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Abstract. Recent advances and successes of machine learning techniques are
paving the way to what is referred as Software 2.0 era and cognitive computing,
in which traditional programming and software development is meant to be re-
placed by such techniques for many applications. If we consider agent-oriented
programming, we believe that such developments trigger new interesting scenarios
blending cognitive architecture such as the BDI one and techniques like Rein-
forcement Learning (RL) even more deeply compared to what has been proposed
so far in the literature. In that perspective, we aim at exploring the integration of
cognitive agent-oriented programming based on BDI with learning techniques so
as to systematically exploit them in the agent development stage. The approach
should support the design of BDI agents in which some plans can be explicitly
programmed and others instead can be learned by the agent during the developmen-
t/engineering stage. In that view, the development of an agent is metaphorically
similar to an education process, in which first an agent is created with a set of
basic programmed plans and then grow up in order to learn plans to achieve the
goals for which the agent is meant to be designed. This paper present and discuss
this medium-term view, introducing a first model for a BDI agent programming
framework integrating RL, a first implementation based on Jason programming
language/platform and sketching a roadmap for this research line.

1 Introduction

Machine learning and cognitive computing techniques have been getting a momentum
in recent years, thanks to several factors, including theoretical developments in contexts
such as (deep) neural networks, reinforcement learning, Bayesian networks, the avail-
ability of big data and the availability of more and more powerful parallel computing
machinery (GPU, cloud) [2,12,13,16]. Their deeper and deeper impact in real-world ap-
plications is celebrating a new “AI Spring” era, which is generating a strong debate in the
literature as well [19]. Actually, the impact is not only about applications but also about
how applications are programmed and engineered. In particular, a vision of Software 2.0
era is emerging [17], in which traditional programming and software development is
meant to be more and more replaced by e.g. machine learning and cognitive computing
techniques, towards the “the end of programming” era [16,10].

louisedennis
Placed Image



2 Michael Bosello and Alessandro Ricci

Besides the hype and the marketing-oriented claims, if we consider agent-oriented
programming [23], and – more generally, multi-agent systems (MAS) engineering – we
believe that such recent developments would trigger new interesting scenarios blending
cognitive architectures such as the BDI one [21] and techniques like Reinforcement
Learning (RL) [27] even more deeply than what has been already proposed so far in liter-
ature. As far as authors’ knowledge, existing research integrating BDI-based agents and
MAS with learning techniques mainly focused on improving agent adaptation, exploiting
learning to improve e.g. plan or action selection at runtime. As a further approach, our
objective is to explore the integration of cognitive agent-oriented programming based
on BDI with learning techniques so as to systematically exploit them in the agent de-
velopment stage. The basic idea is that an agent developer could integrate the explicit
programming of plans – when developing a BDI agent – with the possibility that, for
some goals, it would be the agent itself to learn the plans to achieve them, by exploiting
reinforcement learning based techniques. This is not only for a specific ad hoc problem,
but as a general feature of the agent platform.

In that view, the development of an agent is metaphorically similar to an education
process, in which first an agent is created with a set of basic programmed plans and then
grow up in order to learn plans to achieve the goals for which the agent is meant to be
designed. We believe that this vision would trigger interesting research directions about
the evolution of agent-oriented programming in the software 2.0 era. In the remainder
of the paper, we present and discuss this view, with a first proof-of-concept framework
based on the Jason agent platform [6,7].

After giving a background and an account about related works (section 2), we first
describe our approach integrating learning in the loop of BDI agent programming, using
AgentSpeak(L) [20] as reference model (section 3). Then, we describe an implementation
of the framework on top of the Jason agent language/platform (section 4), including
some testing using a simple example and a discussion (section 5). We close the paper
sketching a roadmap for this research line (section 6).

2 Background and Related Works

In this section, we first provide an overview about basic concepts of Reinforcement
Learning (RL) – taking [27] as main reference – and then an account of existing research
works in the context of agent-oriented programming – especially focusing on BDI-based
model [21] – proposing an integration with RL. It is worth remarking that in this setting
we do not intend to consider the latest advances in RL, but just the core foundational
layer useful to present and discuss our approach.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning method with the key idea that a
goal-oriented agent learns how to fulfill a task by interacting with its environment.

Any problem of learning goal-directed behavior can be reduced to three signals
passing back and forth between an agent and its environment: one signal to represent the



From Programming Agents to Educating Agents 3

choices made by the agent (the actions), one signal to describe the basis on which the
choices are made (the states), and one signal to define the agent’s goal (the rewards).

A state is defined as whatever information is available to the agent about its environ-
ment, some of what makes up a state could be based on the memory of past perceptions
or even be entirely mental or subjective, i.e. the states can be anything we can know that
might be useful in the decision process. The agent must decide what action to take as a
function of whatever state signal is available. The actions too might be either internal –
changing the agent’s mental state – or external – affecting the environment. For example,
some actions might control what an agent chooses to think about, or where it focuses its
attention. The reward is a single real number obtained at each interaction step that the
agent seeks to maximize over time. The reward signal thus defines what the good and
bad events for the agent are, i.e. it is your way of communicating to the agent what it
must achieve.

We refer to each successive stages of interaction between the agent and the environ-
ment as time steps. In the case of a BDI agent, a reasoning cycle can be pretty assumed
as a step. In some applications, there is a natural notion of final time step, that is, when
the agent-environment interaction breaks naturally into subsequences that are referred
as episodes. Related to BDI, this is the case of agents pursuing achievement goals. In
many cases, the agent-environment interaction does not break naturally into identifiable
episodes but goes on continually without limit — these are called continuing tasks—i.e.,
maintenance goals in the BDI case.

The agent learns a policy as a result of the learning process. A policy is a function
that maps states to actions. we seek to learn and exploit an optimal policy, but we need
to behave non-optimally to explore all the possibilities. A classic method to balance the
exploitation and exploration phases is to use an ε-greedy policy with which the agent
behave greedily but there is a (small) ε probability to select a random action.

In many cases of interest, the agent has only partial information about the state of
the world, so, the states signal is replaced by an observations signal that depend on the
environment state but provide only partial information about it. In the BDI case, this
is directly modeled by percepts and, therefore, by beliefs about the environment. The
fundamental property of a state, known as the Markov property, is that it can be used
to predict the future. A stochastic process has the Markov property if the conditional
probability distribution of future states depends only upon the current state, not on
the sequence of events that preceded it. From the observations, the agent recover an
approximate state i.e., a state that may not be Markov. Actually, we can partially drop
the Markov property; however, this implies that long-term prediction performance can
degrade dramatically. An approximate state will play the same role in RL algorithms as
before, so we simply continue to call it a state.

2.2 Integrating RL into BDI Agents and AOP

Generally speaking, the integration of learning capabilities has been a main research topic
in agents and MAS literature since their roots [29]. A first work providing preliminary
results about integrating learning in BDI multi-agent systems is [14], proposing an
extension of the BDI architecture to endow agents with learning skills, based on induction
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of logical decision trees. Learning, in that case, is about plan failures, that an agent
should reconsider after its experience.

Other works in literature exploits RL to improve plan/action selection capability
in BDI agent, making them more adaptive [25,1,24]. In [18] an extension of BDI is
proposed so as to get a model of decision making by exploiting the ability to learn to
recognize situations and select the appropriate plan based upon this.

In [3,4] Jason is used to realize Temporal Difference (TD) and SARSA, two rein-
forcement learning methods, in order to face the RL problem with a more appropriate
paradigm which has been remarkably effective. [28] proposes a hybrid framework
that integrates BDI and TD-FALCON, a neural network based reinforcement learner.
BDI-FALCON architecture extends the low-level RL agent with a desire and intention
modules. In this way, the agent has explicit goals in the desire module instead of relying
on an external signal, enhancing the agent with a higher level of self-awareness. The
intention module and its plan library permit to reason about a course of actions instead
of individual reactive responses. If there isn’t a plan for a situation, the agent performs
the steps suggested by the FALCON module and, if the sequence succeeds, a new plan is
created with indications about the starting state, the goal state, and the actions sequence.
When the agent uses a plan, it updates the confidence of the plan according to the
outcome.

Also in [15] a hybrid approach BDI-FALCON is proposed. Here, the focus is on the
abstraction level: BDI provides a high-level knowledge representation but lacks learning
capabilities, meanwhile low-level RL agents are more adept at learning. The layered
proposal wants to retain both advantages. An alternative vision is provided in [11], where
a policy is learned and then is used to generate a BDI agent.

3 The Basic Idea

The simple idea of this paper is to extend the BDI agent development process with a
learning stage in which we can specify plans in the plan library whose body is not meant
to be explicitly programmed but learned, using a learning by experience technique. In so
doing, the development of an agent accounts for: (i) explicitly programming plans as
in the traditional way—we will refer to them as hard plans; and (ii) implicitly defining
plans by allowing the agent itself to learn them by experience (soft plans). Soft plans are
meant to become part of the plan library like hard plans and can be selected and used at
runtime – in terms of instantiated intentions – without any difference (but allowing for
continuous learning, if wanted). Actually, at runtime, soft and hard plans are treated in a
uniform way: intentions are created to carry on plan execution, hard plans could trigger
the execution of soft plans and vice versa.

To support the learning stage, we would need to run the agent in a proper environment
supporting this learning by experience, like the simulated environments typically used
in RL scenarios. Besides, before deploying the agent, there could be some assessment
of the soft plans, eventually using an assessment environment which could be different
from the one used for training. The assessment is actually very similar to a traditional
validation stage, including tests that consider the soft plans and their integration with
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hard plans. If the agent overcomes the assessment, it can be deployed—otherwise, the
process goes back to the learning stage, possibly changing also plans in the hard part.

Given this general idea, in the remainder of the section we first introduce the model in-
tegrating key concepts of RL into a BDI framework, and then we describe an extension of
the BDI reasoning cycle supporting the learning process. We will use AgentSpeak(L) [21]
and Jason [6] as concrete abstract and practical BDI-based languages—nevertheless, we
believe that the core idea is largely independent of the specific BDI agent programming
language or framework adopted.

To exemplify the approach, we will use the simple gridworld example (p. 80, [27]),
in which an agent is located into a bi-dimensional grid environment, where it has to
reach some destination cells without knowing in advance the best path for doing it.

3.1 A First Model

In devising the model, we aim at abstracting from the specific RL algorithm that can be
used. To that purpose, we consider key common RL concepts – observations, actions,
rewards, episodes – and how they are represented into a BDI setting (see Fig. 1, top).
These concepts are used by a component – referred as RL reasoner – extending the BDI
reasoner (interpreter) (see Fig. 1, bottom). The classic BDI reasoner handles the hard
plans – i.e., with a body – and the RL reasoner handles the soft plans—whose behavior
is learned.

Observations are modeled as a subset of the agent beliefs that will be used by
the particular algorithm to construct the state, including those that are necessary to
understand when a goal is achieved. Recall that the observations are a generalization
of states and if we want to represent a Markov state we just need to include all its
aspects as observations. In the gridworld case, for instance, the agent must reach a
specific position moving towards four directions. In this case, the observations include
the current position of the agent (pos(X, Y)) and a belief about having reached the
target (finish_line)—if this belief is missing, it means that the agent has not achieved
the target in the current state.

The action set can contain both primitive actions (a BDI agent action) and compound
actions (a BDI agent plan) so that representing different levels of planning granularity.
To have a common representation for both cases, we represent actions as plans, i.e. the
set of actions selectable by the RL reasoner is a subset of the plan library defined by
the plans which are relevant for the goal and applicable in the current context. In Fig.
1, these plans are still referred as Actions in the plan library, and as Behavior (i.e., the
learned policy) when instantiated at runtime, wrapped into an intention. In the gridworld
example, the action set has one parametric plan to move the agent in one direction:
!move(D), where D could be up, down, left, right.

Rewards are represented by rules reflecting agent desires—we call them Motivation
Rules. These rules make it possible to weight the current situation of an agent according
to some goal to be achieved. We can see these rules as the generators of internal stimuli in
the agent like a reward signal in neuroscience, which is a signal internal to the brain that
influences decision making and learning. The signal might be triggered by the external
environment, but it can also be triggered by things that do not exist outside the agent
and which can be represented as beliefs as well. We move the reward, that in RL comes



6 Michael Bosello and Alessandro Ricci

RL Proposed BDI+ construct Representation in BDI
Observations Belief about Learning Belief subset

Actions Actions Relevant Plans
Rewards Motivational Rule Belief Rule
Episode Terminal Rule Belief Rule
Policy Behavior Intention

Fig. 1: (Top) The mapping between RL concepts and their counterpart in the BDI model.
(Bottom) A graphic representation of the BDI model with the addition of our constructs.

from the environment, into the agent. This is crucial to separate the agent desires from
the environment so as to allow an agent to define its own goals and rewards about them.
In the AgentSpeak(L)/Jason model, we can represent Motivational Rules as Prolog-like
rules in the belief base:

reward(Goal, Reward) :- < some condition over the belief base >

In the gridworld example, the motivational rule will give a positive reward when the
finish line is reached (while pursuing a reach_end goal) and a negative reward in other
steps.

reward(reach_end, 10) :- finish_line.
reward(reach_end, -1) :- not finish_line.

Finally, we must include a notion of episode. An episode is an event or a group of events
occurring as part of a sequence. Like in the case of rewards, we can assume that the agent
(designer) may have her vision about how to define episodes starting from a relevant
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Fig. 2: BDI practical reasoning extended with RL based on SARSA, in pseudo-code.

ensemble of situation. This condition is well established by a rule that asserts in which
belief state a coherent group of events ends up in an episode, after which a new episode
begins. We refer to this rule as a Terminal Rule.

episode_end(Goal) :- < some condition over the belief base >

In the gridworld example, the episode for achieving a reach_end goal ends when the
finish line is reached:

episode_end(reach_end) :- finish_line.

It is worth noting that this approach could be applied only in the case of achievement
goals. In the case of maintenance goals (continuing tasks in [27]) we would need to
reconsider how an episode is modeled.

3.2 Extending the Reasoning Cycle

In our framework, a BDI agent is then equipped with general-purpose learning capabili-
ties that are triggered as soon as a soft plan must be learned, for some goal. Fig. 2 shows
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the pseudo code of a classic BDI agent reasoning cycle (as defined in [30,7]) extended
with such learning capabilities The RL algorithm used in the example is SARSA, adapted
for the context; our additions are in red.

In the standard cycle, the function plan in line (11) generates a plan to achieve
the intention I, we consider that this function is extended to include the case in which
the agent, for any reason, is not able to produce a plan to pursue the intention. In this
case, the agent can choose to instantiate a soft plan that relies on RL to achieve the
intention. The execution loop condition remains the same for the hard plans; instead, a
soft plan continues until a terminal state is met or until the intention succeeds or becomes
impossible to reach.

The execution of soft plans is between (16) and (25). First, the agent extracts the
observations from the belief base according to the goal to achieve (16), then, a state is
built from these observations (17). The reward is obtained from the motivational rule
that quantifies the fulfillment of the goal in accordance with the current beliefs (18). The
action is selected following the RL policy and the current value function Q (19). In (21)
the value-action function is updated. Finally, the selected action is carried out (25).

4 Proof-of-Concept Implementation in Jason

We developed a first proof-of-concept implementation on top of Jason, exploiting its
extensibility. Knowledge required by the RL part is uniformly represented by specific
beliefs, referred as beliefs about learning. The framework abstracts from the specific RL
algorithm but, depending on the characteristics of the problem, there will be different
constraints on it. Critical factors are the knowledge about the environment and the
state/action space dimensionality: if the state/action space dimensionality increases or
more environment features are hidden (Markov property), then the constraints on the
algorithm will be more stringent. To deal with this problem, we consider the possibility
for the programmer to specify some domain knowledge so as to reduce state/action space
and thus obtaining a more efficient/effective learning.

All the RL items are represented as beliefs, including rules, and plans. In this way,
the agent can control everything related to the reinforcement learning process. For the
BDI agent, RL is a black box and vice versa. We can see the black box as a block that
we can change without affecting the agent and that can implement any RL algorithm.

4.1 RL Concepts Representation in Jason

All beliefs about learning include as first parameter a ground term representing the
goal for which we want a soft plan, i.e. whose plan is learned. This is useful to support
multiple goals with soft plans at the same time. In the gridworld, for instance, we identify
the goal with reach_end.

In order to reduce the state space, we need to declare which beliefs shall be considered
relevant for a goal, so that they will be used as observations. We do this with beliefs
rl_observe(G, O), where G is a ground term that refers to the goal and O is the list
of the beliefs that will be considered for the goal. In gridworld example:

rl_observe(reach_end, [ pos(_,_) ]).
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As introduced in the previous section, Motivation Rules defines the rewards for some
goal given the current context:

rl_reward(G, R) :- ...

where G is the goal and R is a real number. The body of the rule represents the state for
which this reward must be generated, i.e. it represents the goal state. In the gridworld
example:

rl_reward(reach_end, 10) :- finish_line.
rl_reward(reach_end, -1) :- not finish_line.

At each execution, the RL reasoner gets the sum of all the rewards of the Motivational
Rules for which the body is true on the basis of the agent beliefs.

Similarly, Terminal Rules are in the form of rl_terminal(G) :- ..., asserting
when the end of an episode is reached. In the gridworld example:

rl_terminal(reach_end) :- finish_line.

The action set is represented as a set of (hard) plans, identified by an @action anno-
tation: @action[rl_goal(g1, ..., gn)] where g1, ..., gn is the list of goals for
which the plan/action can be used. In the gridworld example:

@action[rl_goal(reach_end),
rl_param(direction(set(right, left, up, down)))]

+!move(Direction) <- move(Direction).

This is used to inform the RL reasoner that the move action, wrapped into the cor-
responding plan, is relevant for learning how to achieve the reach_end goal. The
annotation allows for specifying also parameters that are used in the action/plan, specify-
ing the range of the values: @action[rl_goal(g1, ..., gn), rl_param(p1, ...,
pm)] where p1, ..., pm is the list of literals whose names match the names of the
variables—these literals must contain a predicate that defines the type of the parameter
and its range. To define an action space in which the action set is not the same in all
states we can use the context of the plan—if the context is not satisfied for the current
state, the plan will not be considered by the RL algorithm.

RL algorithm parameters can be specified as beliefs, enabling the complete control
of the learning process by the programmer and the agent. In the gridworld example,
some parameters are:

rl_parameter(alpha, 0.26).
rl_parameter(gamma, 0.9).
rl_parameter(policy, egreedy).

Finally a couple of internal actions – rl.execute(G) and rl.expectedreturn(G,
R) – are provided to drive and inspect the learning process.

The internal action rl.execute(G) makes it possible to perform one run (episode)
of the learning process and/or execute the soft plan. The action, implemented in Java,
wraps the core part of the RL algorithm. To that purpose, the Java bridge makes it possible
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to reuse existing RL libraries, when useful, including libraries written in other languages
such as Python ones. The action carries on and improves the soft plan under learning
and its execution completes when the episode is completed (or until an action failure).
The soft plan’s intention is carried out like any other intention—so the RL execution
competes with the other intentions for the agent attention and further execution. Typically,
a full learning process involves the repeated execution of learning episodes, in this case
by executing multiple times the rl.execute action.

The internal action rl.expectedreturn(G, R) gets the estimate of future rewards
R for the goal G on the basis of the current state and learned policy, i.e. the expected
return. This could be used to understand the performance of the leaned soft plan for
some goal given the current situation of the agent. For instance, if the expectation of
the learned behavior in the current state is poor, we can fall back on another plan. As a
result, we obtain a notion of context for soft plans.

4.2 Jason-RL Reasoning Cycle

The Jason reasoning cycle defines how the Jason interpreter runs an agent program, it
can be seen as a refinement of the BDI decision loop [7]. There are ten main steps: in
our framework, some of these steps are extended to include learning aspects. Figure 3
shows our extended architecture based on the original one; the red components are the
extensions. The detailed description of the cycle can be found in [7]. In the following,
we focus on our extensions. In a learning agent, after the update of the belief base (2a),
the maps that track the Belief about Learning are updated to reflect the new belief;
we call this process Observation Update Function OUF (2b). In this way, when the
observations are required, the agent doesn’t need to iterate multiple time the belief base.
In step (7a), when the plan’s context is bound to the expected reward, the value is asked
to the RL black box and then verified against the threshold (7b). Finally, a new step (11)
shall be added to the sequence when the next action of the intention selected in (9) is
the RL execution. At this stage, the information that the RL process needs in order to
continue shall be provided to it. The observations and the parameters are taken from the
belief base, plus, the Motivational Rules and the Terminal Rules are checked against the
belief base to retrieve the reward and the terminal status. The RL reasoner needs also
the set of relevant actions; this is formed by the action set defined in the plan library
after the non-applicable actions are eliminated through the same check context function
of (7). So, the agent provides these data to the RL black box and then obtain the next
suggested action (12). This action is pushed on top of the intention queue and, if the state
is not terminal, under this action is put a new call to the RL execution action (13). The
next time this intention is further execute, the selected action will be performed, at the
subsequent intention execution, another action will be requested and so on. Recall that
an environment action or an achievement goal suspend the intention until the execution
is done, same way internal actions are entirely executed before return. Since that and
given that the RL selected action is above the next RL step in the same intention, the
subsequent RL execution will never begin before the end of the previous action.



From Programming Agents to Educating Agents 11

Fig. 3: The Jason Reasoning Cycle extended with learning aspects.
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rl_parameter(policy, egreedy).
rl_parameter(alpha, 0.26).
rl_parameter(gamma, 0.9).
rl_parameter(epsilon, 0.22).
rl_parameter(epsilon_decay, 0.99992).

rl_observe(reach_finish, [ pos(_,_) ]).

rl_reward(reach_finish, 10) :- finish_line.
rl_reward(reach_finish, -1) :- not finish_line.

rl_terminal(reach_finish) :- finish_line.

@action[rl_goal(reach_finish), rl_param(direction(set(right, left, up, down)))]
+!move(Direction) <- move(Direction).

/* in this case we run an infinite learning process - actually it could be
stopped when the performance (expected return) is considered good enough */

!start.
+!start : true <- rl.execute(reach_finish); !start.

Fig. 4: Full source code of the grid-world agent.

Fig. 5: Chart of simulation results: x is the episode number and y is the average error.

In Appendix A the interested reader can find further details about the Jason imple-
mentation. The full implementation is available here1.

1 https://github.com/MichaelBosello/jacamo-rl

https://github.com/MichaelBosello/jacamo-rl
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5 Discussion

In order to test our proof-of-concept implementation, we used the gridworld problem
introduced in section 3, performing first simple tests over small ( 5x5) grids. It is worth
remarking here that both the kind of the problem used – the gridworld –and the size of
the environment are clearly not useful for evaluating the approach from the point of view
of the performance, the scalability and the generality as well. It has been used essentially
for testing the framework developed so far.

The agent source code is shown in Fig. 42. At every episode, the agent appears in
a random place and seek to reach a fixed target position. SARSA algorithm performs
properly in this task with a ε-greedy policy with epsilon decay (i.e., the exploration
probability decreases with increasing steps). Parameters have been: alpha = 0.26, gamma
= 0.9, epsilon = 0.22, epsilon decay = 0.99992. The agent learns the policy in about
1000 episodes, and when epsilon decreases under 0.05 (with this decay, approximately
after 5000 episodes), the behavior becomes near optimal. The chart in figure 5 shows the
average error (how many extra steps were made compared to the minimum path) on five
trials with 6000 episodes.

5.1 About the RL algorithm used

The framework aims at modeling the three fundamental RL signals without any assump-
tion on the RL algorithm behind them. Nevertheless, depending on the RL algorithm,
different kinds of environments may be considered, with a different impact on the per-
formances. In literature, three main characteristics of the environments are typically
considered to properly select the RL algorithms: the Markov property, the type of task
(episodic or continuing), and the state and action spaces dimension. A detailed discussion
of this aspect is out of the scope of this paper.

Here it is interesting to consider if and how our model/framework would be expressive
and flexible enough to include more advanced RL approaches used to tackle complex
environments. For instance, in literature function approximation is exploited to tackle
partial observability, possibly using nonlinear methods such as neural networks, in
particular deep networks—such as in deep reinforcement learning. In our framework,
this accounts for changing/plugging a proper RL reasoner component, without changing
the whole interpreter architecture.

If the RL reasoner component cannot be centralised – being based e.g. on cloud
services – then an interesting perspective is to consider the possibility to partially exter-
nalise the functionalities of the RL reasoner into an artifact in the A&A perspective [22],
exploiting e.g. the full JaCaMo platform [5]. In that case, the RL reasoner is modeled as
an external tool extending the cognitive capability of the agent and possibly wrapping
the use of cloud-based services handling the management of e.g. deep neural networks,
in a cognition-as-a-service style [26].

2 The example is available in the source code of the framework.
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6 The Road Ahead

The objective of this paper was to introduce a novel perspective on the integration
of learning in BDI Agents programming and agent-oriented programming. In that
perspective, the development stage of an agent accounts for setting up a first version of
the agent, eventually including some programmed plans (hard plans), and then grow up
the agent by making itself learning some other plans (soft plans), according to the need.
Soft plans become part of the plan library and at deployment time the agent can exploit
them like the hard ones, in a uniform way.

In the paper, we described a first proof-of-concept model and implementation based
on Jason. In the current state, the framework is not meant to be ready to tackle real-world
problems but to be a first tool in order to further explore and develop this idea. In
that perspective, many interesting aspects – from our point of view – are worth to be
investigated in future work. A list of main ones follows:

– Extending the investigation by considering different kinds of RL algorithms, with
different complexities, and a different set of examples/problems as well, eventually
doing a rigorous analysis of the computational complexity and properties of the com-
putations performed by the extended reasoning cycle. Among the large spectrum of
RL-based approaches, two are particularly interesting with respect to the objective of
our research line. The first is about Hierarchical Reinforcement Learning, extending
the reinforcement learning paradigm by allowing the learning agent to aggregate
actions into reusable subroutines or skills [8]. In BDI case, reusable subroutines or
skills are modelled as plans triggered by subgoals. The second one is about shaping
in reinforcement learning3 [9]. There, “education” is realised through the creation
of a proper learning environment and, in particular, through demonstration.

– Exploring further the development/education process lifecycle, analysing how the
different stages – development / training, validation / assessment, deployment/moni-
toring – are related.

– Designing and developing proper tools to be embedded in existing IDEs – or extend-
ing them – to support this process. Including simulators, which become an essential
part of the picture.

– Exploring how software engineering aspects such as modularity, extensibility,
reusability, composability can be framed when dealing with soft plans, aside to
hard plans. Can we introduce kind of incremental learning to extend existing soft
plans?

– Exploring how environment first-class abstractions such as artifacts [22] could be
useful to better structure, modularise and make the way in which actions – and
observations as well – are currently considered more dynamic.

– Beyond single agent perspective: what does it mean an education process for a multi-
agent system? what does it mean an education process for an agent organisation?

– Methodologies – what’s the impact on AOSE methodology. Or, can we exploit
existing AOSE methodology to effectively support this process or do we need to
extend them?

3 We thank the reviewers for this suggestion
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– Planning – in the paper we did not consider at all planning, being our framework
focused on learning. Nevertheless, it would be interesting and important to extend
the conceptual framework to consider also the role that planning can do in such
agent education process.
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A Details about the Implementation

In this appendix, we include further details about how the Jason interpreter has been
extended to include the RL reasoner, following the model depicted in Fig. 1 and the
architecture shown in Fig. 3

The belief base is amended to track belief about learning and observations instruc-
tions to prevent the necessity to loop multiple time over the belief base when the agent
needs to retrieve the observations. Every time a belief is added or deleted, the observa-
tions maps are updated. To retrieve the reward and verify if the current state is terminal,
the related rules are checked to find out if they are a logical consequence of the current
belief base.

We develop also two internal actions: rl.execute and rl.expected_return.
When rl.execute is carried out, the agent retrieves from the belief base the observa-
tions, the algorithm parameters, the reward, the boolean value that assert if the state is
terminal. The agent retrieves the plans that are properly labeled, as described in section
1, from the plan library to form the action set. The action set is reduced through the
check context function: step (7) in 2. All the information are passed to the RL algorithm
which returns the next action (an achievement goal in our representation) to execute.
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Then, rl.execute puts the selected action on top of the current intention’s stack. If
the current step isn’t a final step, another rl.execute is pushed in the stack under the
added action. As a result, rl.execute appears like a mere static plan; rl.execute and
its intention acts and competes for execution like any other intention. Moreover, the next
rl.execute will never be executed before the selected action end.

In the proof of concept, we implemented the SARSA algorithm with an ε-greedy
policy. An RL algorithm must just implement the interface as follows:

p u b l i c i n t e r f a c e Algori thmRL {
Ac t i on n e x t A c t i o n ( Map<Term , Term> p a r a m e t e r ,

Set < Act ion > a c t i o n ,
Set < L i t e r a l > o b s e r v a t i o n ,
double reward , boolean i s T e r m i n a l ) ;

double e x p e c t e d R e t u r n ( Set < Act ion > a c t i o n ,
Set < L i t e r a l > o b s e r v a t i o n ) ;

}
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