Centralised Connectivity-Preserving Transformations by Rotation: 3 Musketeers for all Orthogonal Convex Shapes

M. Connor, O. Michail

ALGOSENSORS 2022

Programmable matter systems

Multi-Agent systems

Decentralised
Weak

Centralised variant - feasibility

Overview

- Model and problem definition
- Orthogonal convex shapes
-6/7-Robot movement
- Transformation

Model and Problem definitions

- Set S of n agents in the shape A occupying cells in a 2D grid
- Transformation of A into shape B in time t by a series of configurations $C_{0} \ldots C_{t}$ each reachable by a single move from a single node
- Centralised model to explore feasibility
- Rotation - movement of one node 90° around another node
- Rot-Transformability - Rotation only
- RotC-Transformability - Rotation only, connectivity must be preserved

Rotation Only

Rotation

Rotation Only

Rotation Only

Rotation Only

Rotation

- Our focus - transforming orthogonal convex shapes into each other in the RotC setting
- Rotation only - simple operations are easier to implement in real-world systems, colour restrictions in square/triangular grids technically interesting
- Connectivity - programmable matter, not swarm robotics
- Certain orthogonal convex shapes cannot meaningly transform in RotC
- Therefore transformations are aided by seeds - nodes placed in empty cells neighbouring a shape to create a new shape to aid transformation
- We discard the seed at the end

Related Work

- Various programmable matter models developed e.g. [Dumitrescu, Pach, Symposium on Computational Geometry, 2004]
- Programmable materials developed e.g. [Rothemund, Nature, 2006]

Recent papers on the concept of seed-assisted transformations in programmable matter

- Universal transformation for Rot-Transformability for all unblocked shapes, introduction of RotC-Transformability and seeds, line folding with seeds, impossibility of 5-node line traversal and orthogonal convex idea [Michail et al., JCSS, 2019]
- Any pair of color-consistent nice shapes [Almethen, Michail, Potapov, TCS, 2020] A, B in O(n^{2}) moves with a 4 -seed [C, Michail, Potapov, ALGOSENSORS 2021] - not directly comparable with orthogonal convex
- Universal transformation with connectivity preservation using "leapfrog" and "monkey" movement and a 5-node seed [Akitaya et al., Algorithmica, 2021]

Proposition. A shape S is a connected orthogonal convex shape iff its perimeter satisfies both the following properties:

- It is described by the regular expression

$$
d_{1}\left(d_{1} \mid d_{2}\right)^{*} d_{2}\left(d_{2} \mid d_{3}\right)^{*} d_{3}\left(d_{3} \mid d_{4}\right)^{*} d_{4}\left(d_{4} \mid d_{1}\right)^{*}
$$

under the additional constraint that $N_{1}=N_{3}$ and $N_{2}=N_{4}$.

- Its interior has no empty cell.

Orthogonal convex shapes

Rotation-only: Blocked Shapes

No move: 0-blocked (or blocked)

If connectivity must be preserved: k-blocked

Rotation-only: Blocked Shapes

No move: 0-blocked

If connectivity must be preserved: k-blocked

Rotation-only: Blocked Shapes

No move: 0-blocked

If connectivity must be preserved: k-blocked

Rotation-only: Blocked Shapes

No move: 0-blocked

If connectivity must be preserved: k-blocked

Main Results

- Theorem 1. For any orthogonal convex shape S, a 6-robot is capable of traversing the perimeter of S.
- Theorem 2. For any orthogonal convex shape S, a 7-robot is capable of traversing the perimeter of S.
- Theorem 3. Let S and S^{\prime} be connected colour-consistent orthogonal convex shapes. Then there is a connected shape M of 3 nodes (the 3 musketeers) and an attachment of M to the bottom-most row of S, such that $S \cup M$ can reach the configuration S^{\prime} in $\mathrm{O}\left(n^{2}\right)$ time steps.

6-robot movement

6 node block

Set C of corner cases depending on height and width Invariant - robot in new location with same structure Solve for one quadrant, the rest follow by rotation

Cases

Fig. 8: The four basic corner scenarios of \mathcal{C}.

7-robot movement

- Represents a 6-robot carrying an extra node (the load)
- Mostly the same as 6 -robot movement
- Key difference - two positions for the extra node
- Double the cases!

> 7-robot

Any pair of color-consistent orthogonal convex shapes A, B in $O\left(n^{2}\right)$ moves with a 3 -seed

Shape B

3 musketeers to 6-robot

The transformation process

We now have the main structure of our transformation process:

- Add a 3-node seed to create a 6-robot
- Move the 6-robot around the shape
- Remove a node according to a shape elimination sequence
- Move the resulting 7-robot
- Place the node according to a shape generation sequence

Algorithm 2 OConvexToDLL(S, M)

Input: shape $S \cup M$, where S is a connected orthogonal convex shape of n nodes and M is a 3 -node seed on the cell perimeter of S, row elimination sequence $\sigma=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ of S, extended staircase generation sequence of $W \cup T=\sigma^{\prime}=$ $\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right)$ which is colour-order preserving w.r.t. σ, shape elimination sequence $\sigma=\left(u_{1}, u_{2}, \ldots, u_{|T|}\right)$ of T, shape generation sequence of $X=\sigma^{\prime}=\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{|T|}^{\prime}\right)$ which is colour-order preserving w.r.t. σ
Output: shape $G=W \cup X \cup M$, where G is a diagonal line-with-leaves and M is a connected 3-node shape on the cell perimeter of S.
$R \leftarrow$ GenerateRobot (S, M)
$\sigma \leftarrow$ rowEliminationSequence (S)
$\sigma^{\prime} \leftarrow$ ExtendedStaircase (σ)
$W \cup T \leftarrow$ OConvexToExtStaircase $\left(S, R, \sigma, \sigma^{\prime}\right)$
$\sigma \leftarrow$ repsEliminationSequence $(W \cup T)$
$\sigma^{\prime} \leftarrow$ stairExtensionSequence $(W \cup T)$
$G \leftarrow \operatorname{ExtStaircaseToDLL}\left(W \cup T, R, \sigma, \sigma^{\prime}\right)$
TerminateRobot(G, R)

Any orthogonalconvex shape

 $+$
 Proof Overview

Lemma 15. Let S be a connected orthogonal convex shape. Then there is a connected shape M of 3 nodes (the 3 musketeers) and an attachment of M to the bottom-most row of S, such that $S \cup M$ can reach a configuration $S^{\prime} \cup M^{\prime}$ satisfying the following properties. $S^{\prime}=S \backslash\left\{u_{1}, u_{2}, u_{3}\right\}$, where $\left\{u_{1}, u_{2}, u_{3}\right\}$ is the 3-prefix of a row elimination sequence σ of S starting from the bottom-most row of $S . M^{\prime}$ is a 6 -robot on the perimeter of S^{\prime}.

Orthogonal-convex shape + 6-robot

Proof Overview

Lemma 2. Every connected orthogonal convex shape S has a row (and column) elimination sequence σ.

Lemma 3. Let σ be a bicoloured sequence of nodes that fulfills all the following conditions:

- The set of the first two nodes in σ is not single-coloured.
- The third node of σ is black.
- σ does not contain a single-coloured 3-sub-sequence.

Then there is an extended staircase generation sequence $\sigma^{\prime}=\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right)$ which is colour-order preserving with respect to σ.

Lemma 4. For any connected orthogonal convex shape S of n nodes, given a row elimination sequence $\sigma=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ of S where the set of the first two nodes in σ is not single-coloured and u_{3} is black, there is an extended staircase generation sequence $\sigma^{\prime}=\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right)$ which is colour-order preserving w.r.t σ and such that, for all $1 \leq i \leq|\sigma|, D_{i}=\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{i}^{\prime}\right\}$ is a connected orthogonal convex shape.

Orthogonal-convex shape +6 -robot

Proof Overview

Extended staircase

Orthogonal-convex shape + 6-robot

Proof Overview

Any orthogonalconvex shape

Proof Overview

Theorem. Let S and S^{\prime} be connected color-consistent orthogonal convex shapes. Then there is a connected shape M of 3 nodes (the 3 musketeers) and an attachment of M to the bottom-most row of S, such that $S \cup M$ can reach the configuration S^{\prime} in $O\left(n^{2}\right)$ moves.

Shape S

consistent orthogonal convex shapes. Then there is a connected shape M of 3 nodes (the 3 musketeers) and an attachment of M to the bottom-most row of S, such that $S \cup M$ can reach the configuration S^{\prime} in $O\left(n^{2}\right)$ moves.

26/27

Summary and open problems

- Seeds can aid the transformation of blocked shapes
- Rot-transformability is universal
- Minimal seed RotC-transformability for nice shapes
- Minimal seed transformations of orthogonal convex shapes
- Movement of 6/7-node robots around the perimeter - Theorem 1 and Theorem 2
- Transformation of orthogonal convex into other orthogonal convex by reversibility - Theorem 3

Open problems:

- Decentralising the execution
- Extending the class - universal transformation?
- Double spiral - example of problems of universal transformation

