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Programmable matter systems

Multi-Agent systems

Decentralised
Weak

Centralised variant - feasibility
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Overview

* Model and problem definition
* Orthogonal convex shapes

* 6/7-Robot movement

* Transformation
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Model and Problem definitions

e Set S of n agents in the shape A occupying cells in a 2D grid

* Transformation of A into shape B in time t by a series of configurations
Co ... C; each reachable by a single move from a single node

* Centralised model to explore feasibility

* Rotation — movement of one node 90° around another node

e Rot-Transformability — Rotation only

* RotC-Transformability — Rotation only, connectivity must be preserved
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e Our focus — transforming orthogonal convex shapes into each other in the
RotC setting

* Rotation only — simple operations are easier to implement in real-world
systems, colour restrictions in square/triangular grids technically interesting

e Connectivity — programmable matter, not swarm robotics
e Certain orthogonal convex shapes cannot meaningly transform in RotC

* Therefore transformations are aided by seeds — nodes placed in empty cells
neighbouring a shape to create a new shape to aid transformation

 We discard the seed at the end
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Related Work

 Various programmable matter models developed e.g. [Dumitrescu, Pach, Symposium
on Computational Geometry, 2004]

* Programmable materials developed e.g. [Rothemund, Nature, 2006]
Recent papers on the concept of seed-assisted transformations in programmable matter

* Universal transformation for Rot-Transformability for all unblocked shapes,
introduction of RotC-Transformability and seeds, line folding with seeds, impossibility
of 5-node line traversal and orthogonal convex idea [Michail et al., JCSS, 2019]

* Any pair of color-consistent nice shapes [Almethen, Michail, Potapov, TCS, 2020] A, B
in O(n?) moves with a 4-seed [C, Michail, Potapov, ALGOSENSORS 2021] — not directly
comparable with orthogonal convex

e Universal transformation with connectivity preservation using “leapfrog” and
“monkey” movement and a 5-node seed [Akitaya et al., Algorithmica, 2021]
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Proposition. A shape S is a connected orthogonal convex shape iff its perimeter
satisfies both the following properties:

- It is described by the regular expression
d,(d, | d,)*d,(d, | d5)*ds(d; | d,)*d,(d, | d,)*
under the additional constraint that N; = N;and N, = N,.

- Its interior has no empty cell.

Matthew Connor and Othon Michail 8/27



Orthogonal convex shapes
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Rotation-only: Blocked Shapes

If connectivity must be
preserved: k-blocked

0000x000860
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Main Results

* Theorem 1. For any orthogonal convex shape S, a 6-robot is capable
of traversing the perimeter of S.

* Theorem 2. For any orthogonal convex shape S, a 7-robot is capable
of traversing the perimeter of S.

* Theorem 3. Let S and S’ be connected colour-consistent orthogonal
convex shapes. Then there is a connected shape M of 3 nodes (the 3
musketeers) and an attachment of M to the bottom-most row of S,
such that S U M can reach the configuration S’ in O(n?) time steps.
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b-robot movement

6 node block

Set C of corner cases depending on height and width
Invariant — robot in new location with same structure
Solve for one quadrant, the rest follow by rotation

This Photo by Frédéric Genevey is

licensed under CC BY-NC
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https://mitic.education/dfrobotshop-rover-web-3/
https://mitic.education/author/admin/
https://creativecommons.org/licenses/by-nc/3.0/
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Fig. 8: The four basic corner scenarios of C.
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/-robot movement

e Represents a 6-robot carrying an extra node (the load)
* Mostly the same as 6-robot movement

 Key difference — two positions for the extra node

* Double the cases!
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Any pair of color-consistent
orthogonal convex shapes A, B in
O(n?) moves with a 3-seed
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3 musketeers to 6-robot
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The transformation process

We now have the main structure of our transformation process:
* Add a 3-node seed to create a 6-robot

* Move the 6-robot around the shape

* Remove a node according to a shape elimination sequence

* Move the resulting 7-robot

* Place the node according to a shape generation sequence

Matthew Connor and Othon Michail 18/27
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Canonical Shape
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Algorithm 2 OConvexToDLL(S, M)

Input: shape S U M, where S is a connected orthogonal convex shape of n nodes
and M is a 3-node seed on the cell perimeter of S, row elimination sequence

o = (u1,uz,...,un) of S, extended staircase generation sequence of W UT = ¢’ =
/ ! . : . . :
(u},us,...,u,) which is colour-order preserving w.r.t. o, shape elimination sequence
. . » ! f ! !
o = (u1,u2,...,uyp|) of T, shape generation sequence of X = 0" = (u3, us,... ,u|T|)

which is colour-order preserving w.r.t. o
Output: shape G = W U X U M, where G is a diagonal line-with-leaves and M is a
connected 3-node shape on the cell perimeter of S.
R < GenerateRobot (S, M)
o + rowEliminationSequence(S)
o' < ExtendedStaircase(o)
W U T < OConvexToExtStaircase(S, R, o, ")
o < repsEliminationSequence(W U T')
o’ + stairExtensionSequence(W U T)
G + ExtStaircase ToDLL(W UT, R,0,0")
TerminateRobot(G, R)
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Any orthogonal- Proof Overview

convex shape
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Lemma 15. Let S be a connected orthogonal convex shape. Then there is a
connected shape M of 3 nodes (the 3 musketeers) and an attachment of M to
the bottom-most row of S, such that S U M can reach a configuration S" U M’
satisfying the following properties. S = S\ {u1, uo, us}, where {uy, us, us} is the
3-prefix of a row elimination sequence o of S starting from the bottom-most row
of S. M’ is a 6-robot on the perimeter of S’.
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Orthogonal-convex
shape + 6-robot

Proof Overview

Lemma 2. FEvery connected orthogonal convex shape S has a row (and column,)
elimination sequence o.

Lemma 3. Let o be a bicoloured sequence of nodes that fulfills all the following
conditions:

— The set of the first two nodes in o is not single-coloured.
— The third node of o 1s black.

— o does not contain a single-coloured 3-sub-sequence.

Then there is an extended staircase generation sequence o' = (uf,ub, ... ul)

which is colour-order preserving with respect to o.

Lemma 4. For any connected orthogonal convex shape S of n nodes, given a
row elimination sequence o = (uy, Us, ..., u,) of S where the set of the first two
nodes 1 o 18 not single-coloured and us 1s black, there is an extended staircase
generation sequence o’ = (uy,ub, ..., ul)) which is colour-order preserving w.r.t o
and such that, for all 1 <1i <|ol|, D; = {u,ub, ..., us} is a connected orthogonal

convex shape.
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Theorem. Let S and S’ be connected color-consistent
orthogonal convex shapes. Then there is a connected shape
M of 3 nodes (the 3 musketeers) and an attachment of M to
the bottom-most row of S, such that S U M can reach the
configuration S’ in O(n?) moves.
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Extended staircase of S’

-
& C‘ Diagonal line-

0‘ with-leaves of S, S’

Theorem. Let S and S’ be connected color-
consistent orthogonal convex shapes. Then there
is a connected shape M of 3 nodes (the 3
musketeers) and an attachment of M to the
bottom-most row of S, such that S U M can reach
the configuration S’ in O(n?) moves.  26/27 D




Summary and open problems

Seeds can aid the transformation of blocked shapes
Rot-transformability is universal
Minimal seed RotC-transformability for nice shapes

Minimal seed transformations of orthogonal convex shapes

= Movement of 6/7-node robots around the perimeter - Theorem 1 and
Theorem 2

= Transformation of orthogonal convex into other orthogonal convex by
reversibility — Theorem 3

Open problems:

* Decentralising the execution

* Extending the class — universal transformation?

* Double spiral — example of problems of universal transformation
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