
COMP519
Web Programming

Autumn 2015

Cascading Style Sheets

Content vs. Presentation

Most HTML tags define content type, independent of how that
content is to be presented.

There are a few obvious exceptions such as . . . for
bold text and <i>. . . </i> for italicized text.

The trend in web development has been towards an increasing
separation of the content of webpages from the presentation of
them.

Style sheets allow us to maintain this separation, which
facilitates easier maintenance of webpages, and for a
consistent look across a collection of webpages.

Content vs. Presentation (cont.)

Style sheets associate presentation formats with HTML
elements.

I CSS1: Developed in 1996 by W3C.
I CSS2: Released in 1998, but still not fully supported by all

browsers.
I CSS3: Specification still under development by the W3C

(since 1998), “completely backwards compatible with
CSS2” (according to the W3C).
CSS3 has split the development into separate modules,
allowing for independent development.

I CSS4: Several “level 4” modules exist.

Style sheets can be used to specify how tables should be
rendered, how lists should be presented, what colors should be
used on the webpage, what fonts should be used and how
big/small they are, etc.

Content vs. Presentation (cont.)

HTML style sheets are known as Cascading Style Sheets,
since can be defined at three different levels:

1. Inline style sheets apply to the content of a single HTML
element.

2. Document style sheets apply to the whole <body> of a
document.

3. External style sheets can be linked and applied to
numerous documents.

Lower-level (i.e. lower-numbered) style sheets can override
higher-level style sheets.

(Actually, there are about nine levels of priority.)

Style sheets can also specify how things should be presented
on different screen types (e.g. resolution sizes) and/or in print.

Content vs. Presentation (cont.)

Finally, web users (i.e. clients) can even specify personalized
style sheets that can be used to override the styles shown on
web pages when viewed on their own browser.

This could be useful, for example, to specify larger type sizes
for visually-impaired users.

Inline Style Sheets
Using the style attribute, you can specify a presentation style
for a single HTML element.

Within the HTML style specification, list a sequence of
“property: value” pairs separated by semi-colons.

Example property: value pairs include:
font-family: Courier,monospace
font-style: italic font-weight: bold
font-size: 12pt font-size: large font-size: larger
color: red color: #000080
background-color: white
text-decoration: underline text-decoration: none
text-align: left text-align: center
text-align: right text-align: justify
vertical-align: top vertical-align: middle vertical-align: bottom
text-indent: 5em text-indent: 0.2in

Inline Style Sheets (cont.)
<html>
<!-- COMP519 page17.html 2015.09.28 -->

<head>
<title>Inline Style Sheets</title>

</head>

<body>
<p style="font-family:Arial,sans-serif;

text-align:right">
This is a right-justified paragraph in a sans serif
font (preferably Arial), with some
green text.

</p>

<p>And <a style="color:red;
text-decoration:none;
font-size:larger;"

href="page01.html">here
is a formatted link.

</p>
</body>
</html>

view page

http://cgi.csc.liv.ac.uk/~martin/teaching/comp519/HTML/page17.html"

Inline Style Sheets (cont.)

There are many(!) CSS properties that can be manipulated.

margin-left: 0.1in margin-right: 5%
margin: 3em

padding-top: 0.1in padding-bottom: 5%
padding: 3em

border-width: thin border-width: thick
border-width: 5

border-color: red

border-style: dashed border-style: dotted
border-style: double border-style: none

whitespace: pre

list-style-type: square list-style-type: decimal
list-style-type: lower-alpha list-style-type: upper-roman

CSS Properties

As I stated, there are many CSS properties that can be
changed.

Jens Oliver Meiert maintains an excellent CSS Properties Index
(along with an HTML Elements Index).

An online search will reveal many sites offering tutorials and
examples. Here are a few examples:

I W3Schools CSS Tutorial
I A Brief Introduction to the CSS “Box Model”
I W3C Web Style Sheets, CSS tips & tricks
I A self-study course given in a Wiki-style format

http://meiert.com/en/indices/css-properties/
http://meiert.com/en/indices/html-elements/
http://www.w3schools.com/css/
http://www.w3schools.com/css/css_boxmodel.asp
http://www.w3.org/Style/Examples/007/
http://www.w3.org/community/webed/wiki/Main_Page#CSS

Inline Style Sheets (cont.)
<html>
<!-- COMP519 page18.html 2015.09.28 -->
<head> <title>Inline Style Sheets</title> </head>
<body>

<p>Here is an image
<img src="VictoriaBldg.jpeg"
alt="image of Victoria Building"
height="300"
title="Victoria Building"
style="margin-left:0.3in; margin-right:0.3in;

vertical-align:middle; border-style:double;
border-color:blue"> embedded in text.

</p>
<ol style="list-style-type:upper-alpha">

one thing or another
<ul style="list-style-type:square; whitespace:pre">

 with this
 or that

</body>
</html>

view page

http://cgi.csc.liv.ac.uk/~martin/teaching/comp519/HTML/page18.html

Inline Style Sheets (cont.)
<html>
<!-- COMP519 page19.html 2015.09.29 -->
<head>

<title> Inline Style Sheets </title>
</head>
<body>

<table style="font-family: Arial,sans-serif">
<caption style="color: red;

font-style: italic;
text-decoration: underline">

Student data. </caption>
<tr style="background-color: red">
<th> name </th> <th> age </th>

</tr>
<tr>
<td> Chris Smith </td> <td> 19 </td>

</tr>
<tr>
<td> Pat Jones </td> <td> 20 </td>

</tr>
<tr><td>Doogie Howser</td><td>9</td></tr>

</table>
</body> </html>

view page

Styles can
be applied to
<table> ele-
ments (and
sub-elements)
for interesting
effects.

This is better
handled using
document or
external style
sheets.

http://cgi.csc.liv.ac.uk/~martin/teaching/comp519/HTML/page19.html

Document Style Sheets
Inline style sheets apply to individual elements in the page.

Using inline style directives can lead to inconsistencies, as
similar elements might end up formatted differently, e.g. we
might like for all <h1> elements to be centered, and manually
editing individual webpages means we could miss altering
some <h1> elements on some pages.

Also, inline definitions mix content and presentation, which
violates the (current) general philosophy of HTML and CSS.

As a general rule, inline style sheet directives should be used
as sparingly as possible.

Alternatively, document style sheets allow for a cleaner
separation of content and presentation. Style definitions are
placed in the <head> of the page, within <style> tags.

Document style sheets allow us to apply style definitions to all
elements, or a subclass of elements, throughout the page.

Document Style Sheets (cont.)
<html>
<!-- COMP519 page20.html 2015.09.29 -->
<head>

<title>Document Style Sheets</title>
<style type="text/css">

h1 { color: blue;
text-align: center; }

p.indented { text-indent: 0.2in; }
</style>

</head>
<body>

<h1> Centered Title </h1>

<p class="indented">This paragraph will have the first
line indented, but subsequent lines will be flush.

This next line starts unindented. </p>

<p>This paragraph will not be indented.
</p>

<h1> The End </h1>
</body>
</html>

view page

http://cgi.csc.liv.ac.uk/~martin/teaching/comp519/HTML/page20.html

Selectors, Properties, and Values
Document (and external) style sheet directives consist of a
“selector”, together with one or more “property: value” pairs,
where the pairs are enclosed inside of braces, and separated
by semi-colons.

Examples include:
h1 { color: blue; text-align: center; }

.alert { text-decoration: underline;
color: red;
font-size: 150%; }

ol, a { background-color: yellow;
font-style: bold;
font-family: "Times New Roman"; }

These directives are placed in a <style> element in the <head>
element, in a manner similar to the previous example.

Selectors, Properties, and Values (cont.)

Note that the example

.alert { text-decoration: underline;
color: red;
font-size: 150%; }

creates a class, which can (in principle) be applied to any
HTML element, in a manner similar to the example below
(assumed to be part of a larger valid HTML document).

<p class="alert">Help me! I’m falling down!</p>

This would create a paragraph with text that is red, underlined,
and 150% of the normal text size of the webpage.

The first example below would apply the “alert” class to both
items in the list, so both would be red, underlined, and in a
larger font. (The number of the list item is also in a larger red
font and could appear underlined or not, depending upon the
browser used, it seems.)

<ol class="alert">
Help!
Beware!

This second example would apply the “alert” to only the first
item in the list.

<li class="alert">Help!
Beware!

Also note the very subtle (but important!) distinction between
the following two selector definitions:

ol, a { background-color: yellow;
font-style: bold;
font-family: "Times New Roman"; }

This makes a style declaration that applies to both and
<a> elements. (Note the comma between the ol and a.)

ol a { background-color: yellow;
font-style: bold;
font-family: "Times New Roman"; }

This second example makes a style declaration that applies to
<a> elements that are children of (i.e. contained in)
elements. (There is no comma between the ol and a.)

Classes and Ids

It is possible to define classes that apply only to specific HTML
elements.

One example like this was shown already.
p.indented { text-indent: 0.2in; }

This allows you to ensure that certain styles aren’t accidentally
applied where they shouldn’t be (for example).

An id can also be defined, which is supposed to be used to
specify a unique element within a webpage. For example:
#bigorange { color: #ffa500;

font-size: 200%;
font-weight: bold; }

Then apply it to the HTML element using id="bigorange" in the
HTML element’s tag.

Formatting Tables Using CSS (an example)
<html>
<!-- COMP519 page21.html 2015.10.01 -->

<head>
<title> Inline Style Sheets </title>
<style type="text/css">

table { font-family: Arial,sans-serif; }
caption { color: red; font-style: italic;

text-decoration: underline; }
th { background-color:red; }
td { padding: 0 1em 0 2em; }

</style>
</head>
<body>

<table>
<caption> Student data. </caption>
<tr><th> name </th> <th> age</th></tr>
<tr><td> Chris Smith </td> <td> 19 </td></tr>
<tr><td> Pat Jones </td> <td> 20 </td></tr>
<tr><td> Doug MacKenzie </td> <td> 32 </td></tr>

</table>
</body>
</html>

view page

http://cgi.csc.liv.ac.uk/~martin/teaching/comp519/HTML/page21.html

External Style Sheets
Modularity is key to the development and reuse of software.

I E.g., design/implement/test useful routines and classes.
I Then, package and make available for repeated use in

various ways.
I Saves in development cost and time.
I Central libraries make it possible to make a single change

and propagate the changes quickly and easily.
External style sheets place the style definitions in a separate
file (or files).

I Multiple pages can link to the same style sheet.
I This gives a consistent look across the multiple pages of a

website.
I Possible to make a single change in a style sheet and it

propagates automatically to all pages that use that style
sheet.

External style sheets represent the ultimate in separation of
content and its representation.

Modularity and Style Sheets
<html>
<!-- COMP519 page26.html 2015.10.01 -->
<head>

<title>Title for Page</title>
<link rel="stylesheet"

type="text/css"
href="myStyle.css"
title="myStyle">

</head>
<body>

<h1>Centered Title</h1>
<p class="indented">This paragraph will have the first

line indented, but subsequent lines will be flush.

Here is a second line in the first paragraph. </p>

<p>This paragraph will not be indented. </p>
<h1>The End</h1>

</body>
</html>

/* myStyle.css COMP519 2015.10.01 */

h1 {color : blue; text-align : center}
p.indented {text-indent: 0.5in}

view page

http://cgi.csc.liv.ac.uk/~martin/teaching/comp519/HTML/page26.html

Modularity and Style Sheets (cont.)

Ideally, the developer(s) of a website will place all formatting
options in an external style sheet.

All webpages for a particular website will then link to that same
style sheet, in order to maintain a consistent look through the
set of webpages.

Using an external style sheet can help simplify webpage
design, since the developer(s) need to only specify the
structure and content of the pages, and the styling is left to the
style sheet declarations.

Note that no <style> tags are used in the external style sheet
file.

Modularity and Style Sheets (cont.)

It is possible to use several style sheets, and it is quite common
to use one that specifies styles for a web browser and another
for styles to use when a webpage is printed.

For example, you could include two links in the <head> element
of the form

<link rel="stylesheet" type="text/css" media="screen"
href="browser.css">

<link rel="stylesheet" type="text/css" media="print"
href="print.css">

So style sheets can be tailored in this manner for different
media.

The Tag

Problem: Font properties apply to whole elements, which are
often too large.

Solution: A new tag to define an element in the content of a
larger element, the tag. The default meaning of
is to leave the content as it is (i.e. unchanged). But with a class
definition (or inline style declaration), you can apply it to a
portion of text (or some other element too).
...
<style type = "text/css">
.bigred { font-size: 24pt;

font-family: Ariel;
color: red }

</style>
...

<p> Now is the
best time ever!

</p>
...

Like most other
HTML tags, a
tag can be nested,
have a style attribute,
a class, and/or an
id assigned to it to
apply style effects to
its contents.

The <div> Tag

The <div> tag is similar to the tag, useful for defining a
section of content to which you may apply style definitions
(using a class, id, or inline style declaration attribute with the
<div> tag).

The main difference between the two tags is that, by default, a
web browser will place a line break before and after a <div>
element. (That default behavior can, of course, be changed
using other CSS declarations to alter it.)

Media Queries (or Media Rules)
In addition to (or instead of) style sheets for different types of
media, you can also include “media queries” or “media rules” in
a style sheet that can be used to define styles for different types
of media and/or devices.

Media queries were introduced in the CSS3 specification,
extending the media types of CSS2.

Media queries look at the capability of the device being used by
the client, and can check many things including (according to
the W3C explanation of the “media rule”):

I width and height of the viewport
I width and height of the device
I orientation (is the phone/tablet in portrait or landscape

mode?)
I resolution

http://www.w3schools.com/cssref/css3_pr_mediaquery.asp

Media Queries (cont.)

Interested people can find more information about media
queries using the provided link (and, of course, other online
searches).

A typical example might be something like the following:

...
<style type="text/css">

....

@media screen and (max-width: 500px) {
body { background-color: green; }

ul { list-style-type: square; }
}

</style>
...

Bootstrap
Bootstrap is a free and open-source framework and collection
of tools that can be used for creating websites.

Bootstrap has design templates using HTML and CSS
declarations for forms, navigation elements, buttons,
typography, and other interface elements. It also includes
optional JavaScipt extensions (utilizing jQuery).

Bootstrap has been designed to work with all major browsers
(but the alpha release, in August 2015, of Bootstrap 4 has
dropped support for Internet Explorer version 8). And it has
also been designed to support mobile devices through the use
of media queries in all of its CSS templates.

I won’t be covering Bootstrap here in this module, but want to
make you aware of its existence. You are free to utilize it in
making your own websites for this course (properly attributed,
of course), but I would strongly recommend you to familiarize
yourself with basic CSS concepts first.

http://getbootstrap.com/
https://jquery.com/

Web Rules of Thumb (Ok, my rules of thumb. . .)
HTML and CSS provide lots of neat features, but just because
you can add a feature doesn’t mean you should!

Don’t add features that distract from the content of the page.

Some suggestions that I offer:
I Use (non-default) colors and fonts sparingly, and be careful

how elements fit together.
E.g. no purple text on a pink background, no “weird” fonts.
E.g. I find bright white text on a black background difficult
to read.
Consider the needs of visually impaired users of your
website!! (For example, use "em"s or percentages to
specify font sizes, not fixed pixel sizes.)
Remember that an estimated 8-10% of people have some
type of color-blindness, so choose color combinations
appropriately.
Some people use screen readers to read content on
webpages (so, e.g., include "alt" properties on images).

I Use images only where appropriate.
E.g. bright background images can make text hard to read.
E.g. using clickable images instead of standard HTML
buttons or links can slow access as images have to be
loaded.

I Don’t rely on window or font size for layout.
E.g. the font size may be adjusted by the client.
Consider using CSS media queries to help account for
different devices people use.

I Don’t be annoying!
E.g. avoid lots of pop-up windows, silly music, etc.

I Break a large document (webpage) into several smaller
ones or provide a menu for navigation.

I Utilize style sheets to make changes easy and ensure
consistency across a set of webpages.
Consider using a tool such as Bootstrap to assist with
different cross-browser CSS implementations.

I Stick to standard features and test many browsers if
possible (and versions of the same browser).

