
On Geometric Shape Construction via Growth
Operations

Nada Almalki and Othon Michail[0000−0002−6234−3960]

Department of Computer Science, University of Liverpool, UK
{N.Almalki, Othon.Michail}@liverpool.ac.uk

Abstract. In this work, we investigate novel algorithmic growth pro-
cesses. Our system runs on a 2-dimensional grid and operates in discrete
time steps. The growth process begins with an initial shape of nodes
SI = S0 and, in every time step t ≥ 1, by applying (in parallel) one or
more growth operations of a specific type to the current shape-instance
St−1, generates the next instance St, always satisfying |St| > |St−1|. Our
goal is to characterize the classes of shapes that can be constructed in
O(logn) or polylog n time steps, n being the size of the final shape SF ,
and determine whether a shape SF can be constructed from an initial
shape SI using a finite sequence of growth operations of a given type,
called a constructor of SF .
In particular, we propose three growth operations, full doubling, row and
column doubling, which we call RC doubling, and doubling, and explore
the algorithmic and structural properties of their resulting processes un-
der a geometric setting. For full doubling, in which, in every time step,
every node generates a new node in a given direction, we completely
characterize the structure of the class of shapes that can be constructed
from a given initial shape. For RC doubling, in which complete columns or
rows double, our main contribution is a linear-time centralized algorithm
that for any pair of shapes SI , SF decides if SF can be constructed from
SI and, if the answer is yes, returns an O(logn)-time step constructor
of SF from SI . For the most general doubling operation, where a subset
of individual nodes can double, we show that some shapes cannot be
constructed in sublinear time steps and give two universal constructors
of any SF from a singleton SI , which are efficient (i.e., up to polyloga-
rithmic time steps) for large classes of shapes. Both constructors can be
computed by polynomial-time centralized algorithms for any shape SF .

Keywords: Centralized algorithm · Geometric growth operations · Pro-
grammable matter · Constructor.

1 Introduction

The realization that many natural processes are essentially algorithmic, has fu-
eled a growing recent interest in formalizing their algorithmic principles and in
developing new algorithmic approaches and technologies inspired by them. Ex-
amples of algorithmic frameworks inspired by biological and chemical systems

2 N. Almalki and O. Michail

are population protocols [5, 6, 24], ant colony optimization [9, 14], DNA self-
assembly [14, 25, 26, 28], and the algorithmic theory of programmable matter [1,
3, 22].

Motivated by these advancements and by principles of biological develop-
ment which are apparently algorithmic, we introduce a set of geometric growth
processes and study their algorithmic and structural properties. These processes
start from an initial shape of nodes SI , possibly a singleton, and by applying
a sequence of growth operations eventually develop into well-defined global ge-
ometric structures. The considered growth operations involve at most one new
node being generated by any existing node in a given direction and the resulting
reconfiguration of the shape as a consequence of a set of nodes being generated
within it. This node-generation primitive is also inspired by the self-replicating
capabilities of biological systems, such as cellular division, their higher-level pro-
cesses such as embryogenesis [7], and by the potential of the future development
of self-replicating robotic systems.

In a recent study, Mertzios et al. [20] investigated a network-growth process
at an abstract graph-theoretic level, free from geometric constraints. Our goal
here is to study similar growth processes under a geometric setting and show how
these can be fine-tuned to construct interesting geometric shapes efficiently, i.e.,
in polylogarithmic time steps. Aiming to focus exclusively on the effect of growth
operations, we do not allow any other form of shape reconfigurations apart from
local growth. Preliminary such growth processes, mostly for rectangular shapes,
were developed byWoods et al. [27]. Their approach was to first grow such shapes
in polylogarithmic time steps and then to transform them into arbitrary geomet-
ric shapes and patterns through additional reconfiguration operations, the latter
essentially capturing properties of molecular self-assembly systems. Like them,
we study the problem of constructing a desired final shape SF starting from an
initial shape SI via a sequence of shape-modification operations. However, in
this work the considered operations are restricted to local growth operations. To
the best of our knowledge, the structural characterization and the underlying
algorithmic complexity of constructing geometric shapes by growth operations,
have not been previously considered as problems of independent interest.

1.1 Our Approach and Contribution

In this work, our main objective is to study growth operations in a centralized
geometric setting. Applying a sequence of such operations in a centralized way,
yields a centralized geometric growth process. Our model can be viewed as an
applied, geometric version of the abstract network-growth model of Mertzios et
al. [20]. The considered model is discrete and operates on a 2D square grid.
Connectivity preservation is an essential aspect of both biological and of the
so-inspired robotic and programmable matters, because it allows the system to
maintain its strength and coherence and enables sharing of resources between
devices in the system [8, 22]. In light of this, all the shapes discussed in this work
are assumed to be connected and the considered growth operations cannot break
the shape’s connectivity.

On Geometric Shape Construction via Growth Operations 3

For all types of considered operations, the study revolves around the following
main questions: (i) What is the class of shapes that can be constructed efficiently
from a given initial shape via a sequence of growth operations? (ii) Is there a
polynomial-time centralized algorithm that can decide if a given target shape SF

can be constructed from a given initial shape SI and, whenever the answer is
positive, return an efficient constructor of SF from SI?

The growth operations considered in this paper are characterized by the fol-
lowing additional properties:

– In general, more than one growth operation can be applied at the same time
step (parallel version). To simplify the exposition of some of our results and
without losing generality, we shall sometimes restrict attention to a single
operation per time step (sequential version).

– To avoid having to deal with colliding operations, we restrict attention to
single-direction growth operations. That is, for each time step t, a direction
d ∈ {north, east, south, west} is fixed and any operation at t must be in
direction d. For clarity of presentation of the results in this work, we shall
focus mostly on the east and north directions of the considered operations.
Due to the nature of these operations, generalizing to all four directions is
immediate.

We study three growth operations, full doubling, RC doubling, and doubling,
where full doubling is the most restricted and doubling the most general one.
In full doubling, in every time step, every node generates a new node in a given
direction, in RC doubling, complete columns or rows double, and in doubling up
to individual nodes can double.

For full doubling, we completely characterize the structure of the class of
shapes that are reachable from any given initial shape. For RC doubling, our
main contribution is a linear-time centralized algorithm that for any pair of
shapes SI , SF decides if SF can be constructed from SI and, if the answer is
yes, returns an O(log n)-time step constructor of SF from SI . For doubling, we
show that some shapes cannot be constructed in sublinear time steps and give
two universal constructors of any SF from a singleton SI , which are efficient (i.e.,
up to polylogarithmic time steps). for large classes of shapes. Both constructors
can be computed by polynomial-time centralized algorithms for any shape SF .

1

In Section 1.2, we discuss the related literature. Section 2 presents all def-
initions that are used throughout the paper. Sections 3, 4, and 5 present our
results for full doubling, RC doubling, and doubling, respectively.

1 Note that there are two distinct notions of time used in this paper. One represents
the time steps of a growth process, while the other represents the running time of a
centralized algorithm deciding reachability between shapes and returning construc-
tors for them. We shall always distinguish between the two by calling the former
time steps and the latter time.

4 N. Almalki and O. Michail

1.2 Related work

Recent work has focused on studying the algorithmic principles of reconfigu-
ration, with the potential of developing artificial systems that will be able to
modify their physical properties, such as reconfigurable robotic ensembles and
self-assembly systems. For example, the area of algorithmic self-assembly of DNA
aims to understand how to train molecules to modify themselves while also
controlling their own growth [14]. Several theoretical models of programmable
matter have been developed, including DNA self-assembly and other passively
dynamic models [14, 21] as well as models enriched with active molecular com-
ponents [27].

One example of a geometric programmable matter model, which is presented
in [12], is known as the Amoebot and is inspired by amoeba behavior. In par-
ticular, programmable matter is modeled as a swarm of distributed autonomous
self-organizing entities that operate on a triangular grid. Research on the Amoe-
bot model has made progress on understanding its computational power and
on developing algorithms for basic reconfiguration tasks such as coating [11]
and shape formation [10, 13]. Other authors have investigated cycle-shaped pro-
grammable matter modules that can rotate or slide a device over neighboring
devices through an empty space [15, 16, 22, 8], with the goal of capturing the
global reconfiguration capabilities of local mechanisms that are feasible to be
implemented with existing technology. The authors in [22] proved that the deci-
sion problem of transformation between two shapes is in P. In addition, another
recent research work [3] investigated a linear-strength mechanism through which
a node can push a line of one or more nodes by one position in a single time
step. Other linear-strength mechanisms are the one by Woods et al. [27], where
a node can rotate a whole line of connected nodes, simulating arm rotation, or
the one by Aloupis et al. [4] on crystalline robots, equipped with powerful lifting
capabilities.

A recent study in the field of highly dynamic networks, which is presented
in [20], is partially inspired by the abstract-network approach followed in [23].
The authors completely disregard geometry and develop a network-level abstrac-
tion of programmable matter systems. Their model starts with a single node and
grows the target network G to its full size by applying local operations of node
replication. Local edges are only activated upon a node’s generation and can be
deleted at any time but contribute negatively to the edge-complexity of the con-
struction. The authors develop centralized algorithms that generate basic graphs
such as paths, stars, trees, and planar graphs and prove strong hardness results.
We similarly focus on centralized structural and algorithmic characterizations
as a first step that will promote our understanding of such novel models and
will facilitate the future development of more applied constructions, like fully
distributed ones.

On Geometric Shape Construction via Growth Operations 5

2 Model and Preliminaries

The programmable matter systems considered in this paper operate on a 2-
dimensional square grid. Each grid position (cross point) is identified by its x
and y coordinates, x ≥ 0 representing the row and y ≥ 0 the column. Systems of
this type consist of n nodes that form a connected shape S. Each node u of shape
S is represented by a circle occupying a position on the grid. Time consists of
discrete time steps and in every time step t ≥ 1, zero or more growth operations
can occur depending on the type of operation considered. At any given time
step t, each node u ∈ S is determined by its coordinates (ux, uy) and no two
nodes can occupy the same position at the same time step. Two distinct nodes
u = (ux, uy) and v = (vx, vy) are neighbors if ux ∈ {vx−1, vx+1} and uy = vy or
uy ∈ {vy − 1, vy +1} and ux = vx, that is, if they are at orthogonal distance one
from each other. In that case, we are assuming that, unless explicitly removed,
a connection (or edge) uv exists between u and v.

Definition 1 (Row and Column of a Shape). A row (respectively column) of
a shape S is the set of all nodes of S with the same fixed y-coordinate (respectively
x-coordinate).

By S·,i we denote the row of S consisting of all nodes whose y-coordinate is
i, i.e., S·,i = {(x, i) | (x, i) ∈ S}. Similarly, column j of S, denoted as Sj,·, is
the set of all nodes of S whose x-coordinate is j, i.e., Sj,· = {(j, y) | (j, y) ∈ S}.
When the shape S is clear from context, we will refer to S·,i as Ri and to Sj,· as
Cj.

Definition 2 (Translation Operation). Given a set of integer points Q, the
north (south) k-translation of Q is defined as ↑k Q = {(x, y + k) | (x, y) ∈ Q}
(↓k Q, similarly defined). The east (west) l-translation of Q is defined as

l→ Q =

{(x+ l, y) | (x, y) ∈ Q} (l← Q, similarly defined).

Definition 3 (Rigid Connection). A connection uv between two nodes u and
v of a shape S is rigid if and only if a 1-translation of one node in any direction
d implies a 1-translation of the other in the same direction, unless uv is first
removed.

Throughout, all connections are assumed to be rigid.
The basic concept of growth operation is that a node u ∈ St generates a new

node u′ ∈ St+1. In particular, we are exploring three specific growth operations a
full doubling, row and column doubling and doubling. In most cases, every node
u ∈ St is colored black while its generations are colored gray at the next time
step t+ 1 after any type of growth operations. Furthermore, any type of growth
operation o is equipped with a linear-strength mechanism, which is the ability of
a generated node u′ to translate its connected component on a growing direction
in a single time step.

Throughout this paper, l, k will represent the total number of horizontal and
vertical growth operations performed (respectively). By horizontal, the direction
d is either east or west, while the vertical d is either north or south.

6 N. Almalki and O. Michail

Definition 4 (Growth Operation). A growth operation o is an operation
that when applied on a shape instance St, for all time steps t ≥ 1, yields a new
shape instance St+1 = o(St), such that |St| > |St−1|.

In this work, we consider three specific types of growth operations moving
from the most special to the most general: full doubling , RC doubling and dou-
bling operation. For the sake of clarity, we will provide a high-level overview
of these three operations, with the more technical versions appearing in their
respective Sections 3, 4 and 5. First, a full doubling operation is a growth op-
eration in which every node u ∈ St generates a new node u′ ∈ St+1, that is,
|St+1| = 2|St|. Then, row and column doubling denoted by RC doubling, is a
growth operation where in each time step t, a subset of columns (rows) is se-
lected and these are fully doubled. Finally, the most general version of these
operations is a doubling operation, in which, in each time step t, any subset of
the nodes can double in a given direction. The differences between these three
operations are highlighted in Fig. 1.

Full Doubling (S)

St

RC Doubling (S)

Doubling (S)

St+1

C1 C2 C3 C4

C1 C2 C3 C′

4
C′

1
C′

2
C′

3
C4

C1 C2 C′

2
C3 C′

4
C4

St+1

C1 C′

1
C2 C′

2
C3 C4

St+1

Fig. 1: Illustration of the results St+1 when applying different growth operations
on the same shape St where the direction of growing is east.

Definition 5 (Reachability Relation). Given a growth operation of a given
type, we define a reachability relation ⇝ on pairs of shapes S, S′ as follows.
S ⇝ S′ iff there is a finite sequence σ = o1, o2, . . . , otlast

of operations of a
given type for which S = S0, o1, S1, o2, S2 . . . , S(tlast−1), otlast

, Stlast
= S′, where

Si = o(Si−1) for all 1 ≤ i ≤ tlast. Whenever we want to emphasize a particular

such sequence σ, we write S
σ
⇝ S′ and say that σ constructs shape S′ from S.

On Geometric Shape Construction via Growth Operations 7

Definition 6 (Constructor). A constructor σ = (o1, o2, . . . , otlast
) is a finite

sequence of doubling operations of a given type, 1 ≤ i ≤ tlast.

Remark 1. Note that in Definition 6 the directions of different oi’s do not need
to be the same.

2.1 Problem Definitions

We now formally define the problems to be considered in this paper.

Class characterization. Identify the family of shapes SF that can be obtained
from a given initial connected shape SI via a sequence of growth operations of
a given type.

ShapeConstruction. Given a pair of shapes (SI , SF) decide if SI ⇝ SF . If
yes, compute a sequence σ that constructs SF from SI . In the special case of
this problem in which SI is by assumption a singleton, we shall assume that the
input is just SF .

3 Full Doubling

In this section, after providing a formal definition of the full doubling operation,
we investigate the class characterization problem under this operation. Note that
when the initial shape consists of a single node, i.e., |SI | = 1, the characterization
is straightforward. Section 3.1 discusses the more general case where |SI | ≥ 1.

Definition 7 (Full Doubling). After applying a full doubling operation on S
a new shape S′ is obtained, depending only on the direction d of the operation:

1. If the direction d of a full doubling operation is an east, then for every
column Sj,· of S a new column is generated to the east of Sj,·. The effect
of applying this to all columns is that every column Sj,· of S is translated

to the east by j − 1, such that S′
2j−1,· =

j−1→ Sj,·, and generates the new

column S′
2j,· =

j→ Sj,·. Therefore, the new shape S′ of this doubling operation
is S′ =

⋃
j(S

′
2j−1,· ∪ S′

2j,·).
2. If the direction d of a full doubling operation is a north, then for every row

S·,i of S a new row is generated to the north of S·,i. The effect of applying this
to all rows is that every row S·,i of S is translated to the north by i−1, such
that S′

·,2i−1 =↑i−1 S·,i, and generates the new row S′
·,2i =↑i S·,i. Therefore,

the new shape S′ of this doubling operation is S′ =
⋃

i(S
′
·,2i−1 ∪ S′

·,2i).

In other words, if a full doubling operation is performed on S in the east direction,
then a set of columns equal to the original is generated. Every original column
is translated by the number of original columns to its west and its own copy is
generated to the east of its final position. Similarly for rows.

8 N. Almalki and O. Michail

3.1 An Arbitrary Connected Initial Shape |SI | ≥ 1

In this section we characterize shapes that can be obtained by a sequence of
full doubling operations from an arbitrary connected initial shape SI , where
|SI | ≥ 1.

Definition 8 (w(Cj , u)). Let w(Cj , u) denote the number of columns to the left
(west) of a node u in a column j, that is, w(Cj , u) = ux − Cl, where Cl is the
leftmost column.

Definition 9 (s(Ri, u)). Let s(Ri, u) denote the number of rows below (south)
of a node u in a row i, that is, s(Ri, u) = uy −Rb, where Rb is the bottom-most
row.

Definition 10 (Reconfiguration Function). Given two integers l, k > 0, we
define a reconfiguration function Fl,k that maps a shape to another shape as
follows:

1. First, the coordinates of |S| points of Fl,k(S) are determined as a function
of the coordinates of the points of S. For each u ∈ S the coordinates of
u′ ∈ Fl,k(S) are given by (ux + (2l − 1)w(Cj , u), uy + (2k − 1)s(Ri, u)).

2. Generate the Cartesian product around u′ such that, Rec(u′, 2l, 2k) = {u′
x+

1, . . . , u′
x + (2l − 1)} × {u′

y + 1, . . . , u′
y + (2k − 1)} originating at u′. Adding

all points of these rectangles to Fl,k(S) completes the definition of Fl,k(S).

The output of the reconfiguration function after these two phases is a shape
S, such that Fl,k(S) =

⋃
u∈S

Rec(u′, 2l, 2k), as presented in Fig. 2 (note that u′ is

a function of u in the union).

Lemma 1 (Additivity of Reconfiguration Function). For all shapes S and
all l, k, l′, k′ ≥ 0 it holds that Fl′,k′(Fl,k(S)) = Fl′+l,k′+k(S).

Theorem 1. Given any initial shape SI and any sequence of l east and k north
full doubling operations, the obtained shape is SF = Fl,k(SI).

4 RC Doubling

After a formal definition of the RC doubling operation, in this section, we study
both the class characterization and the ShapeConstruction problems. In par-
ticular, we develop a linear-time centralized algorithm to decide the feasibility
of constructing SF from SI and to return a constructor of SF from SI if one
exists, both within O(log n)-time steps.

Definition 11 (RC Doubling). A row and column doubling is a growth op-
eration where a direction d ∈ {east, west} (d ∈ {north, south}) is fixed and all
nodes of a subset of the columns (rows, respectively) of shape S generates a new
node in d direction.

On Geometric Shape Construction via Growth Operations 9

Rec(u′, 2l, 2k)

l = 3

k = 2

23 = 8

22 = 4

Rec(u′, 2l, 2k)

S′

Fig. 2: An example of the output shape S′ after applying the reconfiguration
function Fl,k(S).

We define an RC doubling operation for columns in the east direction and
the other cases can be similarly defined. The operation is applied to a shape S
and will yield a new shape S′. Let J be the set of indices (ordered from west to
east) of all columns of S and D its subset of indices of the columns to be doubled
by the operation. For any j ∈ J , let w(D, j) = |{j′ ∈ D | j′ < j}|, i.e. w(D, j)
denotes the number of doubled columns to the west of column j. Then the new
shape S′ is defined as:

S′ = (
⋃
j∈J

w(Cj)→ Cj) ∪ (
⋃
j∈D

w(Cj)+1→ Cj)

That is, every doubled column Cj, for j ∈ D, generates a copy of itself to the east.
The result is that every column Cj, for j ∈ J , is translated east by w(Cj) and
additionally the final position of the copy of Cj, for j ∈ D, is an east (w(Cj)+1)
translation of Cj.

Definition 12 (Single RC Doubling Operation). Let d ∈ J be the index
of the single doubled column. Define S≤Cd

(S≥Cd
) to be the set of columns to

the west (east, resp.) of column Cd, inclusive. That is, S≤Cd
=

⋃
j∈J,j≤d Cj

(S≥Cd
=

⋃
j∈J,j≥d Cj, resp.). Then,

S′ = S≤Cd
∪ (

1→ S≥Cd
).

Proposition 1 (Serializability of Parallel Doubling). A shape SF can be
generated from a shape SI through a sequence of RC (parallel) doubling opera-
tions iff it can be generated through a sequence of single row/column doubling
operations.

10 N. Almalki and O. Michail

Definition 13 (Consecutive Column/Row Multiplicities). Given a shape
S and a column Cj (row Ri) of S which is either the leftmost column (bottom-
most row) (i.e., j = 1) or Cj−1 ̸= Cj ((i.e., i = 1) or Ri−1 ̸= Ri) (where equality
is defined up to horizontal (vertical) only translations of columns (rows)), the
multiplicity MS(Cj) (MS(Ri)) of column (row) Cj (Ri), is defined as the max-
imal number of consecutive identical copies of Cj (Ri) in S to the right (top) of
Cj (Ri) (inclusive).

Definition 14 (Baseline Shape). The baseline shape B(S) of a shape S, is
the shape obtained as follows. For every column Cj of S with MS(Cj) > 1,
remove all consecutive copies of Cj to its right (non-inclusive) and compress
the shape to the left to restore connectivity. Then for every row Ri of S with
MS(Ri) > 1, remove all consecutive copies of Ri to its top (non-inclusive) and
compress the shape down to restore connectivity. Observe that all columns and
rows of B(S) have multiplicity 1. Moreover, any shape whose columns and rows
all have multiplicity 1 is called a baseline shape.

4.1 SI ⇝ SF Constructor

Theorem 2. A shape SI can generate a shape SF through a sequence of RC
doubling operations iff B(SI) = B(SF) = B and for every column C and row R
of B it holds that MSF

(C) ≥MSI
(C) and MSF

(R) ≥MSI
(R).

Proof. To prove that the condition is sufficient, we can w.l.o.g. restrict attention
to single RC doubling operations (as these are special cases of RC doubling
operations). Then, for every column C of B for which MSF

(C) > MSI
(C) holds,

we double the west-most copy of column C in SI , MSF
(C) −MSI

(C) times to
the east. Similarly, for rows. It is not hard to see that any sequence of these
operations applied to SI , yields SF .

For the necessity of the condition, we need to show that if SI can generate
SF through a sequence of RC doubling operations, then B(SI) = B(SF) = B
and the multiplicities are as described in the statement. We first observe that, by
Proposition 1, SI can also generate SF through a sequence of single RC doubling
operations. So, it is sufficient to show that violation of any of the conditions
would not allow for a valid sequence of single RC doubling operations.

Let us first assume that B(SI) = B(SF) = B holds, but MSF
(C) ≥MSI

(C)
does not, that is, MSF

(C) < MSI
(C) for some column C of B. Then, there is no

way of obtaining SF from SI as this would require deleting MSI
(C)−MSF

(C)
copies of C. Similarly, if MSF

(R) ≥MSI
(R) is violated.

Finally, assume that B(SI) ̸= B(SF) and that SI ⇝ SF still holds. By
definition of baseline shapes, B(SI)⇝ SI and B(SF)⇝ SF hold, thus, we have
B(SI) ⇝ SI ⇝ SF and B(SF) ⇝ SF . That is, there is a sequence of single
column/row operations starting from B(SI) and another starting from B(SF)
that eventually make the two shapes equal (starting originally from two unequal
baseline shapes). So, there must be a pair σ and σ′ of such sequences minimizing
the maximum length maxσ,σ′(|σ|, |σ′|) until the two shapes first become equal.

On Geometric Shape Construction via Growth Operations 11

Call St and S′
t′ the dynamically updated shapes by σt and σ′

t′ , respectively. In
what follows we omit the time step subscripts. Let us assume w.l.o.g. that it is
the last step tmin of σ that first satisfies S = S′ and that this step is a doubling
of a column C. Thus, after step tmin, both S and S′ contain an equal number of
at least two consecutive copies of C. But the only way a shape can first obtain
two consecutive copies of a column is by doubling one of its columns, thus, there
must be a previous single column doubling operation in σ′ that doubled column
C (note that, at that point, C could have been a subset of the final version of the
column). Deleting that operation from σ′ and the last operation at tmin from σ,
yields a new pair of sequences that satisfy S = S′ at some t ≤ tmin − 1, thus,
contradicting minimality of the (σ, σ′) pair. We must, therefore, conclude that
SI ⇝ SF cannot hold in this case. ⊓⊔

Lemma 2. For any SI , SF satisfying the conditions of Theorem 2, there is a
constructor from SI to SF using at most 2 log n time steps, where n is the total
number of nodes in SF .

Proof. Since there is a constructor from SI to SF , then, by Theorem 2, B(SI) =
B(SF) = B and for every column C and row R of B it holds that MSF

(C) ≥
MSI

(C) and MSF
(R) ≥ MSI

(R). By Definition 5 (in Section 2) SI ⇝ SF , SF

can be obtained by applying on every column C and row R of SI as many RC
doubling operations as required to make its multiplicity equal to SF . W.l.o.g. we
only show this process applied to columns.

Let C be a column of B. Starting from MSI
(C) copies of C in SI we want

to construct the MSF
(C) copies of C in SF . Note that neither MSF

(C) nor
MSF

(C)−MSI
(C) are necessarily powers of 2. Then, let 2k be the greatest power

of 2, such that MSI
(C)2k < MSF

(C), i.e., MSI
(C)2k < MSF

(C) < MSI
(C)2k+1.

Then, from the second inequality, it holds that MSF
(C) − MSI

(C)2k <
MSI

(C)2k+1 −MSI
(C)2k and this leads to MSF

(C) −MSI
(C)2k < MSI

(C)2k,
which means that if we construct MSI

(C)2k columns then columns remaining
to be constructed to reach MSF

(C) will be less than the constructed ones.

So, we construct MSI
(C)2k columns (including the original column) by al-

ways doubling, within k ≤ log(MSF
(C)) steps. Once we have those, we dou-

ble in one additional time step MSF
(C) −MSI

(C)2k of those to get a total of
MSF

(C) columns within k + 1 ≤ log(MSF
(C)) steps. If we set MSF

(C) to be
the maximum multiplicity of SF , then for every column C ′ ̸= C, its multiplicity
MSF

(C ′) ≤MSF
(C) can be constructed in parallel to the multiplicity of C, thus,

within these log(MSF
(C)) steps. And similarly for rows. As MSF

(C) ≤ n and
MSF

(R) ≤ n, where n is the number of nodes of SF , it holds that all column
and row multiplicities can be constructed within at most 2 log n time steps. ⊓⊔

We now present an informal description of a linear-time algorithm for
ShapeConstruction. The algorithm decides whether a shape SF can be con-
structed from a shape SI and, if the answer is positive, it returns anO(log n)-time
step constructor.

Given a pair of shapes (SI , SF), do the following:

12 N. Almalki and O. Michail

Step 1 Determine the baseline shapes B(SI) and B(SF) of SI and SF , respec-
tively. Then compare B(SI) with B(SF) and, if they are equal, proceed
to Step 2, otherwise return No and terminate.

Step 2 Since we have B = B(SI) = B(SF), if for all columns C (rows R) of B it
holds that MSI

(C) ≤ MSF
(C) and MSI

(R) ≤ MSF
(R) then proceed to

Step 3, else return No and terminate.
Step 3 Output the constructor defined by Lemma 2.

Finally, together Proposition 1, Theorem 2, and Lemma 2 imply that:

Theorem 3. The above algorithm is a linear-time algorithm for ShapeCon-
struction under RC doubling operations. In particular, given any pair of shapes
(SI , SF), when (SI ⇝ SF) the algorithm returns a constructor σ of SF from SI

of O(log n)-time steps.

5 Doubling

This section studies doubling operations in their most general form, where a
subset of individual nodes can be involved in a growth operation. We start with
a formal definition of two sub-types of general doubling operations and then
investigate both the class characterization and ShapeConstruction problems.
By focusing on the special case of a singleton SI , we give a universal linear-time
step (i.e., slow) constructor and, on the negative side, prove that some shapes
cannot be constructed in sublinear time steps. Our main results are then two
universal constructors that are efficient (i.e., polylogarithmic time steps) for
large classes of shapes. Both constructors can be computed by polynomial-time
centralized algorithms for any input SF .

5.1 Rigidity in Doubling Operations

Given a shape S and two neighboring nodes u, v ∈ S, let S(u) and S(v) be
the maximal connected sub-shapes of S containing u but not v and v but not
u, respectively. When u is doubling in the direction of v, call that direction d,
rigidity of connections (see Definition 3) implies that any w ∈ S(u) \ S(v) must
remain in its position while any z ∈ S(v) \S(u) must translate by 1 in direction
d. For any node in S(u) ∩ S(v) these two actions would contradict each other.
Such nodes belong to a u, v, . . . , u cycle, and any such cycle must break or grow
in at least one of its connections, in addition to the connection uv which will by
assumption grow. In this paper, we focus on the case where all these cycles break
(or grow) at the (Cj , Cj+1) cut. Depending on how we choose to treat such cycles,
we shall define two sub-types of general doubling operations: rigidity-preserving
doubling and rigidity-breaking doubling. Intuitively, in the former for all affected
edges e in the (Cj , Cj+1) cut a node is generated over e, while in the latter any
subset of those edges can simply break.

We start with a special case of the rigidity-breaking doubling operation in
which, in every time step, a single node doubles. This special case is particularly

On Geometric Shape Construction via Growth Operations 13

convenient for the class characterization problem, as it can provide a (slower but
simple) way to simulate both types of doubling operations. It also serves as an
easier starting point towards the definition of the more general operations.

Definition 15 (Single-Node Doubling). A single-node doubling operation is
a growth operation in which at any given time step t, a direction d ∈ {north, east,
south, west} is fixed and a single node u of shape S doubles in direction d.

Consider w.l.o.g. an east doubling operation applied on u = (ux, uy) ∈ Cj of
S. If u has no east neighbor in S, then, u generates a new node u′ = (ux+1, uy) ∈
Cj+1 and the obtained shape is S ∪ {u′}. Otherwise, u has a neighbor v ∈ Cj+1

of S which will need to translate by 1 in the east direction together with some
sub-shape of S(v). We identify the maximal connected sub-shape S′(u) ⊆ S(u)
that contains no node from columns Cm, for all m ≥ j + 1, and the maximal
connected sub-shape S′(v) ⊆ S(v) \ S′(u). That is, S′(u) contains all nodes on
u’s side that must stay put, while, from the remaining nodes, S′(v) contains all
nodes that must translate by 1. Any bicolor edge (one whose one endpoint is in
S′(v) and the other endpoint in S′(u); we call these the bicolor edges associated
with uv) must be an edge of the (Cj , Cj+1) cut. We remove all bicolor edges in
order to perform the operation.

Definition 16 (Rigidity-Preserving Doubling Operation). A rigidity-pre-
serving doubling operation is a generalization of a single-node doubling operation.
In every time step a direction d is fixed and, for any node u that doubles towards
a neighbor v in direction d and for all bicolor edges e associated with uv, a node
is generated over e (see Fig. 3).

S

Cj Cj+1

ℓ(Cj , u1, . . . , u4) = 1

u4

u3

u2

u1

v4

v3

v2

v1

Cj

S(v)

Cj+1 Cj+2

Fig. 3: An illustration of Definition 16, in which all nodes of (Cj) must double
and the sub-shape S(v) must be shifted to the east by one.

Definition 17 (Rigidity-Breaking Doubling Operation). A rigidity-brea-
king doubling operation is a generalization of a single-node doubling operation.
In every time step a direction d is fixed and, for any node u that doubles towards

14 N. Almalki and O. Michail

a neighbor v in direction d and for all bicolor edges e associated with uv, either
a node is generated over e or e is removed (see Fig. 4).

S

Cj Cj+1

ℓ(Cj(u3)) = 1

u1

u2

u3

v1

v4

v3

v2

u4

Cj Cj+1 Cj+2

S(u)

S(v)

Fig. 4: An illustration of Definition 17, where there is one node u3 ∈ Cj doubles
to the east and shifts the connected component in the same direction, while
other edges in Cj are removed.

5.2 Universal Constructors of SF

Proposition 2. For any shapes SI and SF , where SI ⊆ SF , there is a linear-
time step constructor of SF from SI .

We call any L ≥ 1 consecutive nodes connected horizontally or vertically an
L-line.

Proposition 3. If a 3-line is ever generated, it must be preserved in the final
shape SF , that is, rigidity-preserving doubling operation will never break the 3-
line.

A staircase is a shape S, in which each step consists of at least 3 consecutive
nodes, whereas an exact-staircase consists of two nodes.

Proposition 4. A staircase of size n requires Ω(n) time steps to be generated
by rigidity-preserving doubling operations.

Proposition 5. A rigidity-preserving or rigidity-breaking doubling operation
cannot build an exact staircase shape S within a sublinear time.

Next, by putting together the universal linear-time steps constructor of
Proposition 2 for doubling and the logarithmic-time steps constructor of Theo-
rem 2 for RC doubling, we get the following general and faster constructor for
doubling.

On Geometric Shape Construction via Growth Operations 15

Theorem 4. Given any connected target shape SF , there is an [O(|B(SF)|) +
O(log |SF |)]-time step constructor of SF from SI = {u0} through doubling op-
erations. Moreover, there is a polynomial-time algorithm computing such a con-
structor on every input SF .

The constructor of Theorem 4 is fast as a function of n = |SF |, when |SF | −
|B(SF)| is large. For example, for all SF for which |B(SF)| = O(log |SF |) holds,
it gives a logarithmic-time steps constructor of SF . It is also a fast constructor
for all shapes SF that have a relatively small (geometrically) similar shape SI

under uniform scaling. Note that shape similarity can be decided in linear time
[19, 2]. In such cases, SI can again be constructed in linear time steps from a
singleton, followed by a fast construction of SF from SI via full doubling in all
directions in a round-robin way.

Finally, we give an alternative constructor, based on a partitioning of an
orthogonal shape into the minimum number of rectangles. Note that there are
efficient algorithms for the problem, e.g., anO(n3/2 log n)-time algorithm [17, 18].
These algorithms, given an orthogonal polygon S, partition S into the minimum
number h of rectangles S1, S2, . . . , Sh, “partition” meaning a set of pairwise
non-overlapping rectangles which are sub-polygons of S and whose union is S.

Theorem 5. Given any connected target shape SF , there is an O(h log |SF |)-
time step constructor of SF from SI = {u0} through doubling operations, where h
is the minimum number of rectangles in which SF can be partitioned. Moreover,
there is a polynomial-time algorithm computing such a constructor on every input
SF .

References

1. Akitaya, H.A., Arkin, E.M., Damian, M., Demaine, E.D., Dujmović, V., Flatland,
R., Korman, M., Palop, B., Parada, I., Renssen, A.v., et al.: Universal reconfigura-
tion of facet-connected modular robots by pivots: the O(1) musketeers. Algorith-
mica 83(5), 1316–1351 (2021)

2. Akl, S.G., Toussaint, G.T.: An Improved Algorithm to Check for Polygon Similar-
ity. Inf. Process. Lett. 7(3), 127–128 (1978)

3. Almethen, A., Michail, O., Potapov, I.: Pushing lines helps: Efficient universal cen-
tralised transformations for programmable matter. Theoretical Computer Science
830, 43–59 (2020)

4. Aloupis, G., Collette, S., Demaine, E.D., Langerman, S., Sacristán, V., Wuhrer,
S.: Reconfiguration of cube-style modular robots using O(logn) parallel moves. In:
International symposium on algorithms and computation. pp. 342–353. Springer
(2008)

5. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation
in networks of passively mobile finite-state sensors. Distributed computing 18(4),
235–253 (2006)

6. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20(4), 279–304 (2007)

16 N. Almalki and O. Michail

7. Chan, M.M., Smith, Z.D., Grosswendt, S., Kretzmer, H., Norman, T.M., Adamson,
B., Jost, M., Quinn, J.J., Yang, D., Jones, M.G., et al.: Molecular recording of
mammalian embryogenesis. Nature 570(7759), 77–82 (2019)

8. Connor, M., Michail, O., Potapov, I.: Centralised connectivity-preserving transfor-
mations for programmable matter: a minimal seed approach. Theoretical Computer
Science (2022). https://doi.org/https://doi.org/10.1016/j.tcs.2022.09.016

9. Cornejo, A., Dornhaus, A., Lynch, N., Nagpal, R.: Task allocation in ant colonies.
In: International Symposium on Distributed Computing. pp. 46–60. Springer
(2014)

10. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal shape formation for programmable matter. In: Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures. pp. 289–299 (2016)

11. Derakhshandeh, Z., Gmyr, R., Richa, W., Scheideler, C., Strothmann, T.: Universal
coating for programmable matter. Theoretical Computer Science 671, 56–68 (2017)

12. Derakhshandeh, Z., Richa, A., Dolev, S., Scheideler, C., Gmyr, R., Strothmann,
T.: Brief announcement: Amoebot-a new model for programmable matter. In: 26th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2014. pp.
220–222. Association for Computing Machinery (2014)

13. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape
formation by programmable particles. Distributed Computing 33(1), 69–101 (2020)

14. Doty, D.: Theory of algorithmic self-assembly. Communications of the ACM 55(12),
78–88 (2012)

15. Dumitrescu, A., Pach, J.: Pushing squares around. In: Proceedings of the twentieth
annual symposium on Computational geometry. pp. 116–123 (2004)

16. Dumitrescu, A., Suzuki, I., Yamashita, M.: Formations for fast locomotion of meta-
morphic robotic systems. The International Journal of Robotics Research 23(6),
583–593 (2004)

17. Imai, H., Asano, T.: Efficient algorithms for geometric graph search problems.
SIAM Journal on Computing 15(2), 478–494 (1986)

18. Keil, J.M.: Polygon decomposition. Handbook of computational geometry 2, 491–
518 (2000)

19. Manacher, G.K.: An application of pattern matching to a problem in geometrical
complexity. Inf. Process. Lett. 5(1), 6–7 (1976)

20. Mertzios, G.B., Michail, O., Skretas, G., Spirakis, P.G., Theofilatos, M.: The com-
plexity of growing a graph. arXiv preprint arXiv:2107.14126 (2021)

21. Michail, O.: Terminating distributed construction of shapes and patterns in a fair
solution of automata. Distributed Computing 31(5), 343–365 (2018)

22. Michail, O., Skretas, G., Spirakis, P.G.: On the transformation capability of feasible
mechanisms for programmable matter. Journal of Computer and System Sciences
102, 18–39 (2019)

23. Michail, O., Skretas, G., Spirakis, P.G.: Distributed computation and reconfigu-
ration in actively dynamic networks. In: Proceedings of the 39th Symposium on
Principles of Distributed Computing. pp. 448–457 (2020)

24. Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable
network construction. Distributed Computing 29(3), 207–237 (2016)

25. Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature
440(7082), 297–302 (2006)

26. Rothemund, P.W., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of the thirty-second annual ACM symposium on Theory
of computing. pp. 459–468 (2000)

On Geometric Shape Construction via Growth Operations 17

27. Woods, D., Chen, H.L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Pro-
ceedings of the 4th conference on Innovations in Theoretical Computer Science.
pp. 353–354 (2013)

28. Woods, D., Doty, D., Myhrvold, C., Hui, J., Zhou, F., Yin, P., Winfree, E.: Diverse
and robust molecular algorithms using reprogrammable DNA self-assembly. Nature
567(7748), 366–372 (2019)

