On Efficient Connectivity－Preserving Transformations in a Grid

Abdullah Almethen，Othon Michail and Igor Potapov

Department of Computer Science
University Of Liverpool

16th International Symposium on Algorithms for Sensor Systems， ALGOSENSORS 2020

Outline

(1) Introduction

(2) Our Contribution

(3) Definitions
(4) Transformations
(5) Conclusions

Introduction

- Recent developments for collective robotic systems.
- From the scale of milli or micro down to nano size of individual devices.
- The research area of programmable matter - materials that can algorithmically change its physical properties:
- such as their shape, colour, conductivity and density.
- The implementation indicates whether the system is:
- centralised.
- decentralised.
- The need for the development of an algorithmic theory of such systems.

Settings

- 2D square grid.
- Each cell is occupied by a distinct device (node) on the grid.
- A number of nodes connected to each other, forming a shape S_{I}.
- Given a desired target shape S_{F} of the same order.
- Goal: transform S_{I} into S_{F} via a finite number of valid moves.

Models of individual moves

- Only one node moves in a single time-step.
- Such as, Dumitrescu et al. IJRR'04 and Michail et al. JCSS'19:
- An individual device can move over and turn around its neighbours through empty space.

- Akitaya et al. ESA'19 consider transformations based on similar moves.
- To transform some pairs of connected shapes, $\Omega\left(n^{2}\right)$ moves are required for all models of constant-distance individual moves.

Cont.

-This motivates the study of alternative types of moves that are reasonable with respect to practical implementations and allow for sub-quadratic reconfiguration time in the worst case.
-There are attempts to provide alternatives for more efficient reconfiguration.

Parallel transformations

- Multiple nodes move together in a single time-step.
- Especially in distributed systems.
- nodes can make independent decisions and move locally in parallel to other nodes.
- Theoretical studies, such as Daymude et al., Natural Computing'18.
- Practical implementations, such as Rubesntein et al., Science'14.
- It can be shown that a connected shape can transform into any other connected shape, by performing in the worst case $O(n)$ parallel moves around the perimeter of the shape.

Models of more powerful mechanism

- Equip nodes with strong actuation mechanisms.
- Reduce the inherent distance by a factor greater than a constant in a single time-step.
- Linear-strength mechanisms, such as:
- Aloupis et al., (Computational Geometry'13) provide a node with arms that are capable to extend and contract a neighbour.
- Woods et al., (ITCS'13) proposed an alternative linear-strength mechanism, where a node has the ability to rotate a whole line of consecutive nodes.
- Czyzowicz et al., (ESA'19) consider a single moving robot that transforms a static shape by carrying its tiles one at a time.
- Recently, Almethen et al., (TCS'20) introduce the line-pushing model.

The line-pushing model

[Almethen et al., TCS'20]:

- A new linear-strength mechanism, where a whole line of consecutive devices can, in a single time-step, move by one position in a given direction.
- Generalisation of other existing models of reconfiguration:
- Focus on exploiting the power of parallelism.
- Pure theoretical interest.
- A practical framework.

The line-pushing model

- Simulate the rotation and sliding models.
- All transformations of individual nodes, their universality and reversibility properties still hold true in the line-pushing model.
- Achieved sub-quadratic time transformations,
- An $O(n \log n)$-time universal transformation which does not preserve connectivity.
- A connectivity-preserving $O(n \sqrt{n})$-time transformation for the special case of transforming a diagonal into a straight line.

Our Contribution

- We build upon the findings of Almethen et al., TCS'20.
- All transformations in the present study preserve connectivity of the shape during the transformations.
- An $O(n \log n)$-time connectivity-preserving transformations in which the associated graphs of $\left(S_{I}, S_{F}\right)$ are isomorphic to a Hamiltonian line (defined later).
- Asymptotically equal to the best known running time of connectivity-breaking transformation.
- An $O(n \sqrt{n})$-time connectivity-preserving universal transformation.

Preliminaries

- Each node is connected to a neighbour vertically, horizontally or diagonally.

A node is connected to a neighbour at any directions.

- A line L is a sequence of nodes occupying consecutive cells in one direction of the grid, that is, either vertically or horizontally but not diagonally.
- Each node is equipped with a linear-strength mechanism which enables it to move a whole line in a single time-step.

Definitions

- A line move is an operation of moving all nodes of L together in a single time-step towards a position adjacent to one of L 's endpoints, in a given direction d of the grid, $d \in\{u p$, down, right, left $\}$.

Definition (A permissible line move)

A line $L=(x, y),(x+1, y), \ldots,(x+k-1, y)$ of length k, where $1 \leq k \leq n$, can push all its k nodes rightwards in a single move to positions $(x+1, y),(x+2, y), \ldots,(x+k, y)$ iff there exists an empty cell at $(x+k, y)$. The "down", "left", and "up" moves are defined symmetrically, by rotating the whole shape $90^{\circ}, 180^{\circ}$ and 270° clockwise, respectively.

- The problem:

\rightarrow Transform S_{I} into S_{F} via a finite number of valid line moves.

Definitions

Definition

A graph $G(S)=(V, E)$ is associated with a shape S, where $u \in V$ iff u is a node of S and $(u, v) \in E$ iff u and v are neighbours in S.

Definition (Hamiltonian Shapes)

A shape S is called Hamiltonian iff $G(S)=(V, E)$ is isomorphic to a Hamiltonian path, i.e., a path starting from a node $u \in V$, visiting every node in V exactly once and ending at a node $v \in V$, where $v \neq u . \mathcal{H}$ denotes the family of all Hamiltonian shapes.

Definitions

- A configuration of the system is defined as a mapping $C: \mathbb{Z} \times \mathbb{Z} \rightarrow\{0,1\}$, where $C(x, y)=0$ if cell (x, y) is empty or $C(x, y)=1$ if cell (x, y) is occupied by a node.
- A rectangular path P over the set of cells is defined as $P=\left[c_{1}, c_{2}, c_{3}, \ldots, c_{k}\right]$, where $c_{i}, c_{i+1} \in \mathbb{Z} \times \mathbb{Z}$ are two cells adjacent to each other either vertically or horizontally, for all $i \in\{1,2, \ldots, k-1\}$.
- Given any P, let C_{P} be the configuration of P defined as the subset of C (configuration of the system) restricted to the cells of P.

Transparency of Line Moves

Proposition

Let S be any shape, $L \subseteq S$ any line and P a rectangular path starting from a position adjacent to one of L 's endpoints. There is a way to move L along P, while satisfying all the following properties:
(1) No delay:The number of steps is asymptotically equal to that of an optimum move of L along P in the case of C_{P} being empty (i.e., if no cells were occupied). That is, L is not delayed, independently of what C_{P} is.
(2) No effect: After L's move along $P, C_{P}^{\prime}=C_{P}$, i.e., the cell configuration has remained unchanged. Moreover, no occupied cell in C_{P} is ever emptied during L's move (but unoccupied cells may be temporarily occupied).
(3) No break: S remains connected throughout L's move.

Problem Definitions

HamiltonianConnected. Given a pair of connected Hamiltonian shapes (S_{I}, S_{F}) of the same order, where S_{I} is the initial shape and S_{F} the target shape, transform S_{I} into S_{F} while preserving connectivity throughout the transformation.

DiagonalToLineConnected. A special case of HamiltonianConnected in which S_{I} is a diagonal line and S_{F} is a straight line.

UniversalConnected. Given any pair of connected shapes $\left(S_{I}, S_{F}\right)$ of the same order, where S_{I} is the initial shape and S_{F} the target shape, transform S_{I} into S_{F} while preserving connectivity throughout the transformation.

An $O(n \log n)$-time Transformation for Hamiltonian Shapes

- Called Walk-Through-Path and solves HamiltonianConnected.
- Starts from one endpoint of the Hamiltonian path of S_{I} and applies a recursive successive doubling technique to transform S_{I} into a straight line S_{L}.
- Replace S_{I} with S_{F} reversely in Walk-Through-Path to go from S_{I} to S_{F} in the same asymptotic time.

Figure: A snapshot of phase i of Walk-Through-Path applied on a diagonal. Light grey cells represent the ending positions of the corresponding moves depicted in each sub-figure.

AnO($n \log n$)-time Transformation for Hamiltonian Shapes

Algorithm 1: HamiltonianToLine(S)

```
\(S=\left(u_{0}, u_{1}, \ldots, u_{|S|-1}\right)\) is a Hamiltonian shape
Initial conditions: \(S \leftarrow S_{I}\) and \(L_{0} \leftarrow\left\{u_{0}\right\}\)
for \(i=0, \ldots, \log |S|\) do
    LineWalk ( \(L_{i}\) )
    \(S_{i} \leftarrow \operatorname{select}\left(2^{i}\right) / /\) select the next terminal subset of \(2^{i}\) consecutive nodes of \(S\)
    \(L_{i}^{\prime} \leftarrow\) HamiltonianToLine \(\left(S_{i}\right) / /\) recursive call on \(S_{i}\)
    \(L_{i+1} \leftarrow \operatorname{combine}\left(L_{i}, L_{i}^{\prime}\right) / /\) combines \(L_{i}\) and \(L_{i}^{\prime}\) into a new straight line \(L_{i+1}\)
end
Output: a straight line \(S_{L}\)
```

- Main challenge: make the above transformation work in the general case.
- Hamiltonian shapes do not necessarily provide free space.
- Moving a line through the remaining configuration of nodes.
- Does not break their and its own connectivity by LineWalk operation.

AnO($n \log n$)-time Transformation for Hamiltonian Shapes

Theorem

For any pair of Hamiltonian shapes $S_{I}, S_{F} \in \mathcal{H}$ of the same order n, Walk-Through-Path transforms S_{I} into S_{F} (and S_{F} into $\left.S_{I}\right)$ in $O(n \log n)$ moves, while preserving connectivity of the shape during its course.

$$
\begin{aligned}
T & =\sum_{i=1}^{\log n} T(i)=\sum_{i=1}^{\log n} 2^{i-1}(i-1)-2^{i}=\sum_{i=1}^{\log n-1}(i-2) 2^{i}-2^{\log n} \leq \sum_{i=1}^{\log n-1} i \cdot 2^{i}-n \\
& \leq \sum_{j=1}^{\log n \log n} \sum_{i=j}^{i}-n l e \sum_{j=1}^{\log n} n-n \leq n \log n-n \leq O(n \log n) .
\end{aligned}
$$

An $O(n \sqrt{n})$-time Universal Transformation

- Solves the UniversalConnected problem and is called UC-Box.
- First, Compute a spanning tree T of the associated graph $G\left(S_{l}\right)$ of S_{l}.
- Enclose S_{I} into an $n \times n$ square box and divide it into $\sqrt{n} \times \sqrt{n}$ square sub-boxes.
- Each occupied sub-box contains one or more maximal sub-trees of T.
- Each such sub-tree corresponds to a sub-shape of S_{I}, called a component.
- Pick a leaf sub-tree T_{l} which is associated with component C_{l} occuping sub-box B_{l}.
- B_{p} is the sub-box adjacent to B_{l} containing the unique parent sub-tree T_{p} of T_{l}.
- Compress all nodes of C_{l} into B_{p} while keeping the nodes of C_{p} (the component of T_{p}) within B_{p}.

An $O(n \sqrt{n})$-time Universal Transformation

Algorithm 2: Compress(S)

$S=\left(u_{1}, u_{2}, \ldots, u_{|S|}\right)$ is a connected shape, T is a spanning tree of $G(S)$ repeat

```
    Cl}\leftarrow\operatorname{pick}(\mp@subsup{T}{l}{})// select a leaf component associated with a leaf sub-tree
    Compress(\mp@subsup{C}{l}{}) // start compressing the leaf component
    if Cl
        | C Cr
    else
        C
        end
    update(T) // update sub-trees and remove cycles after compression
until the whole shape is compressed into a \sqrt{}{n}\times\sqrt{}{n}\mathrm{ square}
Output: a square shape S}\mp@subsup{S}{C}{
```


An $O(n \sqrt{n})$-time Universal Transformation

- Main technical challenge: make this strategy work universally.
- $S_{\text {I }}$ might occupy several sub-boxes of different configurations.
- Preserving connectivity during the transformation.
- We manage to upper bound the cost of each charging phase independently of the order of compressions.

Theorem

For any pair of connected shapes $\left(S_{I}, S_{F}\right)$ of the same order n, UC-Box transforms $S_{\text {I }}$ into S_{F} (and S_{F} into S_{I}) in $O(n \sqrt{n})$ steps, while preserving connectivity during its course.

Open Problems

- An $O(n \log n)$-time universal connectivity-preserving transformation.
- A general $\Omega(n \log n)$-time matching lower bound.
- A centralised parallel version in which more than one line can be moved concurrently in a single time-step.
- A distributed version of the parallel model.
- The nodes operate autonomously through local control and under limited information.

