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Shape transformations

* Sometimes called pattern formation.

* One of the most essential goals for every robotic system.

* Given a 2D square grid.

* Each cell is occupied by a distinct device (agent) on the grid.

* Connected to each other and forming a shape SI .

* Given a desired target shape SF of the same order.
Goal: transform SI into SF via a finite number of valid moves.

SI SF
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Models of individual moves

I E.g., Dumitrescu et al. IJRR’04 and Michail et al. JCSS’19:

I An individual can move over and turn around its neighbours.
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I Akitaya et al. ESA’19 consider transformations based on similar
moves.

I Ω(n2) moves are required for all models of constant-distance
individual moves.
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Parallel transformations

I Multiple agents move together in a single time-step.

I Theoretical studies, such as Daymude et al., Natural
Computing’18.

I Practical implementations, such as Rubesntein et al.,
Science’14.

I It can be shown that a connected shape can transform into
any other connected shape, by performing in the worst case
O(n) parallel moves around the perimeter of the shape.
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Models of more powerful mechanism

– Equip nodes with strong actuation mechanisms.

– Reduce the inherent distance by a factor greater than a
constant in a single time-step.

– Linear-strength mechanisms, such as:

– Aloupis et al., (Computational Geometry’13) - an agent with
arms can extend and contract its neighbours.

– Woods et al., (ITCS’13) - an agent has the ability to rotate a
whole line of consecutive nodes.

– Czyzowicz et al., (ESA’19) consider a single moving robot that
transforms a static shape by carrying its tiles one at a time.

– Recently, we introduce the line-pushing model in (TCS’20).
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The line-pushing model

[Almethen et al., TCS’20]:

• An agent is connected to a neighbour vertically, horizontally
or diagonally.

(x, y)

A node is connected to a neighbour at any directions.

• Equipped with a linear-strength mechanism which enables it
to push a whole line in a single time-step, either vertically or
horizontally but not diagonally.
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The line-pushing model

• Exploiting the power of parallelism.

• Generalises the rotation and sliding models.

• Inherits all of their universality and reversibility properties.

• Allows diagonal connections on the grid.

• Achieved sub-quadratic time transformations,

• An O(n log n)-time universal transformation.

• All transformations are centralised,

• Reveal the underlying transformation complexities.

• Though, not directly applicable to real robotic systems.
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Contribution

I The first distributed transformation that exploits line moves within
a total of O(n log n) moves, asymptotically equivalent to that of the
best-known centralised transformations.

I Preserves all good properties of the centralised solutions.

I Include the move complexity (i.e. the total number of line moves).

I Also, its ability to preserve the connectivity.

I Always guarantee that the graphs induced by the nodes
occupied by the entities are connected during transformations.

I An important assumption for many applications that usually
require energy for:

I Communication and data exchange.
I Implementation of various locomotion mechanisms.
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Technical challenges

– Several challenges must be overcome in order to develop such a
distributed solution.

I Lack of global knowledge.

I Connectivity preservation.

I Timing - when to start/stop pushing

I Coordinating the moving of gnats, e.g:

I Follow the same route.
I No one is being pushed off.

I Agents do not automatically know whether they have been pushed.

I It might be possible to infer this through communication
and/or local observation.
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Distributed setting

– Discrete system of n indistinguishable agents on a 2D square grid.
– Agents act as finite-state automata, i.e.:

I They have constant memory.

– Can observe the states of nearby agents in a Moore neighbourhood .

I The eight cells surrounding an agent on the square gird.

– Operate in synchronised Look-Compute-Move (LCM) cycles.
– All communication is local.
– Actuation is based on:

I Local information.

I The agent’s internal state.
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An O(n log n)-move Hamiltonian transformation

[Almethen et al., ALGOSENSORS’20]:
– Introduced a connectivity-preserving strategy that transforms a pair of
connected shapes (SI ,SF ) of the same order to each other.
– The associated graphs of both shapes contain a Hamiltonian path.
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Problem Definition

– The proposed algorithm solves the line formation problem:

HamiltonianLine. Given any initial Hamiltonian shape SI , the
agents must form a final straight line SL of the same order from SI
via line moves while preserving connectivity throughout the
transformation.

– Preserves the best-known bound of O(n log n).

– A reasonable first step in the direction of more general
distributed transformations in the given setting.
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Definitions

I An agent p ∈ S is defined as a 5-tuple (X ,M,Q, δ,O), where
I Q is a finite set of states.
I X is the input alphabet for the states of the eight surrounding

p on the grid, so |X | = |Q|8.
I M = {↑, ↓,→,←, none} is the output alphabet corresponding

to the set of moves.
I A transition function δ : Q × X → Q ×M.
I The output function O : δ × X → M.

I A state q ∈ Q of p is a vector with seven components
(c1, c2, c3, c4, c5, c6, c7), where
I c1 is a label λ ∈ Λ (p may be referred to by its label).
I c2 and c3 are the transmission states.
I c4 and c6 store a local direction a ∈ A.
I c5 holds a bit from {0, 1}.
I c7 is a pushing direction d ∈ M.
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The Distributed Hamiltonian Transformation

I Assume a pre-processing phase provides the Hamiltonian path

I Proceeds in log n phases.

I Each phase consists of six sub-phases.

I Every sub-phase running for one or more synchronous rounds.

I A Hamiltonian path P in SI starts with a head labelled lh,

I Leads the process and coordinates all the sub-phases during
the transformation.

Almethen, Michail and Potapov Distributed Transformations of Hamiltonian Shapes based on Line Moves 15/29



Introduction Linear-strength Model Contribution Problem Definition Preliminaries Transformations

I Initially, the head lh forms a trivial line of length 1.

I In each phase i , 0 ≤ i ≤ log n − 1, there exists a line Li ,

I Starting from the head lh,
I Ending at a tail lt ,
I With 2i − 2 internal agents labelled l in between.

I By the end of phase i , Li will double its length via the six
sub-phases.

1. DefineSeg: Identify the next segment Si of length 2i .
2. CheckSeg: Check the configuration of Si .
3. DrawMap: Compute a rout map that takes Li to the end of Si .
4. Push: Move Li along the drawn route map.
5. RecursiveCall: A recursive-call to transform Si into a straight line L′

i .

6. Merge: Combine Li and L′
i together into a straight line Li+1 of 2i+1

double length. Then, phase i + 1 begins.
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Defining the next segment Si

I Identifies the next 2i agents on P.
I lh emits a signal which is then forwarded by the agents along

the line.
I Moving from a predecessor pi to a successor pi+1.
I Until it arrives at the first inactive agent, which becomes

active.

I Similarly, each line agent initiates its own signal once it passes
lh’s mark.

I Eventually, signals will re-label Si , starting from a head in
state sh, has 2i − 2 internal agents in state s and ending at a
tail st .
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Defining the next segment Si
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Checking Si
I Checks the Si configuration, e.g. in line or perpendicular to Li .
I A moving state initiated at Li
I Checking each local direction relative to neighbours, which check

each local direction relative to neighbours.
I If the check returns true, then

I calls Merge to combine Li and Si into a new line Li+1 of
length 2i+1.

I lh starts a new round i + 1.
I Otherwise, lh proceeds with the next sub-phase, DrawMap.
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Drawing a route map

I lh designates a route for Li to push towards the tail st of Si .

I Consists of two primitives:

I ComputeDistance:
I The line agents act as a distributed counter.
I Compute Manhattan distance between the tails of Li and Si ,

∆(lt , st).

I CollectArrows:
I Local directions are gathered from Si ’s agents.
I Then distributed into Li ’s agents.
I Collectively draw the route map.

I Once this is done, Li becomes ready to move and lh can start the
Push sub-phase.
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Distributed Binary Counter

– lh broadcasts a signal, asking all active agents to start the calculation.
– Once a segment agent pi observes this signal, it emits

- One increment mark “⊕” if its local direction is cardinal.

- Two sequential increment marks if it is diagonal.

(lh, ·, ·) (sh,⊕, 0)(l, ·, ·) (lt, ·, ·)(l, ·, ·) (s, ·, 0) (st, ·, 0) (k, ·, 0)

1248

(sh,⊕, 0)

(lh, ·, ·) (sh,⊕, 0)(l, ·, ·) (lt, ·, 1)(l, ·, ·) (s, ·, 0) (st, ·, 0) (k, ·, 0)

1248

(sh, ·, 0)

(lh, ·, ·) (sh, ·, 0)(l, ·, ·) (lt,⊕, 0)(l, ·, ·) (s, ·, 0) (st, ·, 0) (k, ·, 0)

1248

(sh, ·, 0)

(lh, ·, ·) (sh, ·, 0)(l, ·, ·) (s, ·, 0) (st, ·, 0) (k, ·, 0)

1248

(sh, ·, 0)(lt, ·, 1) (l, ·, 0)
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CollectArrows procedure

– Draws a route that can be either

- Heading directly to st .

- Passing by the middle of Si towards st .

– Segment agents then propagate their local directions stored in c4 back
towards lh.
– Line agents distribute and rearrange Si ’s local directions via several
primitives, e.g.,

- Cancelling out pairs of opposite directions.

- Priority collection.

- Pipelined transmission.

– Finally, the remaining arrows cooperatively draw a route map.
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CollectArrows procedure
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Figure: Drawing a map: from top-left a path across occupied cells and corresponding local arrows stored on

state c4 in top-tight, where the diagonal directions, “↘” and “↗”, are interpreted locally as, “↓→” and “↑→”.

The bottom shows a route map drawn locally on state c6 of each line agent.
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Pushing Li

– lh synchronises with lt to guide line agents during pushing.
– lt moves simultaneously with lh according to local direction â ∈ A in c6.
– lt checks the next cell (x , y) that Li pushes towards whether

- It is empty:

- lh pushes Li one step towards (x , y).
- All line agents shift their map arrows in c6 towards lt .

- Occupied by an agent p 6∈ Li :

- Each line agent swaps states with p.
- Tells lh to push one step.
- Until the line completely traverses the route and restores it to

its original state.
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Pushing Li

lh l l lt k

→
k k

→↑
lh l l lt k k

↑
klt

sync
push lh l l lt k kkltkl lt lh l l lt k

↑
kltkl lt kltc

→→ →

↑ →

sync
push lh l lt kkl kltc

kltlt
l

sync
push lh lt kkl kltc

kltlt

l

kltl

Figure: A line Li of agents inside grey cells, with map directions above,
pushing and turning through empty and non-empty cells in blue (of label
k). The green and yellow cells show state swapping.
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Recursive call on Si
– lh calls RecursiveCall to apply the general procedure recursively on Si in
order to transform it into a line L′i .
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Merging Li and L′i

– The final sub-phase of this transformation. – The agents of Li and L′i
combine into a new straight line Li+1 of 2i+1.
– Then, the head lh of Li+1 begins a new phase i + 1.

– Thus, we conclude that the call of RecursiveCall in the final phase
i = log n requires a total moves:

T=
∑log n

i=1 T (i)=
∑log n

i=1 2i−1(i−1)−2i=
∑log n−1

i=1 (i−2)2i−2log n≤
∑log n−1

i=1 i·2i−n

≤
∑log n

j=1

∑log n
i=j 2i−n≤

∑log n
j=1 n−n≤n log n−n≤O(n log n).

Theorem
The above distributed transformation solves HamiltonianLine and
takes at most O(n log n) line moves and O(n2 log n) rounds.
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Questions?

Almethen, Michail and Potapov Distributed Transformations of Hamiltonian Shapes based on Line Moves 29/29


	Introduction
	Linear-strength Model
	Contribution
	Problem Definition
	Preliminaries
	Transformations

