
On Efficient Connectivity-Preserving Transformations in
a Grid

Abdullah Almethen, Othon Michail and Igor Potapov

Department of Computer Science
University Of Liverpool

16th International Symposium on Algorithms for Sensor Systems,
ALGOSENSORS 2020



Outline

1 Introduction

2 Our Contribution

3 Definitions

4 Transformations

5 Conclusions

Almethen, Michail and Potapov On Efficient Connectivity-Preserving Transformations in a Grid 2/24



Introduction

Recent developments for collective robotic systems.

From the scale of milli or micro down to nano size of individual
devices.

The research area of programmable matter - materials that can
algorithmically change its physical properties:

such as their shape, colour, conductivity and density.

The implementation indicates whether the system is:

centralised.
decentralised.

The need for the development of an algorithmic theory of such
systems.
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Settings

2D square grid.

Each cell is occupied by a distinct device (node) on the grid.

A number of nodes connected to each other, forming a shape SI .

Given a desired target shape SF of the same order.

Goal: transform SI into SF via a finite number of valid moves.

SI SF
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Models of individual moves

Only one node moves in a single time-step.

Such as, Dumitrescu et al. IJRR’04 and Michail et al. JCSS’19:

An individual device can move over and turn around its neighbours
through empty space.
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Akitaya et al. ESA’19 consider transformations based on similar
moves.

To transform some pairs of connected shapes, Ω(n2) moves are
required for all models of constant-distance individual moves.
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Cont.

-This motivates the study of alternative types of moves that are
reasonable with respect to practical implementations and allow for
sub-quadratic reconfiguration time in the worst case.

-There are attempts to provide alternatives for more efficient
reconfiguration.
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Parallel transformations

Multiple nodes move together in a single time-step.

Especially in distributed systems.

nodes can make independent decisions and move locally in parallel to
other nodes.

Theoretical studies, such as Daymude et al., Natural Computing’18.

Practical implementations, such as Rubesntein et al., Science’14.

It can be shown that a connected shape can transform into any other
connected shape, by performing in the worst case O(n) parallel moves
around the perimeter of the shape.
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Models of more powerful mechanism

Equip nodes with strong actuation mechanisms.

Reduce the inherent distance by a factor greater than a constant in a
single time-step.

Linear-strength mechanisms, such as:

Aloupis et al., (Computational Geometry’13) provide a node with arms
that are capable to extend and contract a neighbour.
Woods et al., (ITCS’13) proposed an alternative linear-strength
mechanism, where a node has the ability to rotate a whole line of
consecutive nodes.
Czyzowicz et al., (ESA’19) consider a single moving robot that
transforms a static shape by carrying its tiles one at a time.
Recently, Almethen et al., (TCS’20) introduce the line-pushing model.
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The line-pushing model

[Almethen et al., TCS’20]:

A new linear-strength mechanism, where a whole line of consecutive
devices can, in a single time-step, move by one position in a given
direction.

Generalisation of other existing models of reconfiguration:

Focus on exploiting the power of parallelism.

Pure theoretical interest.

A practical framework.
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The line-pushing model

Simulate the rotation and sliding models.

All transformations of individual nodes, their universality and
reversibility properties still hold true in the line-pushing model.

Achieved sub-quadratic time transformations,

An O(n log n)-time universal transformation which does not preserve
connectivity.

A connectivity-preserving O(n
√
n)-time transformation for the special

case of transforming a diagonal into a straight line.

Almethen, Michail and Potapov On Efficient Connectivity-Preserving Transformations in a Grid 10/24



Our Contribution

We build upon the findings of Almethen et al., TCS’20.

All transformations in the present study preserve connectivity of the
shape during the transformations.

An O(n log n)-time connectivity-preserving transformations in which
the associated graphs of (SI ,SF ) are isomorphic to a Hamiltonian line
(defined later).

Asymptotically equal to the best known running time of
connectivity-breaking transformation.

An O(n
√
n)-time connectivity-preserving universal transformation.
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Preliminaries

- Each node is connected to a neighbour vertically, horizontally or
diagonally.

(x, y)

A node is connected to a neighbour at any directions.

- A line L is a sequence of nodes occupying consecutive cells in one
direction of the grid, that is, either vertically or horizontally but not
diagonally.

- Each node is equipped with a linear-strength mechanism which enables it
to move a whole line in a single time-step.
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Definitions

- A line move is an operation of moving all nodes of L together in a single
time-step towards a position adjacent to one of L’s endpoints, in a given
direction d of the grid, d ∈ {up, down, right, left}.
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Definition (A permissible line move)

A line L = (x , y), (x + 1, y), . . . , (x + k − 1, y) of length k, where 1 ≤ k ≤ n, can push all its k
nodes rightwards in a single move to positions (x + 1, y), (x + 2, y), . . . , (x + k, y) iff there
exists an empty cell at (x + k, y). The “down”, “left”, and “up” moves are defined
symmetrically, by rotating the whole shape 90◦, 180◦ and 270◦ clockwise, respectively.

- The problem:
→ Transform SI into SF via a finite number of valid line moves.
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Definitions

Definition

A graph G(S) = (V ,E) is associated with a shape S, where u ∈ V iff u is a node of S and
(u, v) ∈ E iff u and v are neighbours in S .

Definition (Hamiltonian Shapes)

A shape S is called Hamiltonian iff G(S) = (V ,E) is isomorphic to a Hamiltonian path, i.e., a
path starting from a node u ∈ V , visiting every node in V exactly once and ending at a node
v ∈ V , where v 6= u. H denotes the family of all Hamiltonian shapes.
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Definitions

- A configuration of the system is defined as a mapping
C : Z× Z→ {0, 1}, where C (x , y) = 0 if cell(x , y) is empty or
C (x , y) = 1 if cell(x , y) is occupied by a node.

- A rectangular path P over the set of cells is defined as
P = [c1, c2, c3, . . . , ck ], where ci , ci+1 ∈ Z× Z are two cells adjacent to
each other either vertically or horizontally, for all i ∈ {1, 2, . . . , k − 1}.

- Given any P, let CP be the configuration of P defined as the subset of C
(configuration of the system) restricted to the cells of P.
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Transparency of Line Moves

Proposition

Let S be any shape, L ⊆ S any line and P a rectangular path starting from a position adjacent
to one of L’s endpoints. There is a way to move L along P, while satisfying all the following
properties:

1 No delay:The number of steps is asymptotically equal to that of an optimum move of L
along P in the case of CP being empty (i.e., if no cells were occupied). That is, L is not
delayed, independently of what CP is.

2 No effect: After L’s move along P, C ′P = CP , i.e., the cell configuration has remained
unchanged. Moreover, no occupied cell in CP is ever emptied during L’s move (but
unoccupied cells may be temporarily occupied).

3 No break: S remains connected throughout L’s move.

LP

Empty cell

Occupied cell

corner cell (x, y)
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Problem Definitions

HamiltonianConnected. Given a pair of connected Hamiltonian shapes (SI , SF ) of
the same order, where SI is the initial shape and SF the target shape, transform SI into
SF while preserving connectivity throughout the transformation.

DiagonalToLineConnected. A special case of HamiltonianConnected in which
SI is a diagonal line and SF is a straight line.

UniversalConnected. Given any pair of connected shapes (SI ,SF ) of the same
order, where SI is the initial shape and SF the target shape, transform SI into SF while
preserving connectivity throughout the transformation.
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An O(n log n)-time Transformation for Hamiltonian Shapes

- Called Walk-Through-Path and solves HamiltonianConnected.

- Starts from one endpoint of the Hamiltonian path of SI and applies a recursive
successive doubling technique to transform SI into a straight line SL.

- Replace SI with SF reversely in Walk-Through-Path to go from SI to SF in the
same asymptotic time.

Li

D i
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L′
i

Li

push Li

Li+1

Figure: A snapshot of phase i of Walk-Through-Path applied on a diagonal. Light
grey cells represent the ending positions of the corresponding moves depicted in
each sub-figure.
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AnO(n log n)-time Transformation for Hamiltonian Shapes

Algorithm 1: HamiltonianToLine(S)
S = (u0, u1, ..., u|S|−1) is a Hamiltonian shape

Initial conditions: S ← SI and L0 ← {u0}

for i = 0, . . . , log |S| do
LineWalk(Li )

Si ← select(2i ) // select the next terminal subset of 2i consecutive nodes of S

L′i ← HamiltonianToLine(Si ) // recursive call on Si
Li+1 ← combine(Li , L

′
i ) // combines Li and L′i into a new straight line Li+1

end
Output: a straight line SL

- Main challenge: make the above transformation work in the general case.

- Hamiltonian shapes do not necessarily provide free space.

- Moving a line through the remaining configuration of nodes.

- Does not break their and its own connectivity by LineWalk operation.
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AnO(n log n)-time Transformation for Hamiltonian Shapes

Theorem

For any pair of Hamiltonian shapes SI , SF ∈ H of the same order n,
Walk-Through-Path transforms SI into SF (and SF into SI ) in O(n log n)
moves, while preserving connectivity of the shape during its course.

T =

log n∑
i=1

T (i) =

log n∑
i=1

2i−1(i − 1)− 2i =

log n−1∑
i=1

(i − 2)2i − 2log n ≤
log n−1∑
i=1

i · 2i − n

≤
log n∑
j=1

log n∑
i=j

2i − n le

log n∑
j=1

n − n ≤ n log n − n ≤ O(n log n).
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An O(n
√
n)-time Universal Transformation

- Solves the UniversalConnected problem and is called UC-Box.

- First, Compute a spanning tree T of the associated graph G(SI ) of SI .

- Enclose SI into an n × n square box and divide it into
√
n ×
√
n square sub-boxes.

- Each occupied sub-box contains one or more maximal sub-trees of T .

- Each such sub-tree corresponds to a sub-shape of SI , called a component.

- Pick a leaf sub-tree Tl which is associated with component Cl occuping sub-box Bl .

- Bp is the sub-box adjacent to Bl containing the unique parent sub-tree Tp of Tl .

- Compress all nodes of Cl into Bp while keeping the nodes of Cp (the component of Tp)
within Bp.
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An O(n
√
n)-time Universal Transformation

Algorithm 2: Compress(S)
S = (u1, u2, ..., u|S|) is a connected shape, T is a spanning tree of G(S) repeat

Cl ← pick(Tl ) // select a leaf component associated with a leaf sub-tree

Compress(Cl ) // start compressing the leaf component

if Cl collides then
C ′r ← combine(Cr , Cl ) or C ′m ← combine(Cm, Cl ) // as described in text

else
C ′p ← combine(Cp , Cl ) // combine Cl with a parent component

end
update(T ) // update sub-trees and remove cycles after compression

until the whole shape is compressed into a
√
n ×
√
n square

Output: a square shape SC
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An O(n
√
n)-time Universal Transformation

Main technical challenge: make this strategy work universally.

SI might occupy several sub-boxes of different configurations.

Preserving connectivity during the transformation.

We manage to upper bound the cost of each charging phase
independently of the order of compressions.

Theorem

For any pair of connected shapes (SI ,SF ) of the same order n, UC-Box
transforms SI into SF (and SF into SI ) in O(n

√
n) steps, while preserving

connectivity during its course.
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Open Problems

An O(n log n)-time universal connectivity-preserving transformation.

A general Ω(n log n)-time matching lower bound.

A centralised parallel version in which more than one line can be
moved concurrently in a single time-step.

A distributed version of the parallel model.

The nodes operate autonomously through local control and under
limited information.
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