̂t) > φu(δ̂u + δ) or
φt(δt + δ) > φu(δ̂u + δ). It follows that φu(δu + δ) > φu(δ̂u + δ). Since φu is non-decreasing, it follows
that δ̂u < δu. Hence, there is a decrease to the load on link u in between the increase to the load on
link t and the increase to the load on link u. Take the latest such decrease to the load on link u. By
the algorithm, the load on link u before this decrease is δ̂u + δ. Since there is no change to the load
on link t since it has been increased, the load on link t before this decrease is still δt + δ. The choice
of u by the algorithm for this decrease (to the load on link u) implies that φu(δ̂u + δ) ≥ φt(δt + δ). A
contradiction.

(ii) The load on some link s ∈ [m] is increased after it has been decreased.
Consider a decrease to the load on link s and the earliest increase to the load on link s following
the decrease. By the algorithm, there is some link u whose load is decreased simultaneously with the
increase to the load on link s. Denote δs and δu, and δ̂s and δ̂u the loads on links s and u before the
decrease (to the load on link s) and before the increase (to the load on link s), respectively. Note that
δ̂s = δs − δ.

For the decrease to the load on link s, the choice of s by the algorithm implies that φs(δs) ≥ φu(δu).
For the increase to the load on link s, the algorithm implies that φs(δ̂s+δ) < φu(δ̂u) or φs(δs) < φu(δ̂u).
It follows that φu(δu) < φu(δ̂u). Since φu is non-decreasing, it follows that δu < δ̂u. Hence, there is
an increase to the load on link u in between the decrease to the load on link s and the decrease to
the load on link u. Take the latest such increase to the load on link u. By the algorithm, the load on
link u before this increase is δ̂u − δ. Since there is no change to the load on link s since it has been
decreased, the load on link s before this increase is still δs − δ. The choice of u by the algorithm for
this increase (to the load on link u) implies that φu((δ̂u− δ) + δ) ≤ φs((δs− δ) + δ) or φu(δ̂u) ≤ φs(δs).
A contradiction.

Since we derived a contradiction in all possible cases, the proof is now complete.

We continue to prove:
Lemma 6.3 In each iteration of the for loop, there are at most O(m) iterations of the while loop.

PROOF. We consider separately the first iteration of the for loop, where δ = n. Consider the first (if
any) corresponding iteration of the while loop, where the load on some link s is decreased and the load on
some link t is increased. For any link l, denote δl and δ̂l the loads on link l before and after this iteration
of the while loop, respectively. By the algorithm, δs ≥ n; it follows that δl = 0 for any link l 6= s. By the
algorithm, δ̂t = δt + n = n: it follows that δ̂l = 0 for any link l 6= t.

By the algorithm, φs(δs) > φt(δt +n), or φs(n) > φt(n). By the choice of link t by the algorithm, it holds
that for any link t′ such that φs(δs) > φt′(δt′ + n) or φs(n) > φt′(n), either φt(δt + n) ≤ φt′(δt′ + n) or
φt(n) ≤ φt′(n).

Assume, by way of contradiction, that a second iteration of the while loop is now possible. Since δ̂t = n
and δ̂t′ = 0 for any link t′ 6= t, it follows by the algorithm that there is some link t′ 6= t such that
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φt(n) > φt′(n). Recall also that φs(n) > φt(n). It follows that φt′(n) < φs(n). Thus, there is a link t′ such
that φt′(n) < φs(n) for which φt(n) > φt′(n). A contradiction. It follows that there is at most one iteration
of the while loop in the first iteration of the for loop.

Consider now any subsequent iteration of the for loop with chunk size δ < n. The immediately preceding
iteration of the for loop has parameter δ′ such that δ = d δ

′

2 e; clearly, δ′ ≤ 2δ. Denote as δ̃j the load on link
j ∈ [m] upon completion of that iteration of the for loop (and immediately before the current iteration with
chunk size δ). Partition the set of links [m] into the two sets

L1 = {j ∈ [m] | δ̃j < 2δ}

and

L2 = {j ∈ [m] | δ̃j ≥ 2δ .}

Since each iteration of the while loop incurs a simultaneous increase and decrease to the loads on two
distinct links, the number of iterations of the while loop (in the considered iteration of the for loop) is
equal to the the total number of decreases to link loads (in the considered iteration of the for loop). Hence,
we proceed to show:
(1) The total number of decreases (in the considered iteration of the for loop) to loads of links in the set
L1 is at most m.

(2) The total number of decreases (in the considered iteration of the for loop) to loads of links in the set
L2 is at most m.

Proof of (1): Consider a link j ∈ L1 whose load is decreased. Lemma 6.2 implies that its load will further
not increase. Since the initial load on link j is less than 2δ and each decrease decreases the load by δ, it
follows that the load on link j can be decreased at most once. Hence, the total number of decreases to loads
of links in L1 is at most m.
Proof of (2): We will establish that each link can increase simultaneously with a decrease to the load of any
link in L2 at most once. This will imply that the number of decreases to loads of links in the set L2 is at
most m.

Consider any link t ∈ [m] and any two consecutive increases to its load. (If there is at most one increase
to the load on link t, the claim about the increases to the load on link t holds trivially.) By the algorithm,
there is some link s whose load is decreased simultaneously with the second increase to the load on link t.
Denote by δs and δt, and δ̂s and δ̂t the loads on links s and t before the first increase (to the load on link t)
and before the second increase (to the load on link t), respectively. Note that δ̂t = δt + δ.
– By Lemma 6.2, there can be no increase to the load on link s in the current iteration of the for loop.

Hence, δ̂s ≤ δs ≤ δ̃s.
– By Lemma 6.2, there can be no decrease to the load on link t in the current iteration of the for loop.

Hence, δ̂t > δt ≥ δ̃t.
For the second increase to the load on link t, the algorithm implies that φs(δ̂s) > φt(δ̂t + δ). Since

δ̂t = δt + δ, it follows that φs(δ̂s) > φt(δt + 2δ).
By the post-condition for the previous iteration of the for loop, either φs(δ̃s) ≤ φt(δ̃t + δ′) or δ̃s < δ′. We

proceed to establish the necessity of the second possibility.
We first prove that δ̃s < δ′. Assume, by way of contradiction, that δ̃s ≥ δ′. This implies that φs(δ̃s) ≤

φt(δ̃+δ′). Since δs ≤ δ̃s and δ̃t ≤ δt, and both φs and φt are non-decreasing, it follows that φs(δs) ≤ φt(δt+δ′).
Since δ′ ≤ 2δ and φt is non-decreasing, φt(δt + δ′) ≤ φt(δt + 2δ). It follows that φs(δs) ≤ φt(δt + 2δ). Since
φs(δ̂s) > φt(δt + 2δ), it follows that φs(δs) < φs(δ̂s). Since φs is non-decreasing, this implies that δs < δ̂s. A
contradiction. It follows that δ̃s < δ′.

Since δ′ ≤ 2δ, this implies that δ̃s < 2δ. By definition of the set L1, it follows that s ∈ L1. This implies
that an increase to the load on a link can occur simultaneously with a decrease to the load of any link in
the set L2 only if this is the first such increase. So, the load on a link can increase simultaneously with a
decrease to the load of any link in the set L2 at most once. It follows that the number of decreases to loads
of links in the set L2 is at most m, as needed.
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Claims (1) and (2) imply together that the number of iterations of the while loop in each iteration of the
for loop is O(m), as needed.

Each iteration of the for loop (with chunk size δ) is implemented using two priority queues. In the first
queue, the priorities are according to φj(δj(L′)), j ∈ [m]; in the second queue, the priorities are according
to φj(δj(L′) + δ), j ∈ [m]. At the beginning of the iteration, the two priority queues are constructed in time
O(m logm).

In each iteration of the while loop, the links s and t (with maximum φs(δs(L′)) and minimum φt(δt(L′)+
δ), respectively) are determined in constant time using the two priority queues. After each iteration of the
while loop, which updates φs(δs(L′)) and φt(δt(L′)), the two priority queues are updated in time O(logm)
(by two successive deletion and insertion operations).

By Lemma 6.3, the total time for each iteration of the for loop is O(m logm) + O(m) · O(logm) =
O(m logm). Since there are log n iterations of the for loop, the total running time of ComputeNash is
O(m logm log n), as needed.

6.2. Optimal Pure Assignments

We now establish a relation between optimum pure assignments for a given vector of latency functions
and pure Nash equilibria for a modified vector of latency functions. More specifically, given a vector Φ of
latency functions, construct the vector Ψ of latency functions by defining for each link l ∈ [m], the latency
function ψl : [n]→ R as

ψl(x) = xφl(x)− (x− 1)φl(x− 1)

for each x ∈ [n]. We prove:
Proposition 6.4 Consider the case of identical users. Assume that for each link l ∈ [m], the function
xφl(x) is convex. Then, a pure assignment L is optimum for the instance 〈n,Φ〉 if and only if L is a Nash
equilibrium for the instance 〈n,Ψ〉.

PROOF. Clearly, L is a Nash equilibrium for the instance 〈n,Ψ〉 if and only if for all pairs of links j, k ∈ [m],

ψj(δj(L)) ≤ ψk(δk(L) + 1) ;

or, by the definition of the latency function vector Ψ,

δj(L)φj(δj(L))− (δj(L)− 1)φj(δj(L)− 1)
≤ (δk(L) + 1)φk(δk(L) + 1)− δk(L)φk(δk(L))

or

δj(L)φj(δj(L)) + δk(L)φk(δk(L))
≤ (δj(L)− 1)φj(δj(L)− 1) + (δk(L) + 1)φk(δk(L) + 1) .

By Proposition 5.2, these are necessary and sufficient conditions for the minimization of the sum∑
j∈[m] δj(L)φj(δj(L)) over pure assignments L. Since SCΣ(w,Φ,L) =

∑
j∈[m] δj(L)φj(δj(L)), these are

as well necessary and sufficient conditions for L to be an optimum pure assignment for the instance 〈n,Φ〉.
The proof is now complete.

We remark that Proposition 6.4 transfers [44, Corollary 2.7] from the continuous setting of the Wardrop
model to discrete routing games. Proposition 6.4 immediately implies:
Corollary 6.5 Consider the case of identical users. Assume that for each link l ∈ [m], the function xφl(x)
is convex. Then, an optimum pure assignment can be computed in time O(m logm log n).
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7. Computing Best and Worst Pure Nash Equilibria

In this section, we present some complexity results for the computation of best and worst pure Nash
equilibria. More specifically, we will consider the following two decision problems, which are natural decision
versions of corresponding optimization problems defined in [18] for the KP model:

BEST PURE NE

Instance: An instance 〈w,Φ〉 and a rational number B > 0.

Question: Is there a pure Nash equilibrium L with SCΣ(w,Φ,L) ≤ B?

WORST PURE NE

Instance: An instance 〈w,Φ〉 and a rational number B > 0.

Question: Is there a pure Nash equilibrium L with SCΣ(w,Φ,L) ≥ B?

We will prove that both these problems are NP-complete even for the case of identical links with an iden-
tity latency function. The proofs will use polynomial time transformations from the original NP-complete
PARTITION problem [29] or its slight variant RESTRICTED PARTITION that we define below.

PARTITION

Instance: A finite set A of items with |A| ≥ 2, and a size s(a) ∈ N for each item a ∈ A.

Question: Is there a subset A′ ⊆ A such that
∑
a∈A′ s(a) =

∑
a∈A\A′ s(a)?

RESTRICTED PARTITION

Instance: A finite set A of items with |A| ≥ 12, and a size s(a) ∈ N for each item a ∈ A such that
s(a) ≤ 1

8

∑
a′∈A s(a

′).

Question: Is there a subset A′ ⊆ A such that
∑
a∈A′ s(a) =

∑
a∈A\A′ s(a)?

Clearly, PARTITION reduces trivially to RESTRICTED PARTITION by padding the finite set A in the
instance of PARTITION with ten new items a′ with s(a′) =

∑
a∈A s(a). It is easy to see that this trivial

reduction is parsimonious; since #PARTITION (i.e. the counting version of PARTITION) is #P-complete [45],
it follows that #RESTRICTED PARTITION (i.e. the counting version of RESTRICTED PARTITION) is also
#P-complete.

We shall also consider the counting versions #BEST PURE NE and #WORST PURE NE of BEST PURE
NE and WORST PURE NE, respectively.

We start by proving:
Theorem 7.1 Consider the case of identical links. Then, BEST PURE NE is NP-complete.

PROOF. Clearly, BEST PURE NE ∈ NP. To prove NP-hardness, we employ a polynomial time transfor-
mation from RESTRICTED PARTITION to BEST PURE NE. Given an instance of RESTRICTED PARTITION,
we construct an instance 〈w, 〈m,φ〉〉 of BEST PURE NE as follows:
– There are n = |A|+ 2 users with

wi =

 s(ai), 1 ≤ i ≤ |A|∑
a∈A s(a)

2
, i ∈ {|A|+ 1, |A|+ 2}

– There are three identical links with identity latency function φ(x) = x.
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– B =
(
|A|
2 + 2

)∑
a∈A s(a).

Clearly, this is a polynomial time mapping. We prove that it is a transformation from RESTRICTED
PARTITION to BEST PURE NE.

Assume first that the instance of RESTRICTED PARTITION is positive, and consider a subset A′ ⊆ A
such that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a). Use A′ to define a pure assignment L for the constructed instance of

BEST PURE NE as follows:
– For each item ai ∈ A′, user i is assigned to link 1; for each item ai ∈ A \A′, user i is assigned to link 2.
– Users |A|+ 1 and |A|+ 2 are assigned to link 3.

We now prove that L is a (pure) Nash equilibrium for the instance 〈w, 〈m,φ〉〉 of BEST PURE NE with
SC (w, 〈m,φ〉,L) ≤ B. Clearly,

δ1(L) =
∑
ai∈A′

wi (by definition of L)

=
∑
ai∈A′

s(ai) (by the mapping)

=
∑
a∈A s(a)

2
,

and similarly δ2(L) =
∑

a∈A
s(a)

2 . On the other hand,

δ3(L) =
∑

i∈{|A|+1,|A|+2}

wi (by the definition of L)

=
∑

i∈{|A|+1,|A|+2}

∑
a∈A s(a)

2
(by the mapping)

=
∑
a∈A

s(a) .

Note that each user i ∈ [|A|] is assigned to either link 1 or link 2; thus, ICi(L) = δ1(L) = δ2(L). So, user
i is satisfied in L. Note also that IC|A|+1(L) = δ3(L) = δ1(L) + w|A|+1 = δ2(L) + w|A|+1 and similarly
IC|A|+2(L) = δ3(L) = δ1(L) + w|A|+2 = δ2(L) + w|A|+2; so users |A|+ 1 and |A|+ 2 are also satisfied in L,
and L is a Nash equilibrium. Clearly,

SCΣ (w, 〈m,φ〉,L) = |A| · δ1(L) + 2 · δ3(L)

= |A| ·
∑
a∈A s(a)

2
+ 2 ·

∑
a∈A

s(a)

=
(
|A|
2

+ 2
)
·
∑
a∈A

s(a)

= B .

So, the instance 〈w, 〈m,φ〉〉 of BEST PURE NE is also positive.
Assume now that the instance of RESTRICTED PARTITION is negative. So, for every subset A′ ⊆ A,∑
a∈A′ s(a) 6=

∑
a∈A\A′ s(a). It follows that for every subset A′ ⊆ A, either

∑
a∈A′ s(a) <

∑
a∈A

s(a)

2 or∑
a∈A\A′ s(a) <

∑
a∈A

s(a)

2 (but not both).
We now prove that the instance 〈w, 〈m,φ〉〉 of BEST PURE NE is also negative. Consider any arbitrary

(pure) Nash equilibrium L for the instance 〈w, 〈m,φ〉〉. We will prove that SCΣ (w, 〈m,φ〉,L) > B. We first
show a preliminary property of L.

Assume, by way of contradiction, that users |A|+1 and |A|+2 were assigned to the same link in L. Say that
link were link 3. Then, IC|A|+1(L) ≥ w|A|+1 +w|A|+2 =

∑
a∈A s(a). Denote as A′ the set of users assigned to

link 1; then, δ1(L) =
∑
a∈A′ s(a). Assume, without loss of generality, that

∑
a∈A′ s(a) <

∑
a∈A

s(a)

2 . Then,
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IC(|A|+1)1(L) =
∑
a∈A′

s(a) + w|A|+1

=
∑
a∈A′

s(a) +
∑
a∈A s(a)

2
(by the mapping)

<

∑
a∈A s(a)

2
+
∑
a∈A s(a)

2
(by assumption)

=
∑
a∈A

s(a)

≤ IC|A|+1(L) ,

so that user |A| + 1 is not satisfied in L; this contradicts the fact that L is a Nash equilibrium. It follows
that users |A|+ 1 and |A|+ 2 are assigned to different links in L.

Assume, without loss of generality, that δ1(L) ≥ δ2(L) ≥ δ3(L). Clearly,

δ1(L) + δ2(L) + δ3(L) =
∑
i∈[n]

wi = 2
∑
a∈A

s(a) ,

which implies that

δ1(L) ≥ 2
3

∑
a∈A

s(a) .

Now, since w|A|+1 = w|A|+2 =
∑

a∈A
s(a)

2 and users |A| + 1 and |A| + 2 are assigned to different links, it
follows that there is a user i ∈ [|A|] assigned to link 1; by definition of RESTRICTED PARTITION, it follows
that wi ≤ 1

8

∑
a∈A s(a). Since L is a Nash equilibrium, user i is satisfied in L, so that

ICi(L) = δ1(L)
≤ δ3(L) + wi

≤ δ3(L) +
1
8

∑
a∈A

s(a) .

Hence,

δ3(L) ≥ δ1(L)− 1
8

∑
a∈A

s(a)

=
(

2− 1
8

) ∑
a∈A

s(a)− δ2(L)− δ3(L) (since δ1(L) + δ2(L) + δ3(L) = 2
∑
a∈A s(a))

≥ 15
8

∑
a∈A

s(a)− δ1(L)− δ3(L) (since δ1(L) ≥ δ2(L))

≥ 15
8

∑
a∈A

s(a)− δ3(L)− 1
8

∑
a∈A

s(a)− δ3(L) (since δ1(L) ≤ δ3(L) + 1
8

∑
a∈A s(a)) ,

which implies that

δ3(L) ≥ 7
12

∑
a∈A

s(a) .

Since there are |A|+ 2 users and δ1(L) ≥ δ2(L) ≥ δ3(L), it follows from the definition of Social Cost that
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SCΣ (w, 〈m,φ〉,L) ≥ (|A|+ 2) · δ3(L)

≥ (|A|+ 2) · 7
12

∑
a∈A

s(a)

>

(
|A|
2

+ 2
)
·
∑
a∈A

s(a) (since |A| ≥ 12)

= B .

So, the instance 〈w, 〈m,φ〉〉 is also negative. This completes the proof.

Note that the reduction from RESTRICTED PARTITION employed in the proof of Theorem 7.1 is parsi-
monious; since #RESTRICTED PARTITION is #P-complete, it immediately follows:
Corollary 7.2 Consider the case of identical links. Then #BEST PURE NE is #P-complete.

We continue to prove:
Theorem 7.3 Consider the case of identical links. Then, WORST PURE NE is NP-complete.

PROOF. Clearly, WORST PURE NE ∈ NP. To proveNP-hardness, we employ a polynomial time transfor-
mation from PARTITION to WORST PURE NE. Given an instance of PARTITION, we construct an instance
〈w, 〈m,φ〉〉 of WORST PURE NE as follows:
– There are 3|A| users with

wi =


s(ai), i ∈ [|A|]

1
4|A|

, |A|+ 1 ≤ i ≤ 3|A|

– There are two identical links with identity latency function φ(x) = x.

– B = 3|A|
(∑

a∈A
s(a)

2 + 1
4

)
.

Clearly, this is a polynomial time mapping. We prove that it is a transformation from PARTITION to
WORST PURE NE.

Assume first that the instance of PARTITION is positive, and consider a subset A′ ⊆ A such that∑
a∈A′ s(a) =

∑
a∈A\A′ s(a). Use A′ to define a pure assignment L for the constructed instance 〈w, 〈m,φ〉〉

of WORST PURE NE as follows:
– For each item ai ∈ A′, user i is assigned to link 1; for each item ai ∈ A \A′, user i is assigned to link 2.
– Each user i with |A|+ 1 ≤ i ≤ 2|A| is assigned to link 1; each user i with 2|A|+ 1 ≤ i ≤ 3|A| is assigned

to link 2.
We now prove that L is a Nash equilibrium for the instance 〈w, 〈m,φ〉〉 of WORST PURE NE with SCΣ (w, 〈m,φ〉,L) ≥
B. Clearly,

δ1(L) =
∑
a∈A′

s(a) +
∑

|A|+1≤i≤2|A|

1
4|A|

(by definition of L and the mapping)

=
∑
a∈A′

s(a) +
1
4

=
∑
a∈A s(a)

2
+

1
4

(by choice of A′) ,

and similarly

δ2(L) =
∑
a∈A s(a)

2
+

1
4
.

Since δ1(L) = δ2(L), all users are satisfied in L, and L is a Nash equilibrium. Since 3|A| users are assigned
to links and δ1(L) = δ2(L), it follows that
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SCΣ (w, 〈m,φ〉,L) = 3|A| · δ1(L)

= 3|A| ·
(∑

a∈A s(a)
2

+
1
4

)
= B .

So, the instance 〈w, 〈m,φ〉〉 of WORST PURE NE is also positive.
Assume now that the instance of PARTITION is negative. So, for every subset A′ ⊆ A,

∑
a∈A′ s(a) 6=∑

a∈A\A′ s(a). It follows that for every subset A′ ⊆ A, either
∑
a∈A′ s(a) <

∑
a∈A

s(a)

2 or
∑
a∈A\A′ s(a) <∑

a∈A
s(a)

2 (but not both).
We now prove that the instance 〈w, 〈m,φ〉〉 of WORST PURE NE is also negative. Consider any arbitrary

pure Nash equilibrium L for the instance 〈w, 〈m,φ〉〉. We will prove that SCΣ (w, 〈m,φ〉,L) < B.
Denote as A′ the set of users assigned to link 1. So, A \ A′ is the set of users assigned to link 2. As-

sume, without loss of generality, that
∑
a∈A′ s(a) <

∑
a∈A

s(a)

2 . Then,
∑
a∈A\A′ s(a) >

∑
a∈A

s(a)

2 , so that∑
a∈A\A′ s(a)−

∑
a∈A′ s(a) ≥ 1. We first show a preliminary property of L.

Assume, by way of contradiction, that some user i with |A|+ 1 ≤ i ≤ 3|A| is assigned to link 2. Then,

ICi(L) = δ2(L)

≥
∑

a∈A\A′
s(a) + wi

≥
∑
a∈A′

s(a) + 1 + wi

>
∑
a∈A′

s(a) +
∑

|A|+1≤k≤3|A|

s(a) + wi (since
∑
|A|+1≤k≤3|A| s(a) = 1

2 )

≥ δ1(L) + wi

= ICi1(L) ,

which implies that user i is not satisfied in L; this contradicts the fact that L is a Nash equilibrium. It
follows that all users i with |A|+ 1 ≤ i ≤ 3|A| are assigned to link 1 in L, so that

δ1(L) =
∑
a∈A′

s(a) + 2|A| 1
4|A|

(by the mapping)

=
∑
a∈A′

s(a) +
1
2
.

For each link j ∈ [2], denote as nj the number of users i with ai ∈ A that are assigned to link j in L. Clearly,∑
j∈[2] nj = |A|. So, it follows from the definition of Social Cost that

SC (w, 〈m,φ〉,L)
= (n1 + 2|A|)δ1(L) + n2δ2(L)

= (n1 + 2|A|)

(∑
a∈A′

s(a) +
1
2

)
+ n2

 ∑
a∈A\A′

s(a)


< 2 |A|

(∑
a∈A′

s(a) +
1
2

)
+ (n1 + n2)

 ∑
a∈A\A′

s(a)

 (since
∑
a∈A′ s(a) + 1

2 <
∑
a∈A\A′ s(a))

= 2 |A|

(∑
a∈A′

s(a) +
1
2

)
+ |A|

 ∑
a∈A\A′

s(a)


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= |A|

∑
a∈A′

s(a) +
∑

a∈A\A′
s(a)

+ |A|
∑
a∈A′

s(a) + |A|

= |A|
∑
a∈A

s(a) + |A|
∑
a∈A′

s(a) + |A|

≤ |A|
∑
a∈A

s(a) + |A|
(∑

a∈A s(a)
2

− 1
2

)
+ |A| (since

∑
a∈A′ s(a) ≤

∑
a∈A

s(a)

2 − 1
2 )

= 3|A|
(∑

a∈A s(a)
2

+
1
6

)
< B .

So, the instance 〈w, 〈m,φ〉〉 of WORST PURE NE is also negative. This completes the proof.

Note that the reduction from PARTITION employed in the proof of Theorem 7.3 is parsimonious; since
#PARTITION is #P-complete [45], it immediately follows:
Corollary 7.4 Consider the case of identical links. Then #WORST PURE NE is #P-complete.

8. Epilogue

We have introduced discrete routing games combining features from two of the most prominent models
for non-cooperative routing, namely the KP model [31] and the Wardrop model [48].
– We presented a thorough analysis of fully mixed Nash equilibria for discrete routing games. In particular,

we proved that, for the case of identical users, the Social Cost of any Nash equilibrium is bounded by
the Social Cost of the fully mixed Nash equilibrium. Moreover, we derived a characterization of instances
admitting a fully mixed Nash equilibrium, and we proved that a fully mixed Nash equilibrium may exist
only uniquely.

– We presented upper bounds on the Price of Anarchy for the case of identical users.
– Still for the case of identical users, we showed that a pure Nash equilibrium can be computed efficiently.

For the case of arbitrary users, we proved that computing the best or the worst pure Nash equilibrium is
already NP-complete even for identical links with an identity latency function.
We conclude with a collection of interesting open problems about discrete routing games.
(i) Extend the results about uniqueness and existence of the fully mixed Nash equilibrium (namely,

Theorems 4.6 and 4.10) from the case of identical users to the case of arbitrary users. In particular,
what are the analogs of dead links and special links for such extension?

(ii) Prove or disprove the FMNE Conjecture for discrete routing games.
(iii) Obtain bounds on the Price of Anarchy for the case of arbitrary users and identical links with a

monomial latency function. (This will extend Theorem 5.1.)
(iv) Obtain bounds on the Price of Anarchy for the case of arbitrary users and arbitrary links with a

polynomial latency function. (This will extend Corollary 5.4.)
(v) Is the fast algorithm we presented in Section 6 to compute a pure Nash equilibrium (for the case case

of identical users and arbitrary links) optimal? We note that there are no known lower bounds for this
problem.

(vi) Is there a PTAS for either BEST PURE NE or WORST PURE NE? We know that there is a PTAS to
compute a best pure Nash equilibrium for the KP model [14]. (This PTAS employs known approxima-
tion algorithms to compute an optimum pure assignment [28]; the so called Nashification technique is
then applied on that to transform it in polynomial time into a pure Nash equilibrium with no increased
Social Cost.)
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[44] T. Roughgarden and É. Tardos, “How Bad is Selfish Routing?,” Journal of the ACM, Vol. 49, No. 2, pp. 236–259, May

2002.
[45] J. Simon, “On the Difference between the One and the Many (Preliminary Version)”, Proceedings of the 4th International

Colloquium on Automata, Languages and Programming, pp. 480–491, Vol. 52, Lecture Notes in Computer Science, Springer-

Verlag, August 1977.

[46] J. Stirling, Methodus Differentialis, London, 1730.
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