COMP201 Software Engineering I
Assignment 1

(100% mark is 10 Points)
Deadline: 20th of November, 3 pm
Please submit your report to the student office
(Ground Floor, Ashton Building)
OBJECTIVE

To assess the following two learning outcomes:

· to appreciate the problems in the specification and designing stage for computer systems;

· to gain practical experience with formal specification process using Abstract State Machine Language

REPORT

The report consists of three parts. All three parts should be submitted for 100% mark. You should hand in a report along the lines of the example problem solutions presented in the notes and in the manual for ASML. Your solution should comprise the following:

1. Title page: print your name, your student number and the course on the first page. If there is more than one sheet, staple them in the upper left hand corner

 Items 2 - 6 are necessary FOR EACH PART
2. Requirements of the PART: Copy of the requirements statement.

3. Analysis: Structure of all components for your proposed solution

4. Design: State diagrams for the system using model-based approach

5. Implementation: Formal specification of the system using Abstract State Machine Language (a computer print out of your implementation).

6. Testing: A computer print out of the output from your program.

NOTE:
1. The AsmL for Microsoft .NET compiler can be called from the command line to compile from AsmL sources into an executable. In the simplest case, for a raw AsmL file, you just call: asmlc [name of the program].asml
to compile "[name of the program].asml" into "[name of the program].exe".
2. If the compilation was successfully done you can be execute [name of the program].exe file from your local D drive.
D:\> [name of the program].exe
3. There is no requirement to use a word processing package or a drawing package for the analysis and design sections. The implementation must however be presented in the form of a "computer print out" (not emailed). Similarly the output should be presented in printed form (it is suggested that the best way of doing this is to cut and paste the result into a text file and then print this). You can do it with your exe file using the following command:

NAME_OF_THE_FILE.exe > NAME_OF_THE_OUTPUT_FILE.txt
You can also use Spec Explorer software for compiling and executing your specifications!

Conway's Game of Life
General Requirements:
Given a description of the “Game of Life”, which is a cellular automaton devised by the British mathematician John Horton Conway in 1970. You need to design and implement executable specification on ASML for the “Game of Life”.

Testing Requirements:
Testing section should include a computer print out of the output from your program for all initial shapes. Test the system with the following initial shapes:

Glider={(1,1),(2,1),(3,1),(3,2),(2,3)}

SmallExploder={(0,2),(1,1),(1,3),(2,1),(2,2),(2,3),(3,2)}

Shot=Glider union {(10,-6),(11,-7),(10,-7),(11,-6)}

Shape1={(2,1),(2,2),(2,3),(0,2),(0,3),(0,4)}

Shape2={(2,1),(2,2),(2,3),(2,4),(0,2),(0,3),(0,4),(0,5)}

Shape3={(2,1),(2,2),(2,3),(2,4),(2,5),(0,2),(0,3),(0,4),(0,5),(0,6)}

Description of the game

The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players. It runs on a grid of squares ("cells") which stretches to infinity in all directions. Each cell has eight "neighbours", which are the cells adjacent to it, including diagonally. Each cell can be in one of two states: it is either "alive" or "dead". (The terms "on" and "off" are also used.) The state of the two-dimensional integer grid evolves in discrete time steps. The states of all of the cells at one time are taken into account to calculate the states of the cells one time step later. All of the cells are then updated simultaneously.

The transitions depend only on the number of live neighbours:

1. A dead cell with exactly 3 live neighbours becomes alive (or is "born").

2. A live cell with 2 or 3 live neighbours stays alive; otherwise it dies (from "loneliness" or "overcrowding").

 [image: image1.png]

Figure 2. Examples of 4 life forms: 1 glider, 3 ships

Three PARTS for specification of the Game of Life
PART1.
State machine model of the game
Requirements:
Create a new ASML project. First define a type Mode with the following states of the game: Decision, GridUpdate, HistoryUpdate, Checking and Finished. Then specify a method GAME that works as a finite state machine with above mentioned states and the following rules:
Initial mode is HistoryUpdate.

If a mode is HistoryUpdate then print “History updated” and change a mode to Decision.
If a mode is Decision then print “End of Decision mode” and change a mode to GridUpdate.

If a mode is GridUpdate then print “Grid Updated” and change a mode to Checking.

If a mode is Checking then print “The choice was made” and then non-deterministically change a mode to either Finished mode and print “Finished” or HistoryUpdate mode and print “Continue”.
In the Main() function of specification call the method GAME.

PART2.
Specification of the environment

Requirements:
Create a new ASML project. You need to

· Specify configuration of the game (set of alive points) as a set (SetOfPoints) of 2 dimensional points with integer coordinates;
· Define a set SetOfPoints that contains points (-3,-1), (1,2), (1,1), (5,4), (4,3), (4,4), (0,-2), (0,0), (0,-1);

· Specify a variable History (History of the game) that is a set of configurations of the game;
· Let (a,b) is a point on integer two-dimensional grid. Specify the set of points from its Moore neighbourhood; The Moore neighbourhood (see Figure below) is the neighbourhood used by John Conway's "Game of Life". Apply it for the point (5,-2) and save the result in set Set2;

[image: image2.png]

The blue area is the Moore Neighbourhood of the red cell

· Let say that all points from set SetOfPoints are “alive”. Specify some procedure that returns a number of “alive” points in Moore neighbourhood for each point from SetOfPoints;
· Specify some procedure that returns a set of points that have at least one neighbour from SetOfPoints and store it in the set Cells.
[image: image3.png]

PART3.
Executable specification of the Game of Life
Simulate the game until one of the following conditions occurs:

(a) the resulting configuration has no alive cells

(b) the resulting configuration of the game has repeated itself in the process of modifications

(c) the number of iterations exceeds N, where N = 100.

During the process the system should print all alive cells before each modification. At the end of the process the system has to report the reason of stopping (a), (b) or (c) and the number of iterations which have been performed so far.

Testing section should include a computer print out of the output from your program for all initial shapes. Test the system with the following initial shapes:

Glider={(1,1),(2,1),(3,1),(3,2),(2,3)}

SmallExploder={(0,2),(1,1),(1,3),(2,1),(2,2),(2,3),(3,2)}

Shot=Glider union {(10,-6),(11,-7),(10,-7),(11,-6)}

Shape1={(2,1),(2,2),(2,3),(0,2),(0,3),(0,4)}

Shape2={(2,1),(2,2),(2,3),(2,4),(0,2),(0,3),(0,4),(0,5)}

Shape3={(2,1),(2,2),(2,3),(2,4),(2,5),(0,2),(0,3),(0,4),(0,5),(0,6)}

Some Hints:

· It is a good idea to split the whole process into different stages like: Initial, History Updating state, Computation of Modifications, Colony Updating state, History Checking, Final etc.

· Colony can be represented by a set of two-dimensional points: Set of (Integer, Integer).

· There are many set operations in ASML that can return Union, Intersection, Complement, etc

· In order to avoid conflicts in specification split the process of evolution on two sub-phases Computation of Modifications and Colony Update.
· Since you cannot apply rule 2 to infinite (!!!) number of dead cells you need to restrict it to the set of cells that have a chance to be updates (i.e. cells with at least one alive neighbour).
· In order to find loops in the process you have to store a history of all colony states of the game. The history could be represented by a Set (or Sequence) of Set of (Integer, Integer).

· Checking of the repeated configuration in the History could be performed by a set operation (.

