Sheaves, Objects and Distributed Systems

Grant Malcolm

Department of Computer Science
University of Liverpool, UK

Mathematical Foundations of Computer Science 2006
Sources

Some Slogans

Objects Give Rise to Sheaves
Morphisms Represent Inheritance
Systems are Diagrams
Behaviour is Limit
Interconnection is Colimit
Some Slogans

Objects Give Rise to Sheaves
Morphisms Represent Inheritance
Systems are Diagrams
Behaviour is Limit
Interconnection is Colimit
Some Slogans

Objects Give Rise to Sheaves
Morphisms Represent Inheritance
Systems are Diagrams
Behaviour is Limit
Interconnection is Colimit
Some Slogans

Objects Give Rise to Sheaves
Morphisms Represent Inheritance
Systems are Diagrams
Behaviour is Limit
Interconnection is Colimit
Some Slogans

Objects Give Rise to Sheaves
Morphisms Represent Inheritance
Systems are Diagrams
Behaviour is Limit
Interconnection is Colimit
Some Slogans

Objects Give Rise to Sheaves
Morphisms Represent Inheritance
Systems are Diagrams
Behaviour is Limit
Interconnection is Colimit
Some Slogans

Objects Give Rise to Sheaves
Morphisms Represent Inheritance
Systems are Diagrams
Behaviour is Limit
Interconnection is Colimit
Complete Heyting Algebras

Sheaves can be thought of as consistent systems of observations.

Observations are made at ‘locations’, which have ‘intersections’ and ‘unions’
Complete Heyting Algebras

Sheaves can be thought of as consistent systems of observations.

Observations are made at ‘locations’, which have ‘intersections’ and ‘unions’
Examples

\[\omega + 1 \] Topological spaces

This can be seen as discrete time.

\[\Omega(P) \] The set of downwards-closed subsets of a partially ordered set \(P \)

For example, if \(P \) is a monoid, the prefix order is \(x \leq y \) iff \(xz = y \) for some \(z \); then \(\Omega(P) \) is the set of traces.
Examples

- Topological spaces

- $\omega + 1$ The set $\{0, 1, 2, \ldots, \omega\}$
 This can be seen as discrete time.

- $\Omega(P)$ The set of downwards-closed subsets of a partially ordered set P
 - For example, if P is a monoid, the prefix order is $x \leq y$ iff $xz = y$ for some z;
 then $\Omega(P)$ is the set of traces.
Examples

\(O \) Topological spaces
\(\omega + 1 \) The set \(\{0, 1, 2, \ldots, \omega\} \)
This can be seen as discrete time.
\(\Omega(P) \) The set of downwards-closed subsets of a partially ordered set \(P \)

 For example, if \(P \) is a monoid, the prefix order is \(x \leq y \) iff \(xz = y \) for some \(z \);
 then \(\Omega(P) \) is the set of traces.
Examples

\(\omega + 1 \) The set \(\{0, 1, 2, \ldots, \omega\} \)
This can be seen as discrete time.

\(\Omega(P) \) The set of downwards-closed subsets of a partially ordered set \(P \)

- For example, if \(P \) is a monoid, the prefix order is \(x \leq y \) iff \(xz = y \) for some \(z \); then \(\Omega(P) \) is the set of traces.
Sheaves are Presheaves

\[F(C_1) \rightarrow F(C_2) \]

\[C_1 \rightarrow C_2 \]
Sheaves are Presheaves with Pasting

Consistent families

\[F(C_1 \cup C_2) \]

\[F(C_1) \quad F(C_2) \]

\[F(C_1 \cap C_2) \]
Sheaves are Presheaves with Pasting

Consistent families have unique amalgamations
Example: Continuous Functions

For a topological space \mathcal{O},

$$R(C) = \{ f : C \to R \mid f \text{ is continuous} \}$$
Example: Substitutions

Problem: $Y = 2X$ and $Y \leq Z \leq 2Y$

$$\{X, Y, Z\} : \quad X \leftarrow 3, \quad Y \leftarrow 6, \quad Z \leftarrow 8$$

$$\{X, Y\} : \quad X \leftarrow 3, \quad Y \leftarrow 6$$

$$\{Y, Z\} : \quad Y \leftarrow 6, \quad Z \leftarrow 8$$

$$\{Y\} : \quad Y \leftarrow 6$$
Example: Trading Nails and Screws

\[N \parallel S : (N \text{ gives } n \parallel S \text{ gives } s); (N \text{ gets } s \parallel S \text{ gets } n) \]

\[\begin{align*}
N : & \text{ give n; get s} \\
S : & \text{ give s; get n} \\
B : & \text{ in; out}
\end{align*} \]
Example: Partial Truth

Let $\Omega(X)$ be the (downward-closed) subsets of X.
If $X \subseteq Y$, restriction $\Omega(Y) \to \Omega(X)$ is given by $S \subseteq Y \mapsto S \cap X \subseteq X$.

Amalgamation:

- $X_1 \cup X_2 : S_1 \cup S_2$
- $X_1 : S_1$
- $X_2 : S_2$
- $X_1 \cap X_2 : S_1 \cap X_1 \cap X_2 \cap S_2$
Example: Partial Truth

Let $\Omega(X)$ be the (downward-closed) subsets of X.
If $X \subseteq Y$, restriction $\Omega(Y) \rightarrow \Omega(X)$ is given by $S \subseteq Y \mapsto S \cap X \subseteq X$.

Amalgamation:

\[
\begin{align*}
X_1 \cup X_2 : & \quad S_1 \cup S_2 \\
X_1 : & \quad S_1 \\
X_2 : & \quad S_2 \\
X_1 \cap X_2 : & \quad S_1 \cap X_1 \cap X_2 \cap S_2
\end{align*}
\]
Sheaves as Transition Systems

Sheaves as Transition Systems

Semantics of an Object-oriented Language (Cîrstea)
Labelled Transition Systems

Let $\mathcal{M} = (M, \cdot, \varepsilon)$ be a monoid.

Definition

A labeled transition system over \mathcal{M} is a pair (T, \rightarrow), with $\rightarrow \subseteq T \times M \times T$ such that

$t \xrightarrow{\varepsilon} t'$ iff $t = t'$

$t \xrightarrow{m n} t''$ iff $t \xrightarrow{m} t'$ and $t' \xrightarrow{n} t''$ for some $t' \in T$.

Morphisms $(h, f) : (\mathcal{M}, T) \to (\mathcal{N}, U)$ preserve transitions.
Let $\mathcal{M} = (M, \cdot, \varepsilon)$ be a monoid.

Definition

A *labelled transition system over* \mathcal{M} is a pair $(T, \xrightarrow{\cdot})$, with $\xrightarrow{\cdot} \subseteq T \times M \times T$ such that

- $t \xrightarrow{\varepsilon} t'$ iff $t = t'$
- $t \xrightarrow{mn} t''$ iff $t \xrightarrow{m} t'$ and $t' \xrightarrow{n} t''$ for some $t' \in T$.

Morphisms $(h, f) : (\mathcal{M}, T) \rightarrow (\mathcal{N}, U)$ preserve transitions.
Example: Coffee Dispenser

Let $M = \{c, d, r\}^*$. Let $T = Bool \times \{0..20\}$ with transitions:

- $(false, N) \xrightarrow{c} (true, N)$ for all $0 \leq N \leq 20$, and
- $(true, N) \xrightarrow{d} (false, N - 1)$ for all $0 < N \leq 20$,
- $(B, N) \xrightarrow{r} (B, 20)$ for all $B \in Bool$ and all $0 \leq N \leq 20$.
Example: Coin Slot

Let $\mathcal{N} = \{c, d\}^*$ and $U = Bool$ with transitions

- $false \xrightarrow{c} true$
- $true \xrightarrow{d} false$.

Here is a morphism from the coffee dispenser to the coin slot. The monoid homomorphism on labels is defined by

- $c \mapsto c$
- $d \mapsto d$
- $r \mapsto \varepsilon$

and on states $Bool \times \{0..20\} \rightarrow Bool$ is just the first projection.
Example: Coin Slot

Let $\mathcal{N} = \{c, d\}^*$ and $U = \mathit{Bool}$ with transitions

- $\text{false} \xrightarrow{c} \text{true}$
- $\text{true} \xrightarrow{d} \text{false}$.

Here is a morphism from the coffee dispenser to the coin slot. The monoid homomorphism on labels is defined by

\[
\begin{align*}
 c & \mapsto c \\
 d & \mapsto d \\
 r & \mapsto \varepsilon
\end{align*}
\]

and on states $\mathit{Bool} \times \{0..20\} \rightarrow \mathit{Bool}$ is just the first projection.
\mathcal{M}, T determines the sheaf F on $\Omega(M)$:

$F(X) = \text{LTS}(X, T)$

E.g., for $X = \{\varepsilon, a, aa, ab\}$ and $f : X \to T$:

$f(\varepsilon) \xrightarrow{a} f(a) \xrightarrow{a} f(aa)$ and

$f(\varepsilon) \xrightarrow{a} f(a) \xrightarrow{b} f(ab)$
\(\mathcal{M}, T \) determines the sheaf \(F \) on \(\Omega(\mathcal{M}) \):
\[
F(X) = LTS(X, T)
\]

E.g., for \(X = \{\varepsilon, a, aa, ab\} \) and \(f : X \rightarrow T \):
\[
\begin{align*}
 f(\varepsilon) &\xrightarrow{a} f(a) &\xrightarrow{a} f(aa) \\
 f(\varepsilon) &\xrightarrow{a} f(a) &\xrightarrow{b} f(ab)
\end{align*}
\]
Examples

\[\varepsilon \]

\[a \]

\[ab \]

\[\{aa, ab\} \]
Examples

\[\varepsilon \]

\[a \]

\[a \]

\[\{aa,ab\} \]

\[ab \]
Sheaves \rightarrow Labelled Transition Systems

A sheaf F determines a labelled transition system with

$T = \sum_{m \in M} F(m\downarrow)$

and transitions $(m, e) \xrightarrow{n} (m', e')$ iff

$m' = mn$ and $e'\uparrow_{m\downarrow} = e$.
A sheaf F determines a labelled transition system with
\[T = \sum_{m \in M} F(m\downarrow) \]
and transitions \((m, e) \xrightarrow{n} (m', e')\) iff
\(m' = mn\) and \(e' \mid_{m\downarrow} = e\).
 Behaviour as Limit

A money box with a coin slot has states $\text{Bool} \times \omega$ and transitions

- $(\text{false}, N) \xrightarrow{c} (\text{true}, N)$ for all $N \geq 0$,
- $(\text{true}, N) \xrightarrow{d} (\text{false}, N + 1)$ for all $N \geq 0$, and
- $(B, N) \xrightarrow{m} (B, 0)$ for all $N \geq 0$ and $B \in \text{Bool}$.

The monoid homomorphism to the coin slot is given by

\begin{align*}
 c & \mapsto c \\
 d & \mapsto d \\
 m & \mapsto \varepsilon
\end{align*}
Behaviour as Limit

A money box with a coin slot has states $\text{Bool} \times \omega$ and transitions

- $(false, N) \xrightarrow{c} (true, N)$ for all $N \geq 0$,
- $(true, N) \xrightarrow{d} (false, N + 1)$ for all $N \geq 0$, and
- $(B, N) \xrightarrow{m} (B, 0)$ for all $N \geq 0$ and $B \in \text{Bool}$.

The monoid homomorphism to the coin slot is given by

\[\begin{align*}
c & \mapsto c \\
d & \mapsto d \\
m & \mapsto \varepsilon \end{align*}\]
Behaviour as Limit

Behaviour is limit:

\[(f_1, g_1) \quad (f_2, g_2) \]

The limit of the monoid morphisms is \{cc, dd, m, r\} with, e.g.,

\[cc \, r \, m \, dd \, m = cc \, m \, r \, dd \, m \]
Behaviour as Limit

Behaviour is limit:

The limit of the monoid morphisms is \{cc, dd, m, r\}* with, e.g.,

\[cc \, r \, m \, dd \, m = cc \, m \, r \, dd \, m \]
A sheaf with values in a category L is a functor F from a complete Heyting algebra to L such that if $X = \bigcup_{i \in I} X_i$, then

\[F(X) \to \prod_{i \in I} F(X_i) \to \prod_{i,j \in I} F(X_i \cap X_j) \]

is an equaliser diagram (where all the arrows arise from the obvious restrictions by the universal property of the target product).
Behaviour-as-Limit is Sheafy

Let X be a preorder category, and let $\delta : X \rightarrow \text{LTS}$. Define $\delta^* : \Omega(X) \rightarrow \text{LTS}$ by

$$\delta^*(X) = \lim(\delta|_X);$$

then δ^* is a sheaf of transition systems.

Or

Let G be a directed graph; let $\mathcal{O}(G)$ be the subsets of nodes closed ‘under edges’.
Then $\delta : G \rightarrow L$ gives $\delta^* : \mathcal{O}(G) \rightarrow L$, where

$$\delta^*(X) = \lim(\delta|_X).$$
Let X be a preorder category, and let $\delta : X \to \text{LTS}$. Define $\delta^* : \Omega(X) \to \text{LTS}$ by $\delta^*(X) = \lim(\delta|_X)$; then δ^* is a sheaf of transition systems.

Or

Let G be a directed graph; let $\mathcal{O}(G)$ be the subsets of nodes closed ‘under edges’. Then $\delta : G \to L$ gives $\delta^* : \mathcal{O}(G) \to L$, where

$$\delta^*(X) = \lim(\delta|_X).$$
Independence (Winskel & Nielsen: |)

\[t \xrightarrow{m} t_1 \sim t \xrightarrow{m} t_2 \Rightarrow t_1 = t_2 \]

\[t \xrightarrow{m} t_1 \mid t \xrightarrow{n} t_2 \Rightarrow \]

\[(\exists u) \ t \xrightarrow{m} t_1 \mid t_1 \xrightarrow{n} u \land t \xrightarrow{n} t_2 \mid t_2 \xrightarrow{m} u \]

\[t \xrightarrow{m} t_1 \mid t_1 \xrightarrow{n} u \Rightarrow \]

\[(\exists t_2) \ t \xrightarrow{m} t_1 \mid t_2 \xrightarrow{n} u \land t \xrightarrow{n} t_2 \mid t_2 \xrightarrow{m} u \]

\[t \xrightarrow{m} t_1 \sim t_2 \xrightarrow{m} u \mid w \xrightarrow{n} w' \Rightarrow t \xrightarrow{m} t_1 \mid w \xrightarrow{n} w' \]

where \(\sim \) is the equivalence relation freely generated by \(\prec \), which is defined by \(t \xrightarrow{m} t_1 \prec t_2 \xrightarrow{m} u \) iff there is an \(n \) with \(t \xrightarrow{m} t_1 \mid t \xrightarrow{n} t_2, t \xrightarrow{m} t_1 \mid t_1 \xrightarrow{m} u \) and \(t \xrightarrow{n} t_2 \mid t_2 \xrightarrow{n} u \).
Independence (Sheaf Remix)

Let F be a sheaf of transition systems. Transitions $t_1 \xrightarrow{m} t_1'$ and $t_2 \xleftarrow{n} t_2'$ at $F(C)$ are independent iff $C = C_1 \cup C_2$ and $m|_{C_1} = \varepsilon$ and $n|_{C_2} = \varepsilon$.
Hidden Algebra (Goguen, et al.)

Algebraic specification of systems with state.

- sorts are partitioned: *visible* and *hidden*
- operations take at most one hidden argument
 (but cf. Goguen and Roşu)
- concurrent connection gives composition of subcomponents.
Hidden Algebra (Goguen, et al.)

Algebraic specification of systems with state.
- sorts are partitioned: *visible* and *hidden*
- operations take *at most one hidden argument*
 (but cf. Goguen and Roşu)
- concurrent connection gives composition of subcomponents.
Hidden Algebra (Goguen, et al.)

Algebraic specification of systems with state.

- sorts are partitioned: *visible* and *hidden*
- operations take at most one hidden argument
 (but cf. Goguen and Roșu)
- concurrent connection gives composition of subcomponents.
Streams of Natural Numbers

th STREAM is
 pr DATA .

 hsort State .

 op head : State -> Nat .
 op tail : State -> State .

endth
th SENDER is
using STREAM .

op input : State -> Nat .
op put : Nat State -> State .

var N : Nat .
var S : State .
eq head(put(N,S)) = head(S) .
eq input(put(N,S)) = N .
eq head(tail(S)) = input(S) .
eq input(tail(S)) = input(S) .
endth
Sending Values on a Stream

th SENDER is
 using STREAM . a meromorphism

 op input : State -> Nat .
 op put : Nat State -> State .

 var N : Nat .
 var S : State .
 eq head(put(N,S)) = head(S) .
 eq input(put(N,S)) = N .
 eq head(tail(S)) = input(S) .
 eq input(tail(S)) = input(S) .

endth
We think of STREAM as a subobject of SENDER. The inclusion of STREAM into SENDER is a meromorphism.
th SUM[S :: STREAM] is

 op sum : State -> Nat .
 op add : State -> State .

 var N : Nat .
 var S : State .
 eq sum(add(S)) = head(S) + sum(S) .
 eq sum(tail(S)) = sum(S) .
 eq head(add(S)) = head(S) .
endth
Adding Values on a Stream

th SUM[S :: STREAM] is meromorphism

op sum : State -> Nat .
op add : State -> State .

var N : Nat .
var S : State .
eq sum(add(S)) = head(S) + sum(S) .
eq sum(tail(S)) = sum(S) .
eq head(add(S)) = head(S) .
endth
Parameterised Theories

\[\text{SENDER} \rightarrow \text{SUM[SENDER]} \]

\[\text{STREAM} \rightarrow \text{SUM[S :: STREAM]} \]
Concurrent Connection

th SENDER || SUM is

pr SUM[SENDER] .

var N : Nat .
var S : State .

eq input(add(S)) = input(S) .

eq sum(put(N,S)) = sum(S) .

eq put(N, add(S)) = add(put(N,S)) .
endth
Concurrent Connection

th SENDER || SUM is

pr SUM[SENDER] .

var N : Nat .
var S : State .
eq input(add(S)) = input(S) .
eq sum(put(N,S)) = sum(S) .
eq put(N, add(S)) = add(put(N,S)) .
endth
A Distributed System
Sheaves of Theories and Models

Concurrent connection is limit for object specifications with meromorphisms.

This extends to models — also as limit.

A natural view of models of such system specifications is sheaves of theories with models:

\[
\begin{array}{c}
\text{SENDER} \\
\downarrow \\
\text{STREAM} \\
\downarrow \\
\text{ADDER}
\end{array}
\]
Dynamic Systems…

…as a transition system (Colman Reilly, TCD):

State set: tuples \((G, A, b)\), where

- \(G\) is a graph,
- \(\delta : G \to \text{Set}\), and
- \(b\) is an element of the *limit* of \(\delta\) (i.e., an element of \(\delta^*\)).

Transitions: \((G, \delta, b) \leftrightarrow (G', \delta', b')\) iff

- there is a span \(G \leftarrow G_0 \rightarrow G'\), and
- \(\delta|_{G_0} = \delta'|_{G_0}\).
Example: Adding to a Linked List
Structured Dynamic Systems

State set: tuples \((G, \delta, b)\), where

- \(G\) is a graph,
- \(\delta : G \to \text{TSys}\), and
- \(b\) is an element of the *limit* of \(\delta\).

Transitions: \((G, \delta, b) \leftrightarrow (G', \delta', b')\) iff

- there is a span \(G \leftrightarrow G_0 \leftrightarrow G'\),
- \(\delta|_{G_0} = \delta'|_{G_0}\), and
- \(b|_{G_0} \leftrightarrow b'|_{G_0}\) in \(\text{Lim}(\delta|_{G_0})\).
Labelled Structured Dynamic Systems

State set: tuples \((G, \delta, b)\), where
- \(G\) is a graph,
- \(\delta : G \rightarrow \text{LTSys}\), and
- \(b\) is an element of the limit of \(\delta\) (i.e., an element of \(\delta^*\)).

Transitions: \((G, \delta, b) \xrightarrow{l} (G', \delta', b')\) iff
- there is a span \(G \leftarrow G_0 \rightarrow G'\),
- \(\delta |_{G_0} = \delta' |_{G_0}\), and
- \(b |_{G_0} \xrightarrow{l |_{G_0}} b' |_{G_0}\) in \(\text{Lim}(\delta |_{G_0})\).
- \((l \in \text{labels}(\text{Lim}(\delta |_{G_0}))).\)
Evolving Specifications

State set: pairs \((G, \delta)\), where

- \(G\) is a graph,
- \(\delta\) assigns to nodes:
 - a theory \(T\),
 - with distinguished sort \(s\),
 - a model \(B\) of \(T\), and
 - an element \(b \in B_s\).
- Edges use the Grothendieck construction.

...
would correspond to an operation

\[\text{joinCR} : \text{Chatter} \; \text{Chatroom} \rightarrow \text{ChatterInChatroom} \]
Sheaves allow a structured approach to distributed systems
Similar to presheaf models for labelled transition systems
Generalises to sheaves of structures
- dynamic systems
- two-level rewriting: global and local
- work in progress...