Distributed Transformations of Hamiltonian Shapes based on Line Moves

Abdullah Almethen, Othon Michail and Igor Potapov

Department of Computer Science University Of Liverpool

ALGOSENSORS 2021

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Introduction 0000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Outline

Introduction

- Linear-strength Model
- Contribution
- **Problem Definition**
- Preliminaries

Transformations

Almethen, Michail and Potapov Distributed Transformations of Hamiltonian Shapes based on Line Moves

э.

Introduction •000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Shape transformations

- * Sometimes called *pattern formation*.
- * One of the most essential goals for every robotic system.
- * Given a 2D square grid.
- * Each cell is occupied by a distinct device (agent) on the grid.
- * Connected to each other and forming a shape S_I .
- * Given a desired target shape S_F of the same order. **Goal:** transform S_I into S_F via a finite number of valid moves.

Introduction 0000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries	Transformations

Models of individual moves

- E.g., Dumitrescu et al. IJRR'04 and Michail et al. JCSS'19:
 - An individual can move over and turn around its neighbours.

- Akitaya et al. ESA'19 consider transformations based on similar moves.
- Ω(n²) moves are required for all models of constant-distance individual moves.

ヘロト ヘヨト ヘヨト ヘヨト

Introduction	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Parallel transformations

- Multiple agents move together in a single time-step.
- Theoretical studies, such as Daymude *et al.*, Natural Computing'18.
- Practical implementations, such as Rubesntein *et al.*, Science'14.
- It can be shown that a connected shape can transform into any other connected shape, by performing in the worst case O(n) parallel moves around the perimeter of the shape.

イロト イボト イヨト イヨト

Introduction 000●	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Models of more powerful mechanism

- Equip nodes with strong actuation mechanisms.
- Reduce the inherent distance by a factor greater than a constant in a single time-step.
- Linear-strength mechanisms, such as:
 - Aloupis *et al.*, (Computational Geometry'13) an agent with arms can extend and contract its neighbours.
 - Woods *et al.*, (ITCS'13) an agent has the ability to rotate a whole line of consecutive nodes.
 - Czyzowicz *et al.*, (ESA'19) consider a single moving robot that transforms a static shape by carrying its tiles one at a time.
 - Recently, we introduce the line-pushing model in (TCS'20).

Linear-strength Model ●○	Contribution	Problem Definition 0	Preliminaries 0000	Transformations
	Linear-strength Model ●0	Linear-strength Model Contribution ●○ ○○○○	Linear-strength Model Contribution Problem Definition ●○ ○○○○ ○	Linear-strength Model Contribution Problem Definition Preliminaries ●○ ○○○○ ○ ○○○○

The line-pushing model

[Almethen et al., TCS'20]:

• An agent is connected to a neighbour vertically, horizontally or diagonally.

A node is *connected* to a neighbour at any directions.

 Equipped with a linear-strength mechanism which enables it to push a whole line in a single time-step, either vertically or horizontally but not diagonally.

Almethen, Michail and Potapov

Distributed Transformations of Hamiltonian Shapes based on Line Moves

Introduction 0000	Linear-strength Model ○●	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

The line-pushing model

- Exploiting the power of parallelism.
- Generalises the rotation and sliding models.
- Inherits all of their universality and reversibility properties.
- Allows diagonal connections on the grid.
- Achieved sub-quadratic time transformations,
 - An $O(n \log n)$ -time universal transformation.
- All transformations are centralised,
 - Reveal the underlying transformation complexities.
- Though, not directly applicable to real robotic systems.

イロト イポト イヨト イヨト

Introduction 0000	Linear-strength Model	Contribution •000	Problem Definition 0	Preliminaries 0000	Transformations

Contribution

- The first distributed transformation that exploits line moves within a total of O(n log n) moves, asymptotically equivalent to that of the best-known centralised transformations.
- Preserves all good properties of the centralised solutions.
- ▶ Include the *move complexity* (i.e. the total number of line moves).
- Also, its ability to preserve the connectivity.
 - Always guarantee that the graphs induced by the nodes occupied by the entities are connected during transformations.
 - An important assumption for many applications that usually require energy for:
 - Communication and data exchange.
 - Implementation of various locomotion mechanisms.

Introduction 0000	Linear-strength Model	Contribution ○●○○	Problem Definition 0	Preliminaries 0000	Transformations

Technical challenges

- Several challenges must be overcome in order to develop such a distributed solution.

- Lack of global knowledge.
- Connectivity preservation.
- Timing when to start/stop pushing
- Coordinating the moving of gnats, e.g:
 - Follow the same route.
 - No one is being pushed off.
- Agents do not automatically know whether they have been pushed.
 - It might be possible to infer this through communication and/or local observation.

10/29

Intr 000	oduction Lir	ear-strength Model	Contribution 00●0	Problem Definition 0	Preliminaries 0000	Transformations

Distributed setting

- Discrete system of n indistinguishable agents on a 2D square grid.
- Agents act as finite-state automata, i.e.:
 - They have constant memory.
- Can observe the states of nearby agents in a Moore neighbourhood .
 - The eight cells surrounding an agent on the square gird.
- Operate in synchronised Look-Compute-Move (LCM) cycles.
- All communication is local.
- Actuation is based on:
 - Local information.
 - The agent's internal state.

11/29

Introduction 0000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

An $O(n \log n)$ -move Hamiltonian transformation

[Almethen et al., ALGOSENSORS'20]:

– Introduced a connectivity-preserving strategy that transforms a pair of connected shapes (S_I, S_F) of the same order to each other.

- The associated graphs of both shapes contain a Hamiltonian path.

Introduction 0000	Linear-strength Model	Contribution	Problem Definition	Preliminaries 0000	Transformations

Problem Definition

- The proposed algorithm solves the line formation problem:

HAMILTONIANLINE. Given any initial Hamiltonian shape S_I , the agents must form a final straight line S_L of the same order from S_I via line moves while preserving connectivity throughout the transformation.

- Preserves the best-known bound of $O(n \log n)$.
- A reasonable first step in the direction of more general distributed transformations in the given setting.

イロト 不得 トイヨト イヨト

ansformations
onar 00

Definitions

▶ An agent $p \in S$ is defined as a 5-tuple (X, M, Q, δ, O) , where

- Q is a finite set of states.
- X is the input alphabet for the states of the eight surrounding p on the grid, so |X| = |Q|⁸.
- M = {↑,↓,→,←, none} is the output alphabet corresponding to the set of moves.
- A transition function $\delta : Q \times X \to Q \times M$.
- The output function $O: \delta \times X \to M$.
- A state $q \in Q$ of p is a vector with seven components $(c_1, c_2, c_3, c_4, c_5, c_6, c_7)$, where
 - c_1 is a label $\lambda \in \Lambda$ (p may be referred to by its label).
 - c_2 and c_3 are the transmission states.
 - c_4 and c_6 store a local direction $a \in A$.
 - c_5 holds a bit from $\{0, 1\}$.
 - c_7 is a pushing direction $d \in M$.

Introduction 0000	Linear-strength Model 00	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

The Distributed Hamiltonian Transformation

- Assume a pre-processing phase provides the Hamiltonian path
- Proceeds in log n phases.
- Each phase consists of six sub-phases.
 - Every sub-phase running for one or more synchronous rounds.
- A Hamiltonian path P in S_I starts with a head labelled I_h ,
 - Leads the process and coordinates all the sub-phases during the transformation.

Introduction 0000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries	Transformations

- Initially, the head I_h forms a trivial line of length 1.
- ▶ In each phase *i*, $0 \le i \le \log n 1$, there exists a line L_i ,
 - Starting from the head *l_h*,
 - Ending at a tail I_t ,
 - With $2^i 2$ internal agents labelled / in between.
- By the end of phase *i*, L_i will double its length via the six sub-phases.
 - 1. DefineSeg: Identify the next segment S_i of length 2^i .
 - 2. CheckSeg: Check the configuration of S_i .
 - 3. DrawMap: Compute a rout map that takes L_i to the end of S_i .
 - 4. Push: Move L_i along the drawn route map.
 - 5. RecursiveCall: A recursive-call to transform S_i into a straight line L'_i .
 - 6. Merge: Combine L_i and L'_i together into a straight line L_{i+1} of 2^{i+1} double length. Then, phase i + 1 begins.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Linear-strength Model	Contribution	Problem Definition	Preliminaries	Transformations
0000	00		0	0000	•000000000000

Defining the next segment S_i

- Identifies the next 2^i agents on P.
- *I_h* emits a signal which is then forwarded by the agents along the line.
 - Moving from a predecessor p_i to a successor p_{i+1} .
 - Until it arrives at the first inactive agent, which becomes active.
- Similarly, each line agent initiates its own signal once it passes *l_h*'s mark.
- ► Eventually, signals will re-label S_i, starting from a head in state s_h, has 2ⁱ 2 internal agents in state s and ending at a tail s_t.

Almethen, Michail and Potapov Distributed Tran

18/29

Introduction 0000	Linear-strength Model	Contribution 0000	Problem Definition 0	Preliminaries 0000	Transformations 000000000000

Defining the next segment S_i

Almethen, Michail and Potapov

Distributed Transformations of Hamiltonian Shapes based on Line Moves

19/29

Introduction 0000	Linear-strength Model 00	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Checking S_i

- Checks the S_i configuration, e.g. in line or perpendicular to L_i .
- A moving state initiated at L_i
- Checking each local direction relative to neighbours, which check each local direction relative to neighbours.
- If the check returns true, then
 - calls Merge to combine L_i and S_i into a new line L_{i+1} of length 2ⁱ⁺¹.
 - l_h starts a new round i + 1.
- Otherwise, I_h proceeds with the next sub-phase, DrawMap.

Almethen, Michail and Potapov

Introduction 0000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Drawing a route map

- l_h designates a route for L_i to push towards the tail s_t of S_i .
- Consists of two primitives:
 - ComputeDistance:
 - The line agents act as a distributed counter.
 - Compute Manhattan distance between the tails of L_i and S_i , $\Delta(l_t, s_t)$.
 - CollectArrows:
 - Local directions are gathered from S_i's agents.
 - Then distributed into L_i's agents.
 - Collectively draw the route map.

Once this is done, L_i becomes ready to move and l_h can start the Push sub-phase.

イロト 不得 トイヨト イヨト

Introduction 0000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Distributed Binary Counter

- l_h broadcasts a signal, asking all active agents to start the calculation.
- Once a segment agent p_i observes this signal, it emits
 - One increment mark " \oplus " if its local direction is cardinal.
 - Two sequential increment marks if it is diagonal.

Almethen, Michail and Potapov

イロト 不得 トイヨト イヨト

Introduction 0000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

CollectArrows procedure

- Draws a route that can be either
 - Heading directly to s_t .
 - Passing by the middle of S_i towards s_t .
- Segment agents then propagate their local directions stored in c_4 back towards I_h .
- Line agents distribute and rearrange S_i 's local directions via several primitives, e.g.,
 - Cancelling out pairs of opposite directions.
 - Priority collection.
 - Pipelined transmission.
- Finally, the remaining arrows cooperatively draw a route map.

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction 0000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

CollectArrows procedure

Figure: Drawing a map: from top-left a path across occupied cells and corresponding local arrows stored on state c_4 in top-tight, where the diagonal directions, " \searrow " and " \nearrow ", are interpreted locally as, " $\downarrow \rightarrow$ " and " $\uparrow \rightarrow$ ". The bottom shows a route map drawn locally on state c_6 of each line agent. (日) (四) (日) (日)

Almethen, Michail and Potapov Distributed Transformations of Hamiltonian Shapes based on Line Moves э

Introduction 0000	Linear-strength Model 00	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Pushing L_i

- I_h synchronises with I_t to guide line agents during pushing.
- I_t moves simultaneously with I_h according to local direction $\hat{a} \in A$ in c_6 .
- I_t checks the next cell (x, y) that L_i pushes towards whether
 - It is empty:
 - I_h pushes L_i one step towards (x, y).
 - All line agents shift their map arrows in c_6 towards l_t .
 - Occupied by an agent $p \notin L_i$:
 - Each line agent swaps states with p.
 - Tells I_h to push one step.
 - Until the line completely traverses the route and restores it to its original state.

・ロット (四) (日) (日) (日)

Introduction 0000	Linear-strength Model 00	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Pushing L_i

Figure: A line L_i of agents inside grey cells, with map directions above, pushing and turning through empty and non-empty cells in blue (of label k). The green and yellow cells show state swapping.

Introduction 0000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Recursive call on S_i

- l_h calls RecursiveCall to apply the general procedure recursively on S_i in order to transform it into a line L'_i .

Almethen, Michail and Potapov

Distributed Transformations of Hamiltonian Shapes based on Line Moves

27/29

Introduction 0000	Linear-strength Model	Contribution	Problem Definition 0	Preliminaries 0000	Transformations

Merging L_i and L'_i

– The final sub-phase of this transformation. – The agents of L_i and L'_i combine into a new straight line L_{i+1} of 2^{i+1} .

- Then, the head I_h of L_{i+1} begins a new phase i + 1.

- Thus, we conclude that the call of RecursiveCall in the final phase $i = \log n$ requires a total moves:

$$T = \sum_{i=1}^{\log n} T(i) = \sum_{i=1}^{\log n} 2^{i-1}(i-1) - 2^i = \sum_{i=1}^{\log n-1} (i-2)2^i - 2^{\log n} \le \sum_{i=1}^{\log n-1} i \cdot 2^i - n$$

$$\leq \sum_{i=1}^{\log n} \sum_{i=j}^{\log n} 2^i - n \le \sum_{j=1}^{\log n} n - n \le n \log n - n \le O(n \log n).$$

Theorem

The above distributed transformation solves HAMILTONIANLINE and takes at most $O(n \log n)$ line moves and $O(n^2 \log n)$ rounds.

Almethen, Michail and Potapov Distributed Transformations of Hamiltonian Shapes based on Line Moves

イロト イボト イヨト イヨト

Introduction Linear-strength Model Contribution Problem Definition Prelimin 0000 00 000 0 0000 0 0000	aries Transformations

Questions?

Almethen, Michail and Potapov Distributed Transformations of Hamiltonian Shapes based on Line Moves 2

≣ ∽ < ભ 29/29

・ロト ・西ト ・ヨト ・ヨト