Distributed Transformations of Hamiltonian Shapes based on Line Moves

Abdullah Almethen，Othon Michail and Igor Potapov

Department of Computer Science
University Of Liverpool
ALGOSENSORS 2021

Outline

Introduction
Linear-strength Model
Contribution
Problem Definition

Preliminaries

Transformations

Shape transformations

* Sometimes called pattern formation.
* One of the most essential goals for every robotic system.
* Given a 2D square grid.
* Each cell is occupied by a distinct device (agent) on the grid.
* Connected to each other and forming a shape S_{I}.
* Given a desired target shape S_{F} of the same order.

Goal: transform S_{I} into S_{F} via a finite number of valid moves.

Models of individual moves

- E.g., Dumitrescu et al. IJRR'04 and Michail et al. JCSS'19:
- An individual can move over and turn around its neighbours.

- Akitaya et al. ESA'19 consider transformations based on similar moves.
- $\Omega\left(n^{2}\right)$ moves are required for all models of constant-distance individual moves.

Parallel transformations

- Multiple agents move together in a single time-step.
- Theoretical studies, such as Daymude et al., Natural Computing'18.
- Practical implementations, such as Rubesntein et al., Science'14.
- It can be shown that a connected shape can transform into any other connected shape, by performing in the worst case $O(n)$ parallel moves around the perimeter of the shape.

Models of more powerful mechanism

- Equip nodes with strong actuation mechanisms.
- Reduce the inherent distance by a factor greater than a constant in a single time-step.
- Linear-strength mechanisms, such as:
- Aloupis et al., (Computational Geometry'13) - an agent with arms can extend and contract its neighbours.
- Woods et al., (ITCS'13) - an agent has the ability to rotate a whole line of consecutive nodes.
- Czyzowicz et al., (ESA'19) consider a single moving robot that transforms a static shape by carrying its tiles one at a time.
- Recently, we introduce the line-pushing model in (TCS'20).

The line-pushing model

[Almethen et al., TCS'20]:

- An agent is connected to a neighbour vertically, horizontally or diagonally.

A node is connected to a neighbour at any directions.

- Equipped with a linear-strength mechanism which enables it to push a whole line in a single time-step, either vertically or horizontally but not diagonally.

The line-pushing model

- Exploiting the power of parallelism.
- Generalises the rotation and sliding models.
- Inherits all of their universality and reversibility properties.
- Allows diagonal connections on the grid.
- Achieved sub-quadratic time transformations,
- An $O(n \log n)$-time universal transformation.
- All transformations are centralised,
- Reveal the underlying transformation complexities.
- Though, not directly applicable to real robotic systems.

Contribution

- The first distributed transformation that exploits line moves within a total of $O(n \log n)$ moves, asymptotically equivalent to that of the best-known centralised transformations.
- Preserves all good properties of the centralised solutions.
- Include the move complexity (i.e. the total number of line moves).
- Also, its ability to preserve the connectivity.
- Always guarantee that the graphs induced by the nodes occupied by the entities are connected during transformations.
- An important assumption for many applications that usually require energy for:
- Communication and data exchange.
- Implementation of various locomotion mechanisms.

Technical challenges

- Several challenges must be overcome in order to develop such a distributed solution.
- Lack of global knowledge.
- Connectivity preservation.
- Timing - when to start/stop pushing
- Coordinating the moving of gnats, e.g:
- Follow the same route.
- No one is being pushed off.
- Agents do not automatically know whether they have been pushed.
- It might be possible to infer this through communication and/or local observation.

Distributed setting

- Discrete system of n indistinguishable agents on a 2D square grid.
- Agents act as finite-state automata, i.e.:
- They have constant memory.
- Can observe the states of nearby agents in a Moore neighbourhood.
- The eight cells surrounding an agent on the square gird.
- Operate in synchronised Look-Compute-Move (LCM) cycles.
- All communication is local.
- Actuation is based on:
- Local information.
- The agent's internal state.

An $O(n \log n)$-move Hamiltonian transformation
[Almethen et al., ALGOSENSORS'20]:

- Introduced a connectivity-preserving strategy that transforms a pair of connected shapes (S_{I}, S_{F}) of the same order to each other.
- The associated graphs of both shapes contain a Hamiltonian path.

Problem Definition

- The proposed algorithm solves the line formation problem:

HamiltonianLine. Given any initial Hamiltonian shape S_{l}, the agents must form a final straight line S_{L} of the same order from S_{I} via line moves while preserving connectivity throughout the transformation.

- Preserves the best-known bound of $O(n \log n)$.
- A reasonable first step in the direction of more general distributed transformations in the given setting.

Definitions

- An agent $p \in S$ is defined as a 5 -tuple (X, M, Q, δ, O), where
- Q is a finite set of states.
- X is the input alphabet for the states of the eight surrounding p on the grid, so $|X|=|Q|^{8}$.
- $M=\{\uparrow, \downarrow, \rightarrow, \leftarrow$, none $\}$ is the output alphabet corresponding to the set of moves.
- A transition function $\delta: Q \times X \rightarrow Q \times M$.
- The output function $O: \delta \times X \rightarrow M$.
- A state $q \in Q$ of p is a vector with seven components $\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right)$, where
- c_{1} is a label $\lambda \in \Lambda$ (p may be referred to by its label).
- c_{2} and c_{3} are the transmission states.
- c_{4} and c_{6} store a local direction $a \in A$.
- c_{5} holds a bit from $\{0,1\}$.
- c_{7} is a pushing direction $d \in M$.

The Distributed Hamiltonian Transformation

- Assume a pre-processing phase provides the Hamiltonian path
- Proceeds in $\log n$ phases.
- Each phase consists of six sub-phases.
- Every sub-phase running for one or more synchronous rounds.
- A Hamiltonian path P in S_{I} starts with a head labelled I_{h},
- Leads the process and coordinates all the sub-phases during the transformation.
- Initially, the head I_{h} forms a trivial line of length 1 .
- In each phase $i, 0 \leq i \leq \log n-1$, there exists a line L_{i},
- Starting from the head I_{h},
- Ending at a tail I_{t},
- With $2^{i}-2$ internal agents labelled $/$ in between.
- By the end of phase i, L_{i} will double its length via the six sub-phases.

1. DefineSeg: Identify the next segment S_{i} of length 2^{i}.
2. CheckSeg: Check the configuration of S_{i}.
3. DrawMap: Compute a rout map that takes L_{i} to the end of S_{i}.
4. Push: Move L_{i} along the drawn route map.
5. RecursiveCall: A recursive-call to transform S_{i} into a straight line L_{i}^{\prime}.
6. Merge: Combine L_{i} and L_{i}^{\prime} together into a straight line L_{i+1} of 2^{i+1} double length. Then, phase $i+1$ begins.

(a) DefineSeg, CheckSeg and DrawMap.

(b) Push.

(c) RecursiveCall.

(d) Merge.

Defining the next segment S_{i}

- Identifies the next 2^{i} agents on P.
- I_{h} emits a signal which is then forwarded by the agents along the line.
- Moving from a predecessor p_{i} to a successor p_{i+1}.
- Until it arrives at the first inactive agent, which becomes active.
- Similarly, each line agent initiates its own signal once it passes In's mark.
- Eventually, signals will re-label S_{i}, starting from a head in state s_{h}, has $2^{i}-2$ internal agents in state s and ending at a tail s_{t}.

Defining the next segment S_{i}

Checking S_{i}

- Checks the S_{i} configuration, e.g. in line or perpendicular to L_{i}.
- A moving state initiated at L_{i}
- Checking each local direction relative to neighbours, which check each local direction relative to neighbours.
- If the check returns true, then
- calls Merge to combine L_{i} and S_{i} into a new line L_{i+1} of length 2^{i+1}.
- I_{h} starts a new round $i+1$.
- Otherwise, I_{h} proceeds with the next sub-phase, DrawMap.

Drawing a route map

- I_{h} designates a route for L_{i} to push towards the tail s_{t} of S_{i}.
- Consists of two primitives:
- ComputeDistance:
- The line agents act as a distributed counter.
- Compute Manhattan distance between the tails of L_{i} and S_{i}, $\Delta\left(I_{t}, s_{t}\right)$.
- CollectArrows:
- Local directions are gathered from S_{i} 's agents.
- Then distributed into L_{i} 's agents.
- Collectively draw the route map.
- Once this is done, L_{i} becomes ready to move and I_{h} can start the Push sub-phase.

Distributed Binary Counter

- I_{h} broadcasts a signal, asking all active agents to start the calculation.
- Once a segment agent p_{i} observes this signal, it emits
- One increment mark " \oplus " if its local direction is cardinal.
- Two sequential increment marks if it is diagonal.

CollectArrows procedure

- Draws a route that can be either
- Heading directly to s_{t}.
- Passing by the middle of S_{i} towards s_{t}.
- Segment agents then propagate their local directions stored in c_{4} back towards I_{h}.
- Line agents distribute and rearrange S_{i} 's local directions via several primitives, e.g.,
- Cancelling out pairs of opposite directions.
- Priority collection.
- Pipelined transmission.
- Finally, the remaining arrows cooperatively draw a route map.

CollectArrows procedure

S

Figure: Drawing a map: from top-left a path across occupied cells and corresponding local arrows stored on state c_{4} in top-tight, where the diagonal directions, " \searrow " and " \nearrow ", are interpreted locally as, " $\downarrow \rightarrow$ " and " $\uparrow \rightarrow$ ".

The bottom shows a route map drawn locally on state c_{6} of each line agent.

Pushing L_{i}

- I_{h} synchronises with I_{t} to guide line agents during pushing.
$-I_{t}$ moves simultaneously with I_{h} according to local direction $\hat{a} \in A$ in c_{6}.
- I_{t} checks the next cell (x, y) that L_{i} pushes towards whether
- It is empty:
- I_{h} pushes L_{i} one step towards (x, y).
- All line agents shift their map arrows in c_{6} towards I_{t}.
- Occupied by an agent $p \notin L_{i}$:
- Each line agent swaps states with p.
- Tells I_{h} to push one step.
- Until the line completely traverses the route and restores it to its original state.

Pushing L_{i}

Figure: A line L_{i} of agents inside grey cells, with map directions above, pushing and turning through empty and non-empty cells in blue (of label $k)$. The green and yellow cells show state swapping.

Recursive call on S_{i}

- I_{h} calls RecursiveCall to apply the general procedure recursively on S_{i} in order to transform it into a line L_{i}^{\prime}.

Merging L_{i} and L_{i}^{\prime}

- The final sub-phase of this transformation. - The agents of L_{i} and L_{i}^{\prime} combine into a new straight line L_{i+1} of 2^{i+1}.
- Then, the head I_{h} of L_{i+1} begins a new phase $i+1$.
- Thus, we conclude that the call of RecursiveCall in the final phase $i=\log n$ requires a total moves:

$$
\begin{aligned}
T & =\sum_{i=1}^{\log n} T(i)=\sum_{i=1}^{\log n} 2^{i-1}(i-1)-2^{i}=\sum_{i=1}^{\log n-1}(i-2) 2^{i}-2^{\log n} \leq \sum_{i=1}^{\log n-1} i \cdot 2^{i}-n \\
& \leq \sum_{j=1}^{\log n} \sum_{i=j}^{\log n} 2^{i}-n \leq \sum_{j=1}^{\log n} n-n \leq n \log n-n \leq O(n \log n) .
\end{aligned}
$$

Theorem
The above distributed transformation solves HamiltonianLine and takes at most $O(n \log n)$ line moves and $O\left(n^{2} \log n\right)$ rounds.

Questions?

