Suffix Trees

- A suffix tree is a data structure that exposes in detail the internal structure of a string.
- The real virtue of suffix trees comes from their use in linear time solutions to many string problems more complex than exact matching.
- Suffix trees provide a bridge between exact matching problems and matching with various types of errors.

Suffix Trees and pattern matching

- In off-line pattern matching one is allowed to process the text $T = T[0..n-1]$ in time $O(n)$, s.t., any further matching queries with unknown pattern $P = P[0..m-1]$ can be served in time $O(m)$.
- Compact suffix trees provide efficient solution to off-line pattern matching problem.
- Compact suffix trees provide also solution to a number of substring problems, periodicities and regularities.

Compact suffix trees - brief history

- First linear algorithm for constructing compact suffix trees in ‘73 by Weiner.
- More space efficient also linear algorithm was introduced in ‘76 by McCreight.
- An alternative, conceptually different (and easier) algorithm for linear construction of compact suffix trees was proposed by Ukkonen in ‘95.

Tries - trees of strings

- A trie T for a set of strings S over alphabet A is a rooted tree, such that:
 - edges in T are labeled by single symbols from A.
 - each string $s \in S$ is represented by a path from the root of T to some leaf of T,
 - for some technical reasons (e.g., to handle the case when for some $s, w \in S$, s is a prefix of w) every string $s \in S$ is represented in T as $s \#$, where $\#$ is a special symbol that does not belong to A.
Tries - example

- Strings in $S = \{a, aba, bba, abba, abab\}$ are replaced by $a\#$, $aba\#$, $bba\#$, $abba\#$, $abab\#$ respectively

Suffix trees

- A suffix tree $ST(w)$ is a trie that contains all suffixes of a given word w, i.e.,
- Similarly as it happens in tries ends of a suffixes are denoted by the special character $#$ which form leaves in $ST(w)$
- Moreover each internal node of the suffix tree $ST(w)$ represent the end of some substring of w

Suffix Trees - example

- Take $w = f_5 = babbabab$ (5th Fibonacci word)
- The suffixes of w are
 - b represented in $ST(w)$ as $b\#$
 - ab represented in $ST(w)$ as $ab\#$
 - bab represented in $ST(w)$ as $bab\#$
 - $abab$ represented in $ST(w)$ as $abab\#$
 - $babab$ represented in $ST(w)$ as $babab\#$
 - $bbabab$ represented in $ST(w)$ as $bbabab\#$
 - $abbabab$ represented in $ST(w)$ as $abbabab\#$
Compact suffix trees

- We know that suffix trees can be very large, i.e., quadratic in the size of an input string, e.g., when the input string has many different symbols.
- This problem can be cured if we encode all chains (paths with nodes of degree 2) in the suffix tree by reference to some substring in the original string.
- A suffix tree with encoded chains is called a **compact suffix tree**.

Compact suffix trees - example

Theorem: The size of a compact suffix tree constructed for any string \(w = w[0..n-1] \) is \(O(n) \)

- In the (compact) suffix tree there is only \(n \) leaves marked by \#s
- Since each internal node in the compact suffix tree is of degree \(\geq 2 \) there are \(\leq 2n-1 \) edges in the tree
- Each edge is represented by two indexes in the original string \(w \)
- Thus the total space required is **linear** in \(n \).

Longest repeated sequence

- Using a compact suffix tree for any string \(w = w[0..n-1] \) we can find the longest repeated sequence in \(w \) in time \(O(n) \).

```
procedure longest(v:tree; depth: integer);
    if v is not a leaf then
        if (depth > max-depth)
            then max-depth := depth;
        for each u \in v.children do
            longest(u, depth+length(v,u));
    max-depth := 0;
    longest(T.root,0);
    return(max-depth);
```

Find the deepest node in the tree which has degree at least 2

\[
\text{depth} \ x \ w[i+x-1] = w[j+x-1]
\]
Suffix trees for several strings

One can compute joint properties of two (or more) strings w_1 and w_2 constructing a single compact suffix tree T for string $w_1w_2#$, where:
- Symbol $\$ does not belong neither to w_1 nor to w_2
- All branches in T are truncated below the special symbol $\$

For example, using similar procedure one can compute the longest substring shared by w_1 and w_2.

Longest shared substring

Initially, for each node $v \in T$ we compute attribute $shares$, which says whether v is an ancestor of leaves $\$ and $\#

function sharing(v:tree): set of {$, #}$
if v is a leaf then
 return(v.symbol)
else
 set $\{\}$;
 for each $u \in v.children$ do
 set $\setunion sharing(u);$
 $v.shares \leftarrow set;$
 return($v.shares);$

... sharing($T.root);$

Looking for substrings and reversals

In some biological applications we are interested in finding substrings and their reverses (reversed strings).
E.g., in prediction of potential hair-pin loops, stems, pseudo-knots, etc in secondary structure of RNA sequences we focus on close substrings and their complementary reverses.
The problem can be solved via search for shared substrings in a compact suffix tree constructed for the string wco-w, where w is any RNA sequence and co-w is w in which A,T and G,C are swapped in pairs respectively.
Lowest common ancestor - LCA

- A node \(z \) is the lowest common ancestor of any two nodes \(u, v \) in the tree \(T \) rooted in the node \(r \), \(z = \text{lca}_T(u,v) \), iff:
 1) node \(z \) belongs to both paths from \(u \) to \(r \) and from \(v \) to \(r \)
 2) node \(z \) is the deepest node in \(T \) with property 1)

\[z = \text{lca}(u,v) \]

Theorem: Any tree of size \(n \) can be preprocessed in time \(O(n) \), such that, the lowest common ancestor query \(\text{lca}(u,v) \), for any two nodes \(u, v \) in the tree can be served in \(O(1) \) time.

- For example, we can preprocess any suffix tree in linear time and then compute the longest prefix shared by any two suffixes in \(O(1) \) time.
- LCA queries have also many other applications.

Pattern matching with \(k \) mismatches

- So far we discussed algorithmic solutions either for exact pattern matching or pattern matching with don’t care symbols, where the choice of text symbols was available at fixed pattern positions
- In pattern matching with \(k \) mismatches we say that an occurrence of the pattern is acceptable if there is at most \(k \) mismatches between pattern symbols and respective substring of the text

acceptable pattern occurrence

at most \(k \) mismatches

Pattern \(P \)

Text \(T \)

matching substrings
Pattern matching with k mismatches

- As many other instances of pattern matching also in this case one can provide an easy solution with time complexity $O(m \cdot n)$. However we are after faster solution.
- The search stage in pattern matching with k mismatches is preceded by the construction of a compact suffix tree ST for the string PT#
- The tree ST is later processed for LCA queries which will allow to fast recognition of matching substrings S_i
- Both steps are performed in linear time

Suffix arrays

- One of the very attractive alternatives to compact suffix trees is a suffix array
- For any string $w = w[0..n-1]$ the suffix array is an array of length n in which suffixes (namely their indexes) of w are sorted in lexicographical order
- The space required to compute and store the suffix arrays is smaller, the construction is simpler, and the use/properties are comparable with suffix trees

Pattern matching with k mismatches

- During the search stage each text position is tested for potential approximate occurrence of the pattern P
- Consecutive blocks S_i are recovered in $O(1)$ time via LCA queries in preprocessed ST tree at most k times, which gives total complexity $O(kn)$.

Suffix arrays - example

Original string $w = b \ a \ b \ b \ a \ b \ a \ b$
Suffix array $w = 6 \ 4 \ 1 \ 7 \ 5 \ 3 \ 0 \ 2$

- Suffix arrays provide tools for off-line pattern matching in time $O(m \cdot \log n)$, where n is the length of the text and m is the length of the pattern
- There exists linear transformation between suffix trees and suffix arrays
- Suffix arrays provide simple and efficient mechanism for several text compression methods