Centralised Connectivity-Preserving Transformations by Rotation: 3 Musketeers for all Orthogonal Convex Shapes

M. Connor, O. Michail

ALGOSENSORS 2022

Programmable matter systems

Multi-Agent systems Decentralised Weak

Centralised variant - feasibility

Overview

- Model and problem definition
- Orthogonal convex shapes
- 6/7-Robot movement
- Transformation

Model and Problem definitions

- Set S of n agents in the shape A occupying cells in a 2D grid
- Transformation of A into shape B in time t by a series of configurations $C_0 \dots C_t$ each reachable by a single move from a single node
- Centralised model to explore feasibility
- Rotation movement of one node 90° around another node
- Rot-Transformability Rotation only
- RotC-Transformability Rotation only, connectivity must be preserved

- Our focus transforming orthogonal convex shapes into each other in the RotC setting
- Rotation only simple operations are easier to implement in real-world systems, colour restrictions in square/triangular grids technically interesting
- Connectivity programmable matter, not swarm robotics
- Certain orthogonal convex shapes cannot meaningly transform in RotC
- Therefore transformations are aided by **seeds** nodes placed in empty cells neighbouring a shape to create a new shape to aid transformation
- We discard the seed at the end

Related Work

- Various programmable matter models developed e.g. [Dumitrescu, Pach, Symposium on Computational Geometry, 2004]
- Programmable materials developed e.g. [Rothemund, Nature, 2006]
- Recent papers on the concept of seed-assisted transformations in programmable matter
- Universal transformation for Rot-Transformability for all unblocked shapes, introduction of RotC-Transformability and seeds, line folding with seeds, impossibility of 5-node line traversal and orthogonal convex idea [Michail *et al.*, JCSS, 2019]
- Any pair of color-consistent *nice shapes* [Almethen, Michail, Potapov, TCS, 2020] A, B in O(n²) moves with a 4-seed [C, Michail, Potapov, ALGOSENSORS 2021] – not directly comparable with orthogonal convex
- Universal transformation with connectivity preservation using "leapfrog" and "monkey" movement and a 5-node seed [Akitaya *et al.*, Algorithmica, 2021]

Proposition. A shape S is a connected orthogonal convex shape iff its perimeter satisfies both the following properties:

- It is described by the regular expression

 $d_1(d_1 \mid d_2)^* d_2(d_2 \mid d_3)^* d_3(d_3 \mid d_4)^* d_4(d_4 \mid d_1)^*$

under the additional constraint that $N_1 = N_3$ and $N_2 = N_4$.

- Its interior has no empty cell.

Orthogonal convex shapes

No move: 0-blocked (or blocked)

No move: 0-blocked

No move: 0-blocked

No move: 0-blocked

Main Results

- **Theorem** 1. For any orthogonal convex shape *S*, a 6-robot is capable of traversing the perimeter of *S*.
- **Theorem** 2. For any orthogonal convex shape *S*, a 7-robot is capable of traversing the perimeter of *S*.
- **Theorem** 3. Let *S* and *S'* be connected colour-consistent orthogonal convex shapes. Then there is a connected shape *M* of 3 nodes (the 3 musketeers) and an attachment of *M* to the bottom-most row of *S*, such that $S \cup M$ can reach the configuration S' in $O(n^2)$ time steps.

6-robot movement

6 node block

Set *C* of corner cases depending on height and width

Invariant – robot in new location with same structure

Solve for one quadrant, the rest follow by rotation

6-robot

<u>This Photo</u> by <u>Frédéric Genevey</u> is licensed under <u>CC BY-NC</u>

Cases

Fig. 8: The four basic corner scenarios of \mathcal{C} .

7-robot movement

- Represents a 6-robot carrying an extra node (the load)
- Mostly the same as 6-robot movement
- Key difference two positions for the extra node
- Double the cases!

7-robot

Any pair of color-consistent orthogonal convex shapes A, B in $O(n^2)$ moves with a 3-seed

Shape A

Shape B

.

3 musketeers to 6-robot

The transformation process

We now have the main structure of our transformation process:

- Add a 3-node seed to create a 6-robot
- Move the 6-robot around the shape
- Remove a node according to a shape elimination sequence
- Move the resulting 7-robot
- Place the node according to a shape generation sequence

Diagonal linewith-leaves D

• .

Algorithm 2 OConvexToDLL(S, M)

- Input: shape $S \cup M$, where S is a connected orthogonal convex shape of n nodes and M is a 3-node seed on the cell perimeter of S, row elimination sequence $\sigma = (u_1, u_2, \ldots, u_n)$ of S, extended staircase generation sequence of $W \cup T = \sigma' =$ $(u'_1, u'_2, \ldots, u'_n)$ which is colour-order preserving w.r.t. σ , shape elimination sequence $\sigma = (u_1, u_2, \ldots, u_{|T|})$ of T, shape generation sequence of $X = \sigma' = (u'_1, u'_2, \ldots, u'_{|T|})$ which is colour-order preserving w.r.t. σ
- **Output:** shape $G = W \cup X \cup M$, where G is a diagonal line-with-leaves and M is a connected 3-node shape on the cell perimeter of S.
 - $R \leftarrow \text{GenerateRobot}(S, M)$
 - $\sigma \leftarrow \text{rowEliminationSequence}(S)$
 - $\sigma' \leftarrow \text{ExtendedStaircase}(\sigma)$
 - $W \cup T \leftarrow \text{OConvexToExtStaircase}(S, R, \sigma, \sigma')$
 - $\sigma \leftarrow \operatorname{repsEliminationSequence}(W \cup T)$
 - $\sigma' \leftarrow \text{stairExtensionSequence}(W \cup T)$
 - $G \leftarrow \text{ExtStaircaseToDLL}(W \cup T, R, \sigma, \sigma')$

 $\operatorname{TerminateRobot}(G, R)$

Any orthogonalconvex shape

Proof Overview

Lemma 15. Let S be a connected orthogonal convex shape. Then there is a connected shape M of 3 nodes (the 3 musketeers) and an attachment of M to the bottom-most row of S, such that $S \cup M$ can reach a configuration $S' \cup M'$ satisfying the following properties. $S' = S \setminus \{u_1, u_2, u_3\}$, where $\{u_1, u_2, u_3\}$ is the 3-prefix of a row elimination sequence σ of S starting from the bottom-most row of S. M' is a 6-robot on the perimeter of S'.

Orthogonal-convex shape + 6-robot

Proof Overview

Lemma 2. Every connected orthogonal convex shape S has a row (and column) elimination sequence σ .

Lemma 3. Let σ be a bicoloured sequence of nodes that fulfills all the following conditions:

- The set of the first two nodes in σ is not single-coloured.
- The third node of σ is black.
- σ does not contain a single-coloured 3-sub-sequence.

Then there is an extended staircase generation sequence $\sigma' = (u'_1, u'_2, \dots, u'_n)$ which is colour-order preserving with respect to σ .

Lemma 4. For any connected orthogonal convex shape S of n nodes, given a row elimination sequence $\sigma = (u_1, u_2, \ldots, u_n)$ of S where the set of the first two nodes in σ is not single-coloured and u_3 is black, there is an extended staircase generation sequence $\sigma' = (u'_1, u'_2, \ldots, u'_n)$ which is colour-order preserving w.r.t σ and such that, for all $1 \leq i \leq |\sigma|$, $D_i = \{u'_1, u'_2, \ldots, u'_i\}$ is a connected orthogonal convex shape.

Orthogonal-convex shape + 6-robot

Proof Overview

Extended staircase

Orthogonal-convex shape + 6-robot

Proof Overview

Theorem. Let *S* and *S'* be connected color-consistent orthogonal convex shapes. Then there is a connected shape *M* of 3 nodes (the 3 musketeers) and an attachment of *M* to the bottom-most row of *S*, such that *S* U *M* can reach the configuration *S'* in $O(n^2)$ moves.

Summary and open problems

- Seeds can aid the transformation of blocked shapes
- Rot-transformability is universal
- Minimal seed RotC-transformability for nice shapes
- Minimal seed transformations of orthogonal convex shapes
 - Movement of 6/7-node robots around the perimeter Theorem 1 and Theorem 2
 - Transformation of orthogonal convex into other orthogonal convex by reversibility – Theorem 3

Open problems:

- Decentralising the execution
- Extending the class universal transformation?
- Double spiral example of problems of universal transformation

Questions?