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Abstract. We study a model of programmable matter systems consist-
ing of n devices lying on the cells of a 2-dimensional square grid, which
are able to perform the minimal mechanical operation of rotating around
each other. The goal is to transform an initial shape of devices A into a
target shape B. We are interested in characterising the class of shapes
which can be transformed into each other in such a scenario, under the
additional constraint of maintaining global connectivity at all times. This
was one of the main problems left open by [Michail et al., JCSS’19]. Note
that the considered question is about structural feasibility of transforma-
tions, which we exclusively deal with via centralised constructive proofs.
Distributed solutions are left for future work and form an interesting
research direction. Past work made some progress for the special class of
colour-consistent nice shapes. We here consider the class of orthogonal
convex shapes, where for any two nodes u, v in a horizontal or vertical
line on the grid, there is no empty cell between u and v. We develop a
generic centralised transformation and prove that, for any pair A, B of
colour-consistent orthogonal convex shapes, it can transform A into B.
In light of the existence of blocked shapes in the considered class, we use
a minimal 3-node seed (additional nodes placed at the start) to trigger
the transformation. The running time of our transformation is an opti-
mal O(n2) sequential moves, where n = |A| = |B|. We leave as an open
problem the existence of a universal connectivity-preserving transforma-
tion with a small seed. Our belief is that the techniques developed in this
paper might prove useful to answer this.

Keywords: Programmable matter · Transformation · Reconfigurable
robotics · Shape formation · Centralised algorithms.

The full paper including all omitted details is available on arXiv at:
https://arxiv.org/abs/2207.03062

1 Introduction

Programmable matter refers to matter which can change its physical properties
algorithmically. This means that the change is the result following the procedure
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of an underlying program. The implementation of the program can either be a
system-level external centralised algorithm or an internal decentralised algorithm
executed by the material itself. The model for such systems can be further refined
to specify properties that are relevant to real-world applications, for example
connectivity, colour [4] and other physical properties.

As the development of these systems continues, it becomes increasingly neces-
sary to develop theoretical models which are capable of describing and explaining
the emergent properties, possibilities and limitations of such systems in an ab-
stract and fundamental manner. To this end, models have been developed for
programmable matter. For example, algorithmic self-assembly [10,19] focuses on
programming molecules like DNA to grow in a controllable way, and the Abstract
Tile Assembly Model [20,25], the Kilobot model [21], the Robot Pebbles system
[14], and the nubot model [26], have all been developed for this area. Network
Constructors [18] is an extension of population protocols [3] that allows for net-
work formation and reconfiguration. The latter model is formally equivalent to
a restricted version of chemical reaction networks, which “are widely used to de-
scribe information processing occurring in natural cellular regulatory networks”
[22,11]. The CATOMS system [23,24,12] is a further implementation which con-
structs 3D shapes by first creating a “scaffolding structure” as a basis for con-
struction. Finally, there is extensive research into the amoebot model [7,6,9,8],
where finite automata on a triangular lattice follow a distributed algorithm to
achieve a desired goal, including a recent extension [13] to a circuit-based model.

Recent progress in this direction has been made in previous papers, for exam-
ple [17], covering questions related to a specific model of programmable matter
where nodes exist in the form of a shape on a 2D grid and are capable of perform-
ing two specific movements: rotation around each other and sliding a node across
two other nodes. The authors investigated the problem of transformations with
rotations with the restriction that shapes must always remain connected (RotC-
Transformability), and left universal RotC-Transformability as an open problem.
They hinted at the possibility of universal transformation in an arxiv draft [16].
To the best of our knowledge, progress on this open question has only been
made in [5], where, by using a small seed, connectivity-preserving transforma-
tions by rotation were developed for a restricted class of shapes. In general, such
transformations are highly desirable due to the large numbers of programmable
matter systems which rely on the preservation of connectivity and the simplicity
of movement, which is not only of theoretical interest but is also more likely
to be applicable to real-world systems. Related progress was also made in [1],
which used a similar model but with a different type of movement. The authors
allowed for a greater range of movement, for example “leapfrog” and “monkey”
movements. They accomplished universal transformation in O(n2) movements
using a “bridging” procedure assisted by at most 5 seed-nodes, which they called
musketeers.
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2 Contribution

We investigate the RotC-Transformability problem, introduced in [17], which
asks to characterise which families of connected shapes can be transformed into
each other via rotation movements without breaking connectivity. The model
represents programmable matter on a 2D grid which is only capable of per-
forming rotation movements, defined as the 90◦ rotation of a node u around a
neighbouring edge-adjacent node v, so long as the goal and intermediate cells
are empty. As our focus is on the feasibility and complexity of transformations,
our approach is naturally based on structural characterisations and centralised
procedures. Structural and algorithmic progress is expected to facilitate more
applied future developments, such as distributed implementations.

We assume the existence of a seed, a group of nodes in a shape S which
are placed in empty cells neighbouring a shape A to create a new connected
shape which is the unification of S and A. Seeds allow shapes which are blocked
or incapable of meaningful movement to perform otherwise impossible transfor-
mations. The use of seeds was established in [17], leaving open the problem of
universal RotC-Transformability. Another work [5] investigated this problem in
the context of nice shapes, first defined in [2] as a set of shapes containing any
shape S which has a central line L, where, for all nodes u ∈ S, either u ∈ L or
u is connected to L by a line of nodes perpendicular to L. Universal reconfigu-
ration in the context of connectivity-preserving transformations using different
types of movement has been demonstrated in [1]. That paper calls the seed nodes
“musketeers” and their transformation requires the use of 5 such nodes.

The present paper moves towards a solution which is based on connectivity-
preservation and the tighter constraints of rotation-only movement of [17] while
aiming to (i) widen the characterization of the class of transformable shapes
and (ii) minimise the seed required to trigger those transformations. By achiev-
ing these objectives for orthogonal convex shapes, we make further progress
towards the ultimate goal of an exact characterisation (possibly universal) for
seed-assisted RotC-Transformability.

We study the transformation of shapes of size n with orthogonal convexity
into other shapes of size n with the same property, via the canonical shape of
a diagonal line-with-leaves. Orthogonal convexity is the property that for any
two nodes u, v in a horizontal or vertical line on the grid, there is no empty cell
between u and v. A diagonal line-with-leaves is a group of components, the main
being a series of 2-node columns where each column is offset such that the order
of the nodes is equivalent to a line, and two optional components: two 1-node
columns on either end of the shape and additional nodes above each column,
making them into 3-node columns. We show that transforming a orthogonal
convex shape of n nodes into a diagonal line-with-leaves is possible and can be
achieved by O(n2) moves using a 3-node seed. This bound on the number of
moves is optimal for the considered class, due to a matching lower bound from
[17] on the distance between a line and a staircase, both of which are orthogonal
convex shapes. A seed is necessary due to the existence of blocked orthogonal
convex shapes, an example being a rhombus. As [5] shows, any seed with less
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than 3 nodes is incapable of non-trivial transformation of a line of nodes. Since
a line of nodes is orthogonal convex, the 3-node seed employed here is minimal.

The class of orthogonal convex shapes cannot easily be compared to the class
of nice shapes. A diagonal line of nodes in the form of a staircase belongs to the
former but not the latter. Any nice shape containing a gap between two of its
columns is not a orthogonal convex shape. Finally, there are shapes like a square
of nodes which belong to both classes. Nevertheless, the nice shapes that are
not orthogonal convex have turned out to be much easier to handle than the
orthogonal convex shapes that are not nice. We hope that the methods we had
to develop in order to deal with the latter class of shapes, will bring us one step
closer to an exact characterisation of connectivity-preserving transformations by
rotation.

In Section 3, we formally define the programmable matter model used in
this paper. Section 4 presents some basic properties of orthogonal convex shapes
and of their elimination and generation sequences. In Section 5, we provide our
algorithm for the construction of the diagonal line-with-leaves which, through
reversibility, can be used to construct other orthogonal convex shapes and give
time bounds for it. In Section 6, we conclude and give directions for potential
future research.

3 Model

We consider the case of programmable matter on a 2D grid, with each position
(or cell) of the grid being uniquely referred to by its (x, y) coordinates. Such a
system consists of a set V of n nodes. Each node may be viewed as a spherical
module fitting inside a cell of the grid. At any given time, each node occupies
a cell, with the positioning of the nodes defining a shape, and no two nodes
may occupy the same cell. It also defines an undirected neighbouring relation
E ⊂ V × V , where uv ∈ E iff u and v occupy horizontally or vertically adjacent
cells of the grid. A shape is connected if the graph induced by its neighbouring
relation is a connected graph.

In general, shapes can transform to other shapes via a sequence of one or more
movements of individual nodes. We consider only one type of movement: rotation.
In this movement, a single node moves relative to one or more neighbouring
nodes. A single rotation movement of a node u is a 90° rotation of u around one
of its neighbours. Let (x, y) be the current position of u and let its neighbour
be v occupying the cell (x, y − 1) (i.e., lying below u). Then u can rotate 90◦

clockwise (counterclockwise) around v iff the cells (x + 1, y) and (x + 1, y − 1)
((x−1, y) and (x−1, y−1), respectively) are both empty. By rotating the whole
system 90◦, 180◦, and 270◦, all possible rotation movements can be defined.

Let A and B be two connected shapes. We say that A transforms to B via
a rotation r, denoted A

r→ B, if there is a node u in A such that if u applies r,
then the shape resulting after the rotation is B. We say that A transforms in one
step to B (or that B is reachable in one step from A), denoted A → B, if A

r→ B
for some rotation r. We say that A transforms to B (or that B is reachable from
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A) if there is a sequence of shapes A = S1, S2, . . . , St = B, such that Si → Si+1

for all 1 ≤ i ≤ t − 1. Rotation is a reversible movement, a fact that we use
in our results. All shapes S1, S2, . . . , St must be edge connected, meaning that
the graph defined by the neighbouring relation E of all nodes in any Si, where
1 ≤ i ≤ t, must be a connected graph.

At the start of the transformation, we will be assuming the existence of a
seed : a small connected shape M placed on the perimeter of the given shape S
to trigger the transformation. This is essential because under rotation-only there
are shapes S that are k-blocked, meaning that at most k ≥ 0 moves can be made
before a configuration is repeated. When k = 0, no move is possible from S, an
example of 0-blocked shape being the rhombus.

For the sake of providing clarity to our transformations, we say that every
cell in the 2D grid has a colour from {red, black} in such a way that the cells
form a black and red checkered colouring of the grid, similar to the colouring
of a chessboard. This colouring is fixed so long as there is at least one node on
the grid. This represents a property of the rotation movement, which is that any
given node in a coloured cell can only enter cells of the same colour. We define
c(u) ∈ {black, red} as the colour of node u for a given chessboard colouring of
the grid. We represent this in our figures by colouring the nodes red or black.
See Figure 1 for an example and for special notation that we use to abbreviate
certain rotations which we perform throughout the paper.

Fig. 1: The rotation on the left is an abbreviated version of the rotations on the
right, used throughout the paper. The numbers represent the order of rotations.
Red nodes appear grey in print, throughout the paper.

Any shape S may be viewed as a coloured shape consisting of b(S) blacks
and r(S) reds. Two shapes A and B are colour-consistent if b(A) = b(B) and
r(A) = r(B). For any shape S of n nodes, the parity of S is the colour of the
majority of nodes in S. If there is no strict majority, we pick any as the parity
colour. We use non-parity to refer to the colour which is not the parity.

Depending on the context and purpose, the term node will be used to refer
both to the actual entity that may move between co-ordinates and to the co-
ordinates of that entity at a given time.

The perimeter of a connected shape S is the minimum-area polygon that
completely encloses S in its interior, existence of an interior and exterior directly
following from the Jordan curve theorem [15]. The cell perimeter of S consists
of every cell of the grid not occupied by S that contributes at least one of its
edges to the perimeter of S. The external surface of S consists of all nodes u ∈ S
such that u occupies a cell defining at least one of the edges of the perimeter of
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S. The extended external surface of S is then defined by adding to the external
surface all nodes of S whose cell shares a corner with the perimeter of S. A line
(of nodes) of length k is a series of consecutive nodes u1, u2, . . . , uk in a given
row or column. For a line u1, u2, . . . , uk, we refer to u1 and uk as the end nodes
or endpoints of the line. Our proofs make use of column and row analysis, by
dividing connected orthogonal convex shapes into p rows R1, R2, . . . , Rp and q
columns C1, C2, . . . , Cq. We assume without loss of generality (abbreviated to
“w.l.o.g.” throughout) that R1 and C1 are the bottom-most row and leftmost
column, respectively. We use a×b to refer to a rectangle of a rows and b columns,
where all rows and columns are fully occupied.

We use σ and variants to denote sequences of nodes. A k-sub-sequence σ′ of a
sequence σ is any sub-sequence of σ where |σ′| = k. For a given colouring of the
grid, the colour sequence c(σ) of a sequence of nodes σ = (u1, u2, . . . , un) is de-
fined as c(σ) = (c(u1), c(u2), . . . , c(un)). A sequence σ′ is colour-order preserving
w.r.t σ if c(σ′) = c(σ). A sequence of nodes σ = (u1, u2, . . . , un) is called single-
coloured if c(σ) satisfies c(ui) = s for all 1 ≤ i ≤ n and some s ∈ {black, red}.

4 Preliminaries

4.1 Orthogonal Convex Shapes

We now present the class of shapes considered in this paper together with some
basic properties about them that will be useful later.

Definition 1. A shape S is said to belong to the family of orthogonal convex
shapes, if, for any pair of distinct nodes (x1, y1), (x2, y2) ∈ S, x1 = x2 implies
(x1, y) ∈ S for all min{y1, y2} < y < max{y1, y2} while y1 = y2 implies (x, y1) ∈
S for all min{x1, x2} < x < max{x1, x2}.

Observe now that the perimeter of any connected shape is a cycle drawn on
the grid, i.e., a path where its end meets its beginning. The cycle is drawn by
using consecutive grid-edges of unit length, each being characterized by a direc-
tion from {up, right, down, left}. For each pair of opposite directions, (up, down)
and (left , right), the perimeter always uses an equal number of edges of each of
the two directions in the pair and uses every direction at least once. For the
purposes of the following proposition, let us denote {up, right, down, left} by
{d1, d2, d3, d4}, respectively. The perimeter of a shape can then be defined as a
sequence of moves drawn from {d1, d2, d3, d4}, w.l.o.g. always starting with a d1.
Let also Ni denote the number of times di appears in a given perimeter.

Proposition 1. A shape S is a connected orthogonal convex shape if and only
if its perimeter satisfies both the following properties:

– It is described by the regular expression

d1(d1 | d2)∗d2(d2 | d3)∗d3(d3 | d4)∗d4(d4 | d1)∗

under the additional constraint that N1 = N3 and N2 = N4.
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– Its interior has no empty cell.

Proof. We begin by considering the forward direction, starting from a connected
orthogonal convex shape S. For the first property, the Ni equalities hold for
the perimeter of any shape, thus, also for the perimeter of S. In the regular
expression, the only property that is different from the regular expressions of
more general perimeters is that, for all i ∈ {1, 2, 3, 4}, di−2, where the index is
modulo 4, does not appear between the first and the last appearance of di.

Assume that it does, for some i. Then di−2 must have appeared immediately
after a di−1 or a di+1, because a di−2 can never immediately follow a di. If
it is after a di−1, then this forms the expression di(di−1 | di)∗di−1di−2, which
always has did

+
i−1di−2 as a sub-expression. But for any sub-path of the perimeter

defined by the latter expression, the nodes attached to its first and last edges
would then contradict Definition 1, as the horizontal or vertical line joining them
goes through at least one unoccupied cell, i.e., one of the cells external to the
d+i−1 part of the sub-path. The di+1 case follows by observing that, in this case,

the sub-expression satisfied by the perimeter would be di−2d
+
i+1di, which would

again violate the orthogonal convexity of S.
The second property, follows immediately by observing that if (x, y) is an

empty cell within the perimeter’s interior, then the horizontal line that goes
through (x, y) must intersect the perimeter at two distinct points, one to the
left of (x, y) and one to its right. Thus, these three points would contradict the
conditions of Definition 1.

For the other direction, let S be a shape satisfying both properties. For the
sake of contradiction, assume that S is not orthogonal convex, which means that
there is a line, w.l.o.g horizontal and of the form (xl, y), (xl + 1, y), . . . , (xr, y),
where (xl, y) and (xr, y) are occupied by nodes of S while (xl+1, y), . . . , (xr−1, y)
are not. Observe first that any gap in the interior would violate the second
property, thus (xl + 1, y), . . . , (xr − 1, y) must be cells in the exterior of the
perimeter of S and (xl, y), (xr, y) nodes on the perimeter. There are two possible
ways to achieve this: d3d

+
2 d1 and d1d

+
4 d3. These combinations are impossible

to create with the regular expression, thus contradicting that S satisfies the
properties. Similarly for vertical gaps. It follows that any shape fulfilling the two
properties must belong to the family of connected orthogonal convex shapes.

Let cx denote the column of a given shape S at the x coordinate, i.e., the set
of all nodes of S at x. Let ymax(x) (ymin(x)) be the largest (smallest) y value in
the (x, y) coordinates of the cells which nodes of a column cx occupy.

Proposition 2. For any connected orthogonal convex shape S, all the following
are true:

– Every column cx of S consists of the consecutive nodes
(x, ymin(x)), (x, ymin(x) + 1), . . . , (x, ymax(x)).

– There are no three columns cx1
, cx2

, and cx3
of S, x1 < x2 < x3, for which

both ymax(x1) > ymax(x2) and ymax(x3) > ymax(x2) hold.
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– There are no three columns cx′
1
, cx′

2
, and cx′

3
of S, x′

1 < x′
2 < x′

3, for which
both ymin(x

′
1) < ymin(x

′
2) and ymin(x

′
3) < ymin(x

′
2) hold.

All the above hold for rows too in an analogous way.

Lemma 1. For all n ≥ 3, the maximum colour-difference of a connected horizo-
ntal-vertical convex shape of size n is n− 2⌊n/3⌋.

A staircase is a shape of the form (x, y), (x+1, y), (x+1, y+1), (x+2, y+1), . . .
or (x, y), (x, y + 1), (x + 1, y + 1), (x + 1, y + 2), . . .. An extended staircase is a
staircase Stairs = {(xl, yd), (xl, yd + 1), (xl + 1, yd + 1), (xl + 1, yd + 2), . . .}
with a bicolour pair at (xl − 1, yd), (xl − 1, yd + 1) or at (xl − 1, yd − 1), (xl −
1, yd). Additionally, there are three optional node-repositories, BRep, RRep and
a single-black repository. BRep = {(xl, yd + 2), (xl + 1, yd + 3), (xl + 2, yd +
4), . . .}, RRep = {(xl, yd − 1), (xl + 1, yd), (xl + 2, yd + 1), . . .} and the single-
black repository at (xl − 2, yd).

4.2 Elimination and Generation Sequences

Let S be a connected orthogonal convex shape. A shape elimination sequence σ =
(u1, u2, . . . , un) of S defines a sequence S = S0[u1]S1[u2]S2[u3] . . . Sn−1[un]Sn =
∅, where, for all 1 ≤ t ≤ n, a connected orthogonal convex shape St is obtained
by removing the node ut from the external surface of the shape St−1. A row
elimination sequence σ of S is an elimination sequence of S which consists of
p sub-sequences σ = σ1σ2 . . . σp, each sub-sequence σi, 1 ≤ i ≤ p, satisfying
the following properties. Sub-sequence σi consist of the k = |Ri| nodes of row
Ri, where u1, u2, . . . , uk is the line formed by row Ri. Additionally, σi is of the
form σi = σ1

i σ
2
i , where (i) σ1

i = (u1, . . . , uk) or σ1
i = (uk, . . . , u1) and σ2

i is
empty or (ii) there is a uj ∈ Ri, for 2 ≤ j < k, such that σ1

i = (u1, . . . , uj)
and σ2

i = (uk, . . . , uj+1) or (iii) there is a uj ∈ Ri, for 1 ≤ j < k − 1, such that
σ1
i = (uk, . . . , uj+2) and σ2

i = (u1, . . . , uj+1). We shall call any such sub-sequence
σi an elimination sequence of row Ri.

Given a connected orthogonal convex shape S of n nodes, a shape genera-
tion sequence σ = (u1, u2, . . . , un) of S defines a sequence ∅ = S0[u1]S1[u2]S2

[u3] . . . Sn−1[un]Sn = S, where, for all 1 ≤ t ≤ n, a connected orthogonal convex
shape St is obtained by adding the node ut to the cell perimeter of St−1.

Let S be an extended staircase of n nodes. An extended staircase generation
sequence σ = (u1, u2, . . . , un) of S is a generation sequence of S which consists of
q sub-sequences σ = σ1σ2 . . . σq, where each σi contains the nodes of the column
Ci of S, ordered such that they do not violate the properties of a shape generation
sequence. A diagonal line-with-leaves generation sequence can be defined in an
analogous way.

Lemma 2. Every connected orthogonal convex shape S has a row (and column)
elimination sequence σ.

Lemma 3. Let σ be a bicoloured sequence of nodes that fulfills all the following
conditions:
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– The set of the first two nodes in σ is not single-coloured.
– The third node of σ is black.
– σ does not contain a single-coloured 3-sub-sequence.

Then there is an extended staircase generation sequence σ′ = (u′
1, u

′
2, . . . , u

′
n)

which is colour-order preserving with respect to σ.

Lemma 4. For any connected orthogonal convex shape S of n nodes, given a
row elimination sequence σ = (u1, u2, . . . , un) of S where the set of the first two
nodes in σ is not single-coloured and u3 is black, there is an extended staircase
generation sequence σ′ = (u′

1, u
′
2, . . . , u

′
n) which is colour-order preserving w.r.t σ

and such that, for all 1 ≤ i ≤ |σ|, Di = {u′
1, u

′
2, . . . , u

′
i} is a connected orthogonal

convex shape.

The anchor node of the shape S of p rows R1, R2, . . . , Rp is the rightmost
node in the row Rp, counting rows from bottom to top. ExtendedStaircase is an
algorithm which creates an extended staircase generation sequence from a row
elimination sequence of a connected horizontal-vertical convex shape.

Lemma 5. Let S be a connected orthogonal convex shape of n nodes divided
into p rows R1, R2, . . . , Rp, and σ = (u1, u2, . . . , un) a row elimination sequence
from R1 to Rp of S. If the bottom node of the first two nodes placed by Extended-
Staircase is fixed to (xc, yc+1), where (xc, yc) are the co-ordinates of the anchor
node of S, the shape Ti = ExtendedStaircase(σi), where σi = (u1, u2, . . . , ui),
1 ≤ i ≤ n, fulfills the following properties:

– S ∪ Ti is a connected shape.
– S ∩ T = ∅.
– excluding the single-black repository, Rp ∪ Ti is an orthogonal convex shape.

Lemma 6. For any extended staircase W∪T of n nodes, where W is the Stairs,
T ⊆ {BRep ∪ RRep} and k = |T |, given a shape elimination sequence σ =
(u1, u2, . . . , uk) of T , there is a diagonal line-with-leaves generation sequence
σ′ = (u′

1, u
′
2, . . . , u

′
k) which is colour-order preserving w.r.t σ and such that, for

all 1 ≤ i ≤ |σ|, Di = W ∪ {u′
1, u

′
2, . . . , u

′
i} is a connected orthogonal convex

shape.

5 The Transformation

In this section, we present the transformation of orthogonal convex shapes, via
an algorithm (Algorithm 1) for constructing a diagonal line-with-leaves from any
orthogonal convex shape S. For the first step of the algorithm, we generate a
6-robot from the seed and the shape, which we then use to transport nodes.
By using a row elimination sequence of S and an extended staircase generation
sequence, we convert the initial shape S into an extended staircase. We then use
appropriate elimination and generation sequences focused on the repositories
of the extended staircase, to convert the latter into a diagonal line-with-leaves.
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Given any two colour-consistent orthogonal convex shapes A and B and their
diagonal line-with-leaves D, our algorithm can be used to transform both A into
D and B into D and, thus, A into B, by reversing the latter transformation.
This transformation applies to all orthogonal convex shapes with 3 nodes. A
2-node shape can trivially transform by rotating one node around the other and
a 1-node shape cannot transform at all.

Algorithm 1 OConvexToDLL(S,M)

Input: shape S ∪ M , where S is a connected orthogonal convex shape of n nodes
and M is a 3-node seed on the cell perimeter of S, row elimination sequence
σ = (u1, u2, . . . , un) of S, extended staircase generation sequence of W ∪ T = σ′ =
(u′

1, u
′
2, . . . , u

′
n) which is colour-order preserving w.r.t. σ, shape elimination sequence

σ = (u1, u2, . . . , u|T |) of T , shape generation sequence of X = σ′ = (u′
1, u

′
2, . . . , u

′
|T |)

which is colour-order preserving w.r.t. σ
Output: shape G = W ∪X ∪M , where G is a diagonal line-with-leaves and M is a

connected 3-node shape on the cell perimeter of S.
R← GenerateRobot(S,M)
σ ← rowEliminationSequence(S)
σ′ ← ExtendedStaircase(σ)
W ∪ T ← HVConvexToExtStaircase(S,R, σ, σ′)
σ ← repsEliminationSequence(W ∪ T )
σ′ ← stairExtensionSequence(W ∪ T )
G← ExtStaircaseToDLL(W ∪ T,R, σ, σ′)
TerminateRobot(G,R)

Algorithm 2 OConvexToExtStaircase(S,R, σ, σ′)

Input: shape S ∪ R, where S is a connected orthogonal convex shape of n nodes
and R is a 6-node robot on the cell perimeter of S, row elimination sequence σ =
(u1, u2, . . . , un) of S, extended staircase generation sequence σ′ = (u′

1, u
′
2, . . . , u

′
n)

which is colour-order preserving w.r.t. σ
Output: shape T ∪R, where T is the extended staircase generated by σ′

for all 1 ≤ i ≤ n do
source← σi, dest← σ′

i

while R cannot extract source do
if R can climb then Climb(R)
else Slide(R)

end while
Extract(R, source)
while R cannot place its load in dest do

if R can climb then Climb(R)
else Slide(R)

end while
Place(R, dest)

end for
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Algorithm 3 ExtStaircaseToDLL(W,R, σ, σ′)

Input: extended staircase W = Stairs ∪ {BRep ∪ RRep} and a 6-robot R on its cell
perimeter, shape elimination sequence σ = (u1, u2, . . . , u|T |) of T ⊆ {BRep∪RRep},
shape generation sequence σ′ = (u′

1, u
′
2, . . . , u

′
|T |) which is colour-order preserving

w.r.t. σ
Output: shape Stairs′∪R′, where Stairs′\Stairs is an extension of Stairs generated

by σ′ and R′ is a 6-robot which is colour-consistent with R.
for all 1 ≤ i ≤ |T | do

source← ui

dest← u′
i

while R not at source do
if R can climb then

ClimbTowards(R, source)
else

SlideTowards(R, source)
end if

end while
Extract(R, source)
while R not at dest do

if R can climb then
ClimbTowards(R, dest)

else
SlideTowards(R, dest)

end if
end while
Place(R, dest)

end for

5.1 Robot Traversal Capabilities

6-Robot Movement We first show that for all S in the family of orthogonal
convex shapes, a connected 6-robot is capable of traversing the perimeter of S.
We prove this by first providing a series of scenarios which we call corners, where
we show that the 6-robot is capable of making progress past the obstacle that
the corner represents. We then use Proposition 1 to show that the perimeter of
any S is necessarily made up of a sequence of such corners, and therefore the
6-robot is capable of traversing it.

We begin by considering the up-right quadrant, that is any cells which neigh-
bour the section of the perimeter defined by the regular expression d1(d1 | d2)∗d2
(d2 | d3)∗d3, where d1, d2 and d3 are up, right and down respectively, as our base
case. We define progress as the movement of the 6-robot upwards and to the right
of its starting position. Our goal is to show that attaining the maximum progress
for each corner is possible. Since we can construct a series of corners where ev-
ery corner follows from the point of maximum progress of the previous corner,
it follows that for such a series we can make progress indefinitely.

Let C be a set of orthogonal convex shapes, where each shape is a corner
scenario for the up− right quadrant, depicted in Figure 2. Given a corner-shape
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scenario C ∈ C consisting of a horizontal line (xl, yd), (xl+1, yd), . . . , (xr, yd) and
a vertical line (xr, yd), (xr, yd+1), . . . , (xr, yu), as depicted in Figure 2, we define
its width w(C) = |xr − xl|, i.e., equal to the length of its horizontal line, and its
height h(C) = |yu − yd|, i.e., equal to the length of its vertical line, excluding in
both cases the corner node (xr, yd).

(a) The height 1 cases, with widths 1 and 2+.

(b) The height 2 case. (c) The height 3+ case.

Fig. 2: The four basic corner scenarios of C. Filled circles represent the 6-robot.
Striped circles represent the nodes on the exterior of the shape. Hollow circles
represent potential space for additional nodes for corner scenarios which are not
in this set.

Lemma 7. For any orthogonal convex shape S, the extended external surface
defined by the regular expression d1(d1 | d2)∗d2 (d2 | d3)∗d3 of the shape can be
divided into a series of shapes S0, S1, . . ., where all Si ∈ C.

Given that the quadrant is made up of cases from C, if the 6-robot is able to
move from one vertical to another for all Si ∈ C, it is able to do so for any up-
right quadrant of the perimeter until it runs into the d3 line. We now show that
this movement is possible, first for this quadrant and later for all four quadrants.

Lemma 8. For all shapes C ∈ C, if a 2× 3 shape (the 6-robot) is placed in the
cells (xl − 2, yd + 1), (xl − 1, yd + 1), (xl, yd + 1), (xl − 2, yd + 2), (xl − 1, yd +
2), (xl, yd + 2), it is capable of translating itself to (xr − 2, yu + 1), (xr − 1, yu +
1), (xr, yu + 1), (xr − 2, yu + 2), (xr − 1, yu + 2), (xr, yu + 2).

Theorem 1. For any orthogonal convex shape S, a 6-robot is capable of travers-
ing the perimeter of S.
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7-Robot Movement We consider once again the up-right quadrant, and gen-
eralise to other quadrants later. We say a cell c = (x, y) is behind the robot if x
is smaller than the x-coordinate of every node in the robot.

The load of a 7-robot S is any node u such that S \ {u} is a 2 × 3 shape.
The position of the robot is an offset of the y axis for the purpose of the initial
positioning of the 7-robot. For our transformations, we maintain the invariant
that the 7-robot, after any of its high-level movements, will return to the struc-
ture of a 2× 3 shape with a load. For this invariant, we assume that the load is
always behind the 2×3 shape (while remaining connected). The situation where
the load is positioned differently does not need to be considered. We therefore
use (x, y|y′) to refer to the co-ordinates of the two cells (x, y) and (x, y′) behind
the robot which can contain the load, keeping it attached to the robot while the
latter is a 2× 3 shape.

Lemma 9. For all shapes C ∈ C, if a 2 × 3 shape with a load (the 7-robot) is
placed in the cells (xl − 3, yd +1|yd +2), (xl − 2, yd +1), (xl − 1, yd +1), (xl, yd +
1), (xl− 2, yd+2), (xl− 1, yd+2), (xl, yd+2), it is capable of translating itself to
(xr − 3, yu +1|yu +2), (xr − 2, yu +1), (xr − 1, yu +1), (xr, yu +1), (xr − 2, yu +
2), (xr − 1, yu + 2), (xr, yu + 2).

Theorem 2. For any orthogonal convex shape S, a 7-robot is capable of travers-
ing the perimeter of S.

Repository Traversal Whenever the single-black repository is occupied, the
robot may need to traverse a non-convex region when moving between S and
the extended staircase. The following lemma shows that this is not an issue.

Lemma 10. If the single-black repository of the extended staircase is occupied,
then both the 6-robot and the 7-robot are able to traverse past it.

5.2 Initialisation

Robot Generation We now prove that we can generate a 6-robot from the
orthogonal convex shape S with the help of the 3 musketeers.

Lemma 11. Let S be a connected orthogonal convex shape. Then there is a
connected shape M of 3 nodes (the 3 musketeers) and an attachment of M to
the bottom-most row of S, such that S ∪ M can reach a configuration S′ ∪ M ′

satisfying the following properties. S′ = S \{u1, u2, u3}, where {u1, u2, u3} is the
3-prefix of a row elimination sequence σ of S starting from the bottom-most row
of S. M ′ is a 6-robot on the perimeter of S′.

Prefix Construction To construct the extended staircase from an orthogonal
convex shape S, we must first retrieve a sequence of 3 nodes u1, u2, u3 from S,
where u3 is black. We assume w.l.o.g. that S is a black parity shape. We now
show with the following lemma that this is possible. We consider the edge case
where S is a rhombus in the full version of our paper.
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Lemma 12. For any shape S ∪ M , where S is a non-red parity connected or-
thogonal convex shape of n nodes divided into p rows, R1, R2, . . . , Rp and M is
a 6-robot, it is possible for M to extract a sequence of nodes (u1, u2, u3) from S,
where u1, u2 is a bicolour pair, u3 is black, and S \ {u1, u2, u3} is a connected
orthogonal convex shape.

5.3 Transformations between Shapes

In this section, we show that, given our previous results, we are now in the
position to convert an orthogonal convex shape into another such shape. We
begin with the conversion of an extended staircase into a diagonal line-with-
leaves, then the orthogonal convex shape to the diagonal line-with-leaves, and
then our main result follows by reversibility.

Lemma 13. Let S be a connected orthogonal convex shape with n nodes di-
vided into p rows R1, R2, . . . , Rp. Given a row elimination sequence σ = (u1, u2,
. . . , un) of S, an extended staircase generation sequence σ′ = (u′

1, u
′
2, . . . , u

′
n)

which is colour-order preserving w.r.t. σ, and a 6-robot placed on the external
surface of S, for all 1 ≤ i < n the 6-robot is capable of picking up the node ui,
moving as a 7-robot to the empty cell u′

i and placing it, and then returning as a
6-robot to ui+1.

Proof. We follow the procedure of Algorithm 2. By Theorem 1 and Theorem 2,
the 6-robot R and 7-robot R∪ui can climb and slide around the external surface
of S. We use this to move to each ui, extract it, move to the cell for u′

i and then
place a node of the same colour as ui in it, substituting ui for a node in R as
necessary to create a new 6-robot. By Lemma 5, so long as we approach Ti from
Rp, we can climb onto and off Ti to place the nodes using the same movements
as the previous theorems. By Lemma 10, placing a black node in the repository
cell does not inhibit movement.

Lemma 14. Let W ∪ T ∪R be the union of the Stairs of an extended staircase
W , T ⊆ {BRep∪RRep} from the extended staircase and a 6-node robot R on the
cell perimeter of S ∪T . Given a shape elimination sequence σ = (u1, u2, . . . , un)
of T , a diagonal line-with-leaves generation sequence σ′ which is colour-order
preserving w.r.t. σ and a 6-robot placed on the external surface of S, for all
1 ≤ i ≤ n the 6-robot is capable of picking up the node ui, moving as a 7-robot
to u′

i and placing it, and then returning as a 6-robot to ui+1.

Proof. We follow the procedure of Algorithm 3. By Theorem 1 and Theorem 2,
the 6-robot R and 7-robot R∪ui can climb and slide around the external surface
of S ∪ T . We use this to move to each ui, extract it, move to the cell for u′

i and
then place a node of the same colour as ui in it, substituting ui for a node in
R as necessary to create new 6-robot. Since the placement of u′

i is extending
Stairs, the resulting shape is always orthogonal convex for all 1 ≤ i ≤ n.
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Lemma 15. Let S be a connected orthogonal convex shape. Then there is a
connected shape M of 3 nodes (the 3 musketeers) and an attachment of M to
the bottom-most row of S, such that S∪M can reach the configuration D, where
D is a diagonal line-with-leaves which is colour-consistent with S.

Proof. We follow the procedure of Algorithm 1. By Lemma 11 we can form a
6-robot from S∪M . By Lemma 13, we can build an extended staircase from the
resulting shape. By Lemma 14, we can then build a diagonal line-with-leaves.
Finally, by reversibility, we can place R such that the removal of 3 nodes leaves
a larger diagonal line-with-leaves D which is colour-consistent with S.

Lemma 16. There exists a connected orthogonal convex shape of n nodes S and
a diagonal line-with-leaves T and such that any strategy which transforms S into
T requires O(n2) time steps in the worst case.

Proof. To construct T , we must transfer nodes using the robot to the anchor
node. In the worst case, S is a staircase, and the robot must move nodes from one
end to the other. It must therefore make O(cn2) moves, where c is the maximum
number of rotations needed for the robot to move one step. When the extended
staircase has been constructed, it must be converted into a diagonal line-with-
leaves. In the worst case every column in the staircase has 4 nodes, and the robot
must extend Stairs until one repository has a single node. Therefore, the robot
must make O(2cn2) moves to travel on both sides of Stairs. Combining the
worst cases of both procedures therefore takes O(3cn2) = O(n2) time steps.

Theorem 3. Let S and S′ be connected colour-consistent orthogonal convex
shapes. Then there is a connected shape M of 3 nodes (the 3 musketeers) and an
attachment of M to the bottom-most row of S, such that S ∪ M can reach the
configuration S′ in O(n2) time steps.

Proof. By Lemma 15, we can convert S into a diagonal line-with-leaves T . By
reversibility, we can convert T into S′. By Lemma 16, this procedure takes O(n2)
time steps.

6 Conclusions

There are some open problems which follow from the findings of our work. The
most obvious is expanding the class of shapes which can be constructed to achieve
universal transformation. An example of a bad case is the “double spiral”, which
is a line forming two connected spirals. In this case, preserving connectivity af-
ter the removal of a node requires the robot to get to the centre of a spiral,
which may not be possible without a special procedure to “dig” into it without
breaking connectivity. Finally, successfully switching to a decentralised model of
transformations will greatly expand the utility of the results, especially because
most programmable matter systems which model real-world applications imple-
ment programs in this way. This in turn could lead to real-world applications
for the efficient transformation of programmable matter systems.
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