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Abstract. In this paper, we introduce malicious Bayesian congestion games as an extension
to congestion games where players might act in a malicious way. In such a game each player
has two types. Either the player is a rational player seeking to minimize her own delay, or –
with a certain probability – the player is malicious in which case her only goal is to disturb
the other players as much as possible.
We show that such games do in general not possess a Bayesian Nash equilibrium in pure
strategies (i.e. a pure Bayesian Nash equilibrium). Moreover, given a game, we show that it
is NP-complete to decide whether it admits a pure Bayesian Nash equilibrium. This result
even holds when resource latency functions are linear, each player is malicious with the same
probability, and all strategy sets consist of singleton sets of resources. For a slightly more
restricted class of malicious Bayesian congestion games, we provide easy checkable properties
that are necessary and sufficient for the existence of a pure Bayesian Nash equilibrium.
In the second part of the paper we study the impact of the malicious types on the overall
performance of the system (i.e. the social cost). To measure this impact, we use the Price of
Malice. We provide (tight) bounds on the Price of Malice for an interesting class of malicious
Bayesian congestion games. Moreover, we show that for certain congestion games the advent
of malicious types can also be beneficial to the system in the sense that the social cost of
the worst case equilibrium decreases. We provide a tight bound on the maximum factor by
which this happens.

1 Introduction

Motivation and Framework. Over the last decade, the study of strategic behavior in distributed
systems has improved our understanding of modern computer artifacts such as the Internet. Nor-
mally, the users of such distributed systems are modeled as rational, utility optimizing players.
However, in many real world scenarios, users do not necessarily act rationally, but rather irra-
tionally. In this paper, we address one form of irrationality, namely, we allow that players act in
a malicious way. In this case, the only goal of a malicious player is to disturb the (non-malicious)
players as much as possible. The presence of Denial of Service attacks in the Internet is an example
showing that such systems are quite realistic. In many such systems with malicious players, the
players have only incomplete information about the set of malicious players. A standard approach
for modeling games with incomplete information uses the Harsanyi transformation [14], which
converts a game with incomplete information to a game where players have different types. The
type of a player represents its private information that is not common knowledge to all players. In
the resulting Bayesian game, each player’s uncertainty about each other’s type is described by a
probability distribution.

One aspect of Game Theory that was studied extensively in recent years is the Price of Anarchy
as introduced by Koutsoupias and Papadimitriou [16]. The Price of Anarchy is the worst case ratio
between the value of the social cost in an equilibrium state of the system and that of some social
optimum. Usually, the equilibrium state is defined as Nash equilibrium – a state in which no
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player can unilaterally improve her private objective function, also coined as private cost. A Nash
equilibrium is pure if all players choose a pure strategy and mixed if players choose probability
distributions over pure strategies.

While the celebrated result of Nash [20] guarantees the existence of a mixed Nash equilibrium
for every finite game, pure Nash equilibria are not guaranteed to exist (see e.g. [9,12,17,18]). A
natural question to ask, is whether a given game possesses a pure Nash equilibrium or not. We
address this question by asking about the complexity of this decision problem.

A class of games that always possess pure Nash equilibria is the class of congestion games as
introduced by Rosenthal [21]. Here, the strategy set of each player is a subset of the power set
of given resources, the latency on each resource is described by a latency function in the number
of players sharing this resource, and the private cost of each player is the sum of the latencies
of its chosen resources. Milchtaich [18] considered weighted congestion games as an extension to
congestion games in which the players have weights and thus different influence on the latency of
the resources.

To measure the influence of malicious behavior, Moscibroda et al. [19] introduced the Price of
Byzantine Anarchy as the worst case ratio between the social cost in an equilibrium state of the
system under some assumption on the malicious players and the social cost of some social optimum
without malicious players. They further define the Price of Malice as the ratio between the Price
of Byzantine Anarchy and the Price of Anarchy. We will use a similar definition and define the
equilibrium state as a Bayesian Nash equilibrium.

Contribution. In this paper, we introducemalicious Bayesian congestion games as an extension to
congestion games where players might act in a malicious way. Following Harsanyi’s transformation
[14], we allow each player to be of two types. Either the player is a rational player seeking to
minimize her own delay, or – with a certain probability – the player is malicious in which case
her only goal is to disturb the other players as much as possible. For such games we study the
complexity of deciding whether a given game has a pure Bayesian Nash equilibrium. Moreover, we
study the impact of the malicious types on the overall performance of the system (i.e. the social
cost). To measure this impact, we use the Price of Malice, which we define similarly as Moscibroda
et al. [19].

As our main result, we show that it is NP-complete to decide whether a given malicious Bayesian
congestion game admits a pure Bayesian Nash equilibrium even if resource latency functions are
linear and all strategy sets are singleton sets. We show that this result holds already for the
very restricted case that each player is malicious with the same probability, and for the case that
only one player is malicious with positive probability (Theorem 1). The same result even holds
if we further restrict to the case that each player has at most four strategies and at most three
players can be assigned to each resource (Theorem 2). For symmetric Bayesian congestion games
with identical type probability, identical latency functions and strategy sets that consist only of
singletons, we provide easy checkable properties that are necessary and sufficient for the existence
of a pure Bayesian Nash equilibrium (Theorem 3).

We then shift gears and present results related to the Price of Malice. For general malicious
Bayesian congestion games with linear latency functions, we show an upper bound on the Price of
Byzantine Anarchy (Theorem 4). Moreover, we prove a lower bound on the same ratio that already
holds for the case of identical type probabilities (Theorem 5). As a corollary, we get an asymptotic
tight bound on the Price of Malice (Corollary 2). We close the paper with a tight lower bound
on the maximum factor by which the social cost of a worst case (Bayesian) Nash equilibrium of a
congestion game might decrease by introducing malicious types (Theorem 6).

Related Work. Congestion games and variants thereof have long been used to model non-
cooperative resource sharing among selfish players. Rosenthal [21] showed that congestion games
always possess pure Nash equilibria. The complexity of computing such a pure Nash equilibrium
has been settled for arbitrary latency functions by Fabrikant et al. [8] and later for linear latency
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functions by Ackermann et al. [1]. On the other hand, for weighted congestion games, Libman and
Orda [17], Fotakis et al. [9] and Goemans et al. [12] provide examples that do not allow for a pure
Nash equilibrium. Dunkel and Schulz [7] showed that it is NP-complete to decide the existence of
a pure Nash equilibrium for a given weighted congestion game.

The Price of Anarchy for weighted congestion games has been studied extensively (see e.g.
[3,2,5]). In case of linear latency functions, the Price of Anarchy is exactly 5

2 for unweighted
congestion games [5] and 1 + Φ for weighted congestion games [3], where Φ = 1+

√
5

2 is the golden
ratio. The exact value of the Price of Anarchy is also known for the case of polynomial latency
functions [2]. For bounds on the Price of Anarchy of (weighted) congestion games with each strategy
set being a singleton set of resources, we refer to [11] and references therein.

Several recent papers considered games allowing for malicious player behavior [4,15,19]. Mosci-
broda et al. [19] introduced the Price of Malice and gave bounds on the Price of Malice for a virus
inoculation game where some of the players are malicious. In fact, our definition of Price of Malice
is motivated by the corresponding definition from this paper. Karakostas et al. [15] and Babaioff
et al. [4], study malicious player behavior in non-atomic congestion games. Here, each player from
a continuum of infinitely many players controls only an infinitesimally small amount of weight and
a fraction of those players is malicious. In contrast to those papers, our games are atomic, and
thus have only finitely many players. This yields different results.

For general Bayesian games, questions concerning the complexity of deciding the existence of a
pure Bayesian Nash equilibrium have been addressed in two recent works [6,13]. On the one hand,
if the game is given in standard normal form, i.e. the utility functions and the type probability
distribution are represented extensively as tables, then deciding the existence of a pure Bayesian
Nash equilibrium is NP-complete [6]. On the other hand, if both – the utility functions and the
type probability distribution – are succinctly encoded, then the problem becomes PP-complete
[13]. In contrast to [6], malicious Bayesian congestion games are succinctly represented but they
are more structured as the games considered by Gottlob et al. [13].

A certain class of Bayesian congestion game has been introduced in [10]. Here, players act
completely rationally but they are uncertain about each other’s weight. Among other results, the
authors show that such games always possess pure Bayesian Nash equilibria if latency functions
are linear.

Roadmap. The rest of the paper is organized as follows. In Section 2, we introduce malicious
Bayesian congestion games. In Section 3, we present our results on the complexity of deciding
for pure Bayesian Nash equilibria, while Section 4 comprises our findings related to the Price of
Malice. Due to lack of space, we omit some of the proofs. They can be found in the appendix.

2 Model

2.1 Congestion Games

Instance. A congestion game Γ is a tuple

Γ = (N , E, (Su)u∈N , (fe)e∈E) .

Here, N is the set of players and E is the finite set of resources. Throughout, we denote n = |N |
and r = |E| and assume n ≥ 2 and r ≥ 2. For every player u ∈ N , Su ⊆ 2E is the strategy set of
player u. Denote S = S1 × . . .× Sn. For every resource e ∈ E, the latency function fe : N→ R is
a non-negative, non-decreasing function that describes the latency on resource e. For most of our
results, we consider affine latency functions with non-negative coefficients, that is, for all resources
e ∈ E, the latency function is of the form fe(δ) = ae ·δ+be with ae, be ≥ 0. Affine latency functions



4 Martin Gairing

are linear if be = 0 for all e ∈ E. A congestion game is called symmetric, if Su = S′u for any pair
of players u, u′.

Strategies and Strategy Profiles. A pure strategy for player u is some specific strategy su ∈ Su,
while a mixed strategy Qu = (q(u, su))su∈Su

is a probability distribution over Su, where q(u, su)
denotes the probability that player u chooses the pure strategy su.

A pure strategy profile is an n-tuple s = (s1, . . . , sn) whereas a mixed strategy profile Q =
(Q1, . . . , Qn) is represented by an n-tuple of mixed strategies. For a mixed strategy profile Q,
denote by q(s) =

∏
u∈N q(u, su) the probability that the players choose the pure strategy profile

s.

Load and Private Cost. For a pure strategy profile s, denote by δe(s) = |{u ∈ N : e ∈ su}| the
load on resource e ∈ [m], i.e. the number of players assigned to e. In the same way, for a partial
strategy profile s−i, denote δe(s−i) = |{u ∈ N \{i} : e ∈ su}| the load on resource e ∈ [m] without
player i.

Fix a pure strategy profile s. The private cost PCu(s) of player u ∈ N is defined by the latency
of the chosen resources. Thus

PCu(s) =
∑
e∈su

fe (δe(s)) .

For a mixed strategy profile Q, the private cost of player u ∈ N is

PCu(Q) =
∑
s∈S

q(s) · PCu(s) .

Social Cost. Associated with a congestion game Γ and a mixed strategy profile Q is the social
cost SC(Γ,Q) as a measure of social welfare. In particular we use the expected average latency.
That is,

SC(Γ,Q) =
1
n

∑
u∈N

PCu(Q)

=
1
n

∑
u∈N

∑
s∈S

q(s)
∑
e∈su

fe(δe(s))

=
1
n

∑
s∈S

q(s)
∑
e∈E

δe(s) · fe(δe(s)).

Observe, that this measure differs from the total latency [22] only by the factor n.
The optimum associated with a congestion game Γ is the least possible social cost, over all pure

strategy profiles s ∈ S. Thus,
OPT(Γ ) = min

s∈S
SC(Γ, s) .

Nash Equilibria. Given a congestion game and an associated mixed strategy profile Q, player
u ∈ N is satisfied if the player cannot improve its private cost by unilaterally changing its strategy.
Otherwise, player u is unsatisfied. The mixed strategy profile Q is a Nash equilibrium if and only
if all players u ∈ N are satisfied, that is, PCu(Q) ≤ PCu(Q−u, su) for all u ∈ N and su ∈ Su.

Depending on the type of strategy profile we distinguish between pure and mixed Nash equi-
libria.

Price of Anarchy. Let G be a class of congestion games. The Price of Anarchy, also called
coordination ratio and denoted by PoA, is the supremum, over all instances Γ ∈ G and Nash
equilibria Q, of the ratio SC(Γ,Q)

OPT(Γ ) . Thus,

PoA = sup
Γ∈G,Q

SC(Γ,Q)
OPT(Γ )

.
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2.2 Malicious Bayesian Congestion Games

Instance. A malicious Bayesian congestion game Ψ is an extension of congestion games, where
each player is malicious with a certain probability. Following Harsanyi’s approach, we model such
a game with incomplete information as a Bayesian game, where each player u ∈ N can be of two
types: Either u is selfish or malicious. For each type of player u ∈ N we introduce two independent
type-agents us and um, denoting the selfish and malicious type-agent of player u, respectively.

Let pu be the probability that player u ∈ N is malicious and call pu the type probability of player
u. Define the type probability vector p = (p1, . . . , pn) in the natural way. Denote pmin = minu∈N pu.
In the case of identical type probabilities pu = p for all player u ∈ N . Define ∆ =

∑
u∈N pu as

the expected number of malicious players. Observe, that for identical type probabilities ∆ = p · n.
Denote by ΓΨ the congestion game that arises from the malicious Bayesian congestion game Ψ by
setting pu = 0 for all player u ∈ N .

Summing up, a malicious Bayesian congestion game Ψ is given by a tuple

Ψ = (N , E, (Su)u∈N , (pu)u∈N , (fe)e∈E) .

Strategies and Strategy Profiles. A pure strategy σu for player u ∈ N is now a tuple σu =
(σ(us), σ(um)) ∈ S2

u, where σ(us) and σ(um) denote the strategy of the selfish type-agent and
malicious type-agent of player u, respectively. Denote σ = (σ1, . . . , σn). A mixed strategy Qi is now
a probability distribution over Si × Si. Define Q and q(σ) as before.

Private Cost. For any type probability vector p and pure strategy profile σ, denote the expected
selfish load on resource e ∈ E by δe(σ) =

∑
u∈N :e∈σ(us)(1−pu) and the expected malicious load by

κe(σ) =
∑
u∈N :e∈σ(um) pu. For a partial assignment σ−u define δe(σ−u) and κe(σ−u) accordingly,

by disregarding player u.
Fix any type probability vector p and pure strategy profile σ. The private cost PCu(p,σ) of

player u ∈ N is defined by

PCu(p,σ) =
∑

e∈σ(us)

fe (δe(σ−u) + κe(σ−u) + 1) .

In other words PCu(p,σ) is the expected latency that player u experiences if player u is selfish.
For each player u ∈ N , type-agent us aims to minimize PCu(p,σ). Observe, that PCu(p,σ) does
not depend on σ(um). For a mixed strategy profile Q, define PCu(p,Q) accordingly.

Social Cost. Let Ψ be a malicious Bayesian congestion game with type probability vector p and
let Q be a mixed strategy profile for Ψ . We generalize the definition of social cost SC(Ψ,Q) to the
weighted average latency of the selfish type-agents. That is,

SC(Ψ,Q) =
∑
u∈N (1− pu) · PCu(p,Q)

n−∆
.

Bayesian Nash equilibria. A selfish type-agent is satisfied if she cannot unilaterally decrease
her private cost, that is, PCu(Q) ≤ PCu(Q−us , σ(us)) for all u ∈ N and σ(us) ∈ Su.

In contrast to the selfish type-agents, each malicious type-agent aims to maximize the social
cost. So, a malicious type-agent is satisfied if she cannot increase the social cost by unilaterally
changing her strategy.

For a malicious Bayesian congestion game, a mixed strategy profile Q is a Bayesian Nash
equilibrium if and only if both type-agents of all players u ∈ N are satisfied. Depending on the
type of strategy profile we again differ between pure and mixed Bayesian Nash equilibria.

Price of Byzantine Anarchy and Price of Malice. For a fixed expected number of malicious
players ∆, let G(∆) be the class of malicious Bayesian congestion games where

∑
u∈N pu = ∆.
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Similarly to [19], we define the Price of Byzantine Anarchy, denoted by PoB, as the supremum,
over all instances Ψ ∈ G(∆) and Bayesian Nash equilibria Q, of the ratio between the social cost
in Q and the optimum social cost of the corresponding congestion game ΓΨ . Thus,

PoB(∆) = sup
Ψ∈G(∆),Q

SC(Ψ,Q)
OPT(ΓΨ )

.

Observe that for ∆ = 0, the Price of Byzantine Anarchy PoB(0) reduces to the Price of Anarchy
PoA as defined in Section 2.1.

Again similarly to [19], we define the Price of Malice by

PoM(∆) =
PoB(∆)
PoB(0)

.

3 Existence and Complexity of pure Bayesian Nash equilibria

In this section, we study the complexity of deciding whether a given malicious Bayesian congestion
game possesses a pure Bayesian Nash equilibrium or not.

Theorem 1. The problem of deciding whether a malicious Bayesian congestion game with linear
latency functions possesses a pure Bayesian Nash equilibrium is NP-complete, even if all strategy
sets consist of singletons and either of the following properties holds:

(a) All players are malicious with the same probability p for any 0 < p < 1.
(b) Only one player is malicious with positive probability p for any 0 < p ≤ 1.

Proof. Our proof uses a reduction from a restricted version of 3-SAT. Here, 3-SAT is restricted
to instances where each clause is a disjunction of 2 or 3 variables and each variable occurs at most
three times. Tovey [23] showed that it is NP-complete to decide the satisfiability of such instances.
Consider an arbitrary instance of 3-SAT with set of variables X = {x1, . . . x`} and set of clauses
C = {c1, . . . ck}. Without loss of generality, we may assume that each variable occurs at most twice
unnegated and at most twice negated.

ux1

ux2

ux`

e0
x1

e1
x1

e0
x2

e1
x2

e0
x`

e1
x`

e0

e4u2

u0

uc1

uc2

uck

1

β

M

u1

e2

e1

1

1

1

e3

Fig. 1. Construction for the proof of Theorem 1

Part (a): We will construct a malicious Bayesian congestion game with singleton strategy sets
and identical type probability p. Our construction imposes one player uc for each clause c ∈ C,
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one player ux and two resources e0x, e1x for each variable x ∈ X, 3 additional players u0, u1, u2, and
5 additional resources e0, e1, e2, e3, e4. Our construction is summarized in Figure 1. Resources are
depicted as squares and players as circles and an edge (solid or dotted) between a resource e and a
player u indicates that {e} is in u’s strategy set. A number α above a resource e defines the slope of
the corresponding linear latency function fe(δ) = α ·δ. Denote Ev = {e0x1

, e1x1
, . . . , e0x`

, e1x`
}. For the

proof of part (a), let β = 2−p. So, all resources e ∈ Ev share the latency function fe(δ) = (2−p) ·δ.
Player u0 can only be assigned to e0. Both u0 and e0 are used to collect the malicious type-

agents of all players except player u1. Thus all those players have e0 in their strategy set and M
is chosen sufficiently large, such that for all those malicious type-agents e0 is a dominant strategy
and no selfish type other than us0 will ever prefer to choose e0. Choosing M = `+1 suffices. Player
u1 and u2 are connected to e1, e2, and e3, while u2 can also choose e0 and e4. For each variable
x ∈ X, the corresponding variable player ux is connected to e0, e4, e0x and e1x. Assigning the selfish
type-agent usx to e0x (resp. e1x) will be interpreted as setting x to true (resp. false). For each clause
c ∈ C, the corresponding clause player uc is connected to e0 and to all resources e0x (e1x) with
x ∈ X and x appears negated (unnegated) in c. For the example in Figure 1, c1 = (x1 ∨ x2 ∨ x`),
c2 = (x1 ∨ x2), and ck = (x1 ∨ x2 ∨ x`). Observe that by the structure of our 3-SAT instance, no
more than two clause players are connected to each resource in Ev. This completes the construction
of the malicious Bayesian congestion game.

We will first show that if the 3-SAT instance is satisfiable then the corresponding Bayesian
congestion game possesses a pure Bayesian Nash equilibrium. Given a satisfying truth assignment,
we define a strategy profile σ of the malicious Bayesian congestion game as follows:

– Both type-agents of player u0 can only be assigned to e0.
– All malicious type-agents except um1 are assigned to resource e0. By the choice of M , none of

those malicious type-agents can improve.
– Both type-agents of player u1 are assigned to e1 and no type-agent of any player is assigned

to e2 or e3. It is easy to see that neither um1 nor us1 have an incentive to switch.
– Type agent us2 is the only type-agent assigned to e4. So, us2 cannot improve.
– For each x ∈ X, the selfish type-agent usx of variable player ux is assigned to resource e0x if
x = true in the satisfying truth assignment, and to e1x otherwise. Each of these selfish type-
agents is the only type-agent assigned to her resource. So, they all experience an expected
latency of β = 2 − p and changing to e4 would yield the same expected latency. Thus, the
selfish type-agents of all variable players are satisfied.

– Denote by E′v the subset of resources from Ev to which no selfish type-agent of a variable
player is assigned. Since we have a satisfying truth assignment, each clause player is connected
to some resource from E′v. For each c ∈ C , the selfish type-agent usc is assigned to some
resource in E′v as follows:
Consider the sub-game that consists only of the selfish type-agents of the clause players uc,
c ∈ C and the set of resources E′v. Observe that this sub-game is a (non-malicious) congestion
game and thus admits a pure Nash equilibrium [21]. Assign the selfish type-agents of each
clause player according to this Nash equilibrium. So, none of these selfish type-agents can
improve by changing to some other resource in E′v. Moreover, at most two selfish type-agents
are assigned to each resource in E′v and there is exactly one selfish type-agent of a variable
player assigned to each resource in Ev \ E′v. Thus, the selfish type-agents of all clause players
are satisfied.

Since no type-agent can improve be changing her strategy, it follows that σ in a pure Bayesian
Nash equilibrium.

For the other direction observe that any pure Bayesian Nash equilibrium σ fulfills the following
structural properties:

(I) All malicious type-agents except um1 are assigned to resource e0 and us0 is the only selfish
type-agent assigned to e0.
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(II) The selfish type-agent us2 is assigned to e4 and no other type-agent is assigned to e4.

Property (I) follows immediately by the choice of M . We will now prove property (II).
By way of contradiction assume that us2 is assigned to a resource in {e1, e2, e3} in a pure Bayesian

Nash equilibrium σ. In this case um1 will always choose the same resource as us2. However, then
there must be an empty resource in {e1, e2, e3} and us2 can improve by choosing this empty resource.
This contradicts our assumption that σ is a pure Bayesian Nash equilibrium. Thus, us2 is assigned
to e4. If some other type-agent is also assigned to e4, then us2 experiences an expected latency of
at least 2− p and us2 could decrease her expected latency to 1 by switching to the empty resource
in {e1, e2, e3}. Again a contradiction to σ being a pure Bayesian Nash equilibrium. It follows that
us2 is the only type-agent assigned to e4 in σ. This completes the proof of property (II).

Since us2 is the only type-agent assigned to e4 it follows that for each variable x ∈ X the
corresponding selfish type-agent usx is either assigned to e0x or to e1x. If usx is not the only type-
agent on that resource then her expected latency is at least (2 − p)2 while changing to e4 would
improve her expected latency to 2−p, a contradiction to σ being a pure Bayesian Nash equilibrium.
It follows that the selfish type-agents of all clause players are only assigned to resources in Ev to
which no selfish type-agent of a variable player is assigned. This is only possible if the strategies
of the selfish type-agents usx, x ∈ X correspond to a satisfying truth assignment. This completes
the proof of part (a).
Part (b): To see that (b) holds we alter the construction depicted in Figure 1 slightly by deleting
player u0 and resource e0. Furthermore, in the new construction player u1 is the only player that
is malicious with positive probability p. For the slope of the latency functions of resources in Ev,
let β = 3

2 (in fact any 1 < β < 2 would also do). The rest of the construction does not change.
The proof now follows the same line of arguments as in part (a) with only minor changes. ut

Theorem 2. The results from Theorem 1 hold, even if |Su| ≤ 4 for all players u ∈ N and for
each resource e ∈ E there are at most three players u ∈ N with {e} ∈ Su.

Proof (Sketch). We will slightly alter the construction from Figure 1. First observe that we have
already |Su| ≤ 4 for all players u ∈ N . Furthermore, the only resources that are in the strategy set
of more than three players are e4 and for part (a) also e0.

e4,0

e4,x1

e4,x2

e4,x3

1

β

β2

u2

ux1

ux2

ux3

Fig. 2. Tree for ` = 3

To resolve this for e4, disconnect all players from e4 and replace the single resource e4 with
a binary tree of resources with root e4,0 that has ` leaves e4,x1 , . . . e4,x`

, all with depth dlog(`)e.
For a resource e at level j the latency function is defined by fe(δ) = βj · δ. So fe4,0(δ) = 1 and
fe4,x

(δ) = βdlog(`)e · δ for all leaves x ∈ X. For each pair of resources from two consecutive levels,
we introduce a new player to connect them. Call those players tree players. Figure 2 shows the
construction for ` = 3. Player u2 is connected to resource e4,0 and each variable player x ∈ X is
connected to e4,x. We also change the latency function of all resources e ∈ Ev (cf. Theorem 1) to
fe(δ) = βdlog(`)e · δ.
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Moreover, for part (a) we have to resolve that more than three players are connected to e0. To
do so, we simply copy resource e0 together with player u0 multiple times and connect all players
(including the tree players) except player u1 to the new set of resources that evolve from e0.
By having sufficiently many copies, this can be done, such that no more than three players are
connected to each new resource. Again, M is chosen sufficiently large, e.g. M = 2dlog(`)e+1.

Observe that us2 will only selfishly choose e4,0 if all tree players choose the strategy that is
closer to the leaves. The rest of the proof now simply follows the proof of Theorem 1. ut

For the more restricted class of symmetric malicious Bayesian congestion game with singleton
strategy sets, identical type probability p and identical latency functions we can easily decide
whether a pure Bayesian Nash equilibrium exists or not.

Theorem 3. A symmetric malicious Bayesian congestion game with singleton strategy sets, iden-
tical type probability p and identical (not necessarily linear) latency functions possesses a pure
Bayesian Nash equilibrium if and only if either of the following properties holds:

(a) p ≤ 1
2 and r = 2

(b) p ≤ 1
2 and r|n

Observe, that the proof of Theorem 3 is constructive. So, if the requirements for the existence of
a pure Bayesian Nash equilibrium are fulfilled, then this equilibrium can also be easily constructed
in linear time.

4 Price of Malice

We now shift gears and present our results that are related to the Price of Malice. We start with
a general upper bound on the Price of Byzantine Anarchy. The proof of this upper bound uses a
technique from [5] adapted to the model of malicious Bayesian congestion games.

Theorem 4. Consider the class of malicious Bayesian congestion games G(∆) with affine latency
functions. Then,

PoB(∆) ≤ n

n−∆
(1− pmin)

(
∆+

3 +
√

5 + 4∆
2

)
.

For the case of identical type probabilities we can provide a better upper bound on the Price
of Byzantine Anarchy. Observe that for identical type probabilities, ∆ = p · n and pmin = p. As an
immediate corollary to Theorem 4, we get:

Corollary 1. Consider the class of malicious Bayesian congestion games G(∆) with affine latency
functions and identical type probability p. Then,

PoB(∆) ≤ ∆+
3 +
√

5 + 4∆
2

.

We proceed by introducing a malicious Bayesian congestion game that is parameterized by a
parameter α. In the remainder of the paper, we will make use of this construction twice, each time
with a different parameter α.

Example 1. Given some α > 0, construct a malicious Bayesian congestion game Γ (α) with linear
latency functions, n ≥ 3 players and identical type probability p and |E| = 2n as follows: Let
E = E1 ∪ E2 with E1 = {g1, . . . , gn} and E2 = {h1, . . . , hn}. Each player u ∈ {1, . . . n} has three
strategies in her strategy set. So, Su = {s1u, s2u, s3u} with s1u = {gu, hu}, s2u = {gu+1, hu+1, hu+2}
and s3u = E1 ∪ E2, where gj = gj−n and hj = hj−n for j > n.
Each resource e ∈ E1 has a latency function fe(δ) = α · δ whereas the resources e ∈ E2 share the
identity as their latency function, i.e. fe(δ) = δ.
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We make use of Example 1 to show a lower bound on the Price of Byzantine Anarchy:

Theorem 5. Consider the class of malicious Bayesian congestion games G(∆) with linear latency
functions and identical type probability p. Then, PoB(∆) ≥ ∆+ 2.

Proof. Consider the malicious Bayesian congestion game Ψ = Ψ(α) given in Example 1 with
α = 1+(n−1)p

1−p . Observe that ∆ = n · p.
Obviously , the optimum allocation s∗ for the corresponding non-malicious game ΓΨ is for each

player u ∈ N to choose strategy s1u. This yields SC(ΓΨ , s∗) = 1 + α = 2+(n−2)p
1−p .

On the other hand, if σ(um) = s3u and σ(us) = s2u for all player u ∈ N , then σ is a (pure)
Bayesian Nash equilibrium for Ψ , with

SC(Ψ,σ) = 2(1 + (1− p) + (n− 1)p) + (1 + (n− 1)p)α =
2(1− p)(2 + (n− 2)p) + (1 + (n− 1)p)2

1− p

It follows that

SC(Ψ,σ)
SC(ΓΨ , s∗)

= 2(1− p) +
(1 + (n− 1)p)2

2 + (n− 2)p
= 2(1− p) +

1 + (n− 1)p(2 + (n− 1)p)
2 + (n− 2)p

> 2− 3p+ n · p = ∆+ 2− 3p.

The Theorem follows for p→ 0, which implies n→∞. ut

Recall that the Price of Anarchy of (non-malicious) congestion games with affine latency func-
tions is 5

2 [5]. By combining this with Corollary 1 and Theorem 5 we get:

Corollary 2. Consider the class of malicious Bayesian congestion games G(∆) with affine latency
functions and identical type probability. Then, PoM(∆) = Θ(∆).

For certain congestion games, introducing malicious types might also be beneficial to the system,
in the sense that the social cost of the worst case equilibrium (one that maximizes social cost)
decreases. To capture this, we define the Windfall of Malice. The term Windfall of Malice is due to
[4]. For a malicious Bayesian congestion game Ψ , denote WoM(Ψ) as the ratio between the social
costs of the worst case Nash equilibrium of the corresponding congestion game ΓΨ and the worst
case Bayesian Nash equilibrium of Ψ . We show,

Theorem 6. For each ε > 0 there is a malicious Bayesian congestion game Ψ with linear latency
functions and identical type probability, such that WoM(Ψ) ≥ 5

2 − ε.

Proof. Consider the malicious Bayesian congestion game Ψ = Ψ(α) given in Example 1 with n = 3
and α = 1. This game (for n ≥ 3) was already used in [5] to proof a lower bound on the Price of
Anarchy for the corresponding non-malicious congestion games. For the congestion game ΓΨ that
corresponds to Ψ , all players u choosing s2u is a Nash equilibrium s that maximizes social cost and
SC(ΓΨ , s) = 5.

Now, consider the malicious Bayesian congestion game Ψ , where p > 0. First observe that
choosing s3u is always a strictly dominant strategy for the malicious type-agent um for all u ∈ N .
Moreover, us will never choose s3u. For i ∈ {2, 3}, let qi be the probability that usi chooses s1ui

. Then
usi chooses s2ui

with probability (1− qi). We will show that for all p > 0, the selfish type-agent us1
experiences a strictly lower expected latency, if she chooses s1u1

and not s2u1
.

On the one hand, if us1 chooses s1u1
then her expected latency is:

1 + 2p+ (1− q2 + 1− q3)(1− p)︸ ︷︷ ︸
h1

+ 1 + 2p+ (1− q2)(1− p)︸ ︷︷ ︸
g1

= 2 + 4p+ (1− p)(3− 2q2 − q3)
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On the other hand, if us1 chooses s2u1
then her expected latency is:

1 + 2p+ (q2 + 1− q3)(1− p)︸ ︷︷ ︸
h3

+ 1 + 2p+ q3(1− p)︸ ︷︷ ︸
g2

+ 1 + 2p+ (1− q2 + q3)(1− p)︸ ︷︷ ︸
h2

= 3 + 6p+ (1− p)(2 + q3).

However,

3 + 6p+ (1− p)(2 + q3)− (2 + 4p+ (1− p)(3− 2q2 − q3)) = 1 + 2p+ (1− p)(−1 + 2q2 + 2q3) ≥ 3p.

So us1 is always better of by choosing s1u1
.

By symmetry it follows that for each p > 0 there is a unique (pure) Bayesian Nash equilibrium σ
where σ(us) = s1u and σ(um) = s3u for all players u ∈ N . For its social cost we get SC(Ψ,σ) = 2+4p.

So, for each ε > 0 there is a sufficiently small p, such that

WoM(Ψ) =
SC(ΓΨ , s)
SC(Ψ,σ)

=
5

2 + 4p
≥ 5

2
− ε.

This completes the proof of the theorem. ut

This is actually a tight result, since for the considered class of malicious Bayesian games the Wind-
fall of Malice cannot be larger than the Price of Anarchy of the corresponding class of congestion
games which was shown to be 5

2 in [5].

5 Conclusion and Open Problems

In this paper, we have introduced and studied a new extension to congestion games, that we call
malicious Bayesian congestion games. More specifically, we have studied problems concerned with
the complexity of deciding the existence of pure Bayesian Nash equilibria. Furthermore, we have
presented results on the Price of Malice.

Although we were able to derive multiple interesting results, this work also gives rise to many
interesting open problems. We conclude this paper by stating those, that we consider the most
prominent ones.

– Our NP-completeness result in Theorem 1 holds even for linear latency functions, identical type
probabilities, and if all strategy sets are singleton sets of resources. However, if such games
are further restricted to symmetric games and identical linear latency functions, then deciding
the existence of a pure Bayesian Nash equilibrium becomes a trivial task. We believe that this
task can also be performed in polynomial time for non-identical linear latency functions and
symmetric strategy sets.

– Although the upper bound in Corollary 1 and the corresponding lower bound in Theorem 5
are asymptotically tight, there is still potential to improve. We conjecture that in this case
PoB(∆) = ∆+O(1).

– We believe that the concept of malicious Bayesian games is very interesting and deserves
further study also in other scenarios. We hope, that our work will encourage others to study
such malicious Bayesian games.
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A Appendix

A.1 Proof of Theorem 3

Proof. Assume that at least one of the properties holds. We will show that in each case this implies
the existence of a pure Bayesian Nash equilibrium.

First assume that (a) holds: For each player ui assign the selfish type-agent usi alternately to
the two resources. At each time, we assign the corresponding malicious type-agent to the other
resource. It’s not hard to see that the resulting strategy profile is a pure Bayesian Nash equilibrium.

Now assume that (b) holds: In this case assign n
r selfish type-agents and n

r malicious type-
agents to each resource such that the selfish and malicious type-agent of each fixed player are not
assigned to the same resource. Again it is easy to see that the resulting strategy profile is a pure
Bayesian Nash equilibrium.

For the other direction we will show that if neither (a) nor (b) holds then the malicious Bayesian
congestion game does not possess a pure Bayesian Nash equilibrium. By way of contradiction
assume there exists a malicious Bayesian congestion game Γ satisfying neither (a) nor (b) but Γ
admits a pure Bayesian Nash equilibrium σ. We consider 3 sub-cases:

Case 1: p > 1
2 and r = 2

By way of contradiction assume σ assigns more than dn2 e selfish type-agents to some resource e.
If this is the case then σ will also assign all malicious type-agents to e. But then all the selfish
type-agents on resource e can improve by switching to the other resource, a contradiction to
σ being a pure Bayesian Nash equilibrium. It follows that at most dn2 e selfish type-agents are
assigned to each resource. This again implies that dn2 e selfish type-agents are assigned to one
resource (say e1) and bn2 c selfish type-agents are assigned to the other resource (say e2). Denote
N1 = {u ∈ N|σ(us) = e1} the set of players with selfish type-agent assigned to resource e1 and
denote N2 = N \ N1. For each player u ∈ N2 we have δe1(σ−u) > δe2(σ−u) which implies that
σ(um) = e1 for all u ∈ N2. Will now show that σ(um) = e2 for all u ∈ N1. If n is even then this
holds immediately by symmetry. So assume n is odd and ∃u ∈ N1 with σ(um) = e1. Now consider
an arbitrary player u′ ∈ N1 with u′ 6= u. Since n is odd it follows that n ≥ 3 and thus such a player
exits. Furthermore, it follows that

⌊
n
2

⌋
=
⌈
n
2

⌉
− 1. Then

δe1(σ−u′) + κe1(σ−u′) ≥ (1− p) · (
⌈n

2

⌉
− 1) + p · (

⌊n
2

⌋
+ 1)

=
⌈n

2

⌉
− 1 + p

while

δe2(σ−u′) + κe2(σ−u′) ≤ (1− p) ·
⌊n

2

⌋
+ p · (

⌈n
2

⌉
− 2)

=
⌈n

2

⌉
− 1− p

< δe1(σ−u′) + κe1(σ−u′),

a contradiction to σ being a pure Bayesian Nash equilibrium. So, σ(um) = e2 for all u ∈ N1.
Summing up, for all u ∈ N1 we have σ(us) = e1 and σ(um) = e2 while for all u ∈ N2 we have
σ(us) = e2 and σ(um) = e1. In such an assignment each selfish type-agent on resource e2 can
improve be switching to e1. This contradicts our initial assumption that σ is a pure Bayesian Nash
equilibrium.

Case 2: p > 1
2 and r|n

First assume by way of contradiction that there exists a resource e ∈ E to which σ assigns more
than n

r selfish type-agents. It follows that there also exists some other resource e′ to which σ
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assigns less than n
r selfish type-agents. Since σ is a pure Bayesian Nash equilibrium, no malicious

type-agent is assigned to e′. However, then all selfish type-agents on e improve by switching to e′,
a contradiction. It follows that σ assigns exactly n

r selfish type-agents to each resource. This also
implies that σ(um) 6= σ(us) for all players u ∈ N .

If more than n
r malicious type-agents are assigned to some resource e ∈ E then all selfish

type-agents on e can improve since p > 1
2 . So, σ assigns exactly n

r malicious type-agents to each
resource. However, in such a pure strategy profile the selfish type-agent us of each player u can
improve by switching to σ(um). This contradicts our initial assumption that σ is a pure Bayesian
Nash equilibrium.

Case 3: r ≥ 3 and n
r 6∈ N

First observe that if n < r and the malicious type-agents are satisfied then there is always some
resource e ∈ E to which no type-agent is assigned. Each selfish type-agent can then improve by
switching to e, a contradiction to σ being a pure Bayesian Nash equilibrium. So we may assume
that n > r.

Let E+ be the set of resources to which σ assigns at least
⌈
n
r

⌉
selfish type-agents. Since n

r 6∈ N
it follows that 1 ≤ |E+| ≤ r− 1. If |E+| ≥ 2 then σ assigns all malicious type-agents to a resource
in E+. This implies that there exists a selfish type-agents assigned to some resource in E+ that
can improve by switching to some resource in E \ E+. It follows that |E+| = 1. Without loss of
generality assume E+ = {e1}.

Since |E+| = 1 it follows that σ assigns exactly
⌊
n
r

⌋
=
⌈
n
r

⌉
− 1 selfish type-agents to each

resource e ∈ E \ E+. Now, for all u ∈ N , if σ(us) ∈ E \ E+ then σ(um) = e1. It follows that σ
assigns at least (r − 1) ·

⌊
n
r

⌋
malicious type-agents to e1 and (by the pigeon hole principle) there

exists a resource e′ ∈ E \E+ to which σ assigns at most
⌊
dn

r e
r−1

⌋
malicious type-agents. Since r ≥ 3

and n > r it follows that all selfish type-agents on resource e1 can improve by switching to resource
e′. This contradicts our initial assumption that σ is a pure Bayesian Nash equilibrium.

In each case we got a contradiction to our assumption that σ is a pure Bayesian Nash equilib-
rium, proving that Γ does not admit a pure Bayesian Nash equilibrium. This completes the proof
of the theorem. ut

A.2 Proof of Theorem 4

Proof. The proof makes use of the following technical lemma.

Lemma 1. For all x, y ∈ R and c > 0 we have x · y ≤ c · x2 + 1
4c · y

2

Proof of Lemma 1. Observe that

1
4c
· y2 − xy + cx2 =

1
c
·
(
y2

4
− cxy + c2x2

)
=

1
c
·
(y

2
− cx

)2

≥ 0.

The claim follows. ut
We proceed with the proof of Theorem 4. Let Ψ be an arbitrary malicious Bayesian congestion
game from G(∆) and let ΓΨ be the corresponding (non-malicious) congestion game. Let Q be
an arbitrary Bayesian Nash equilibrium for Ψ . Furthermore, let s∗ be an optimum pure strategy
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profile for ΓΨ . For each player u ∈ N , we have

PCu(p,Q) =
∑
σ∈S2

q(σ) · PCu(p,σ)

≤ PCu(p, (Q−us , s∗u))

=
∑
σ∈S2

q(σ) · PCu(p, (σ−us , s∗u))

=
∑
σ∈S2

q(σ)
∑
e∈s∗u

fe(δe(σ−u) + κe(σ−u) + 1)

≤
∑
σ∈S2

q(σ)
∑
e∈s∗u

fe(δe(σ) +∆+ 1),

where the first inequality follows since Q is a Bayesian Nash equilibrium and the second inequality
holds, since κe(σ−u) ≤ κe(σ) ≤ ∆ for all e ∈ E. So, we get∑

u∈N
(1− pu) · PCu(p,Q) ≤

∑
σ∈S2

q(σ)
∑
u∈N

∑
e∈σ∗(u)

(1− pu) · fe(δe(σ) +∆+ 1)

≤
∑
σ∈S2

q(σ)
∑
e∈E

(1− pmin) · δe(s∗) · fe(δe(σ) +∆+ 1)

≤ (1− pmin) ·
∑
σ∈S2

q(σ)
∑
e∈E

δe(s∗) · fe(∆+ 1)

+ (1− pmin) ·
∑
σ∈S2

q(σ)
∑
e∈E

ae · δe(σ) · δe(s∗)

Observe, that δe(s∗) ≥ 1 and thus δe(s∗) ≤ δe(s∗)2. Moreover, by applying Lemma 1 with x =
δe(σ) and y = δe(s∗), we get∑

u∈N
(1− pu) · PCu(p,Q)

≤ (1− pmin) · (∆+ 1) ·
∑
σ∈S2

q(σ)
∑
e∈E

δe(s∗) · fe(δe(s∗))

+ (1− pmin) · c ·
∑
σ∈S2

q(σ)
∑
e∈E

ae · δe(σ)2

+ (1− pmin) · 1
4c
·
∑
σ∈S2

q(σ)
∑
e∈E

ae · δe(s∗)2

≤ (1− pmin)(∆+ 1 +
1
4c

)
∑
σ∈S2

q(σ)
∑
e∈E

δe(s∗) · fe(δe(s∗))

+ c ·
∑
σ∈S2

q(σ)
∑
e∈E

δe(σ)fe(δe(σ))

= (1− pmin)(∆+ 1 +
1
4c

) ·
∑
u∈N

∑
e∈s∗u

fe(δe(s∗))

+ c ·
∑
σ∈S2

q(σ)
∑
u∈N

∑
e∈σ(us)

(1− pu) · fe(δe(σ))

≤ (1− pmin)(∆+ 1 +
1
4c

) ·
∑
u∈N

∑
e∈s∗u

fe(δe(s∗))
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+ c ·
∑
σ∈S2

q(σ)
∑
u∈N

∑
e∈σ(us)

(1− pu) · fe(δe(σ−u) + 1)

≤ (1− pmin)(∆+ 1 +
1
4c

) ·
∑
u∈N

PCu(s∗)

+ c ·
∑
u∈N

(1− pu) · PCu(p,Q)

It follows that

SC(p,Q)
SC(s∗)

=
n

n−∆
·
∑
u∈N (1− pu) · PCu(Q)∑

u∈N PCu(s∗)

≤ n

n−∆
(1− pmin)

∆+ 1 + 1
4c

1− c
(1)

Now, choosing c = −1+
√

5+4∆
4(∆+1) yields

∆+ 1 + 1
4c

1− c
=
∆+ 1 + ∆+1

−1+
√

5+4∆

1− −1+
√

5+4∆
4(∆+1)

=
4(∆+ 1)2(1 + 1

−1+
√

5+4∆
)

5 + 4∆−
√

5 + 4∆

=
4(∆+ 1)2(1 + 1+

√
5+4∆

4+4∆ )

5 + 4∆−
√

5 + 4∆

=
(∆+ 1)(5 + 4∆+

√
5 + 4∆)

5 + 4∆−
√

5 + 4∆

=
(∆+ 1)(

√
5 + 4∆+ 1)√

5 + 4∆− 1

=
(∆+ 1)(

√
5 + 4∆+ 1)2

4 + 4∆

=
1
4
(4∆+ 6 + 2

√
5 + 4∆)

= ∆+
3 +
√

5 + 4∆
2

(2)

The theorem follows by combining (1) and (2) and since Q is an arbitrary Bayesian Nash equilib-
rium. ut
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