# The Complexity of Growing a Graph 

Algosensors 2022

George Mertzios

Paul Spirakis

Othon Michail
George Skretas
Michail Theofilatos

## Why study growing graphs?

- Motivation: Networked systems that start from a single entity and grow into well defined structures
- Examples: social networks, sensor deployment, biological systems

- Common notion of a graph growth process which controls growth


## Related Work

- No unified model seems to exist
- Literature does not focus on active growth
- Actively Dynamic Network literature: static network
- Network Costructors model: passive growth
- Random Graph Generators, Graph Editing...


## Related Work

- Systems that exhibit growth are very distinct and vary from abstract to geometrical
- Woods et al [ITCS'13] : Geometric and movement
- Michail and Almalki [Algosensors'22]: Geometric
- In this work: disregard geometry and focus on locality


## Our Model

- Initial graph Go of a single vertex
- Centralized control
- Operations: Vertex Generation, Edge Activation at birth and Edge Deletion
- Discrete time-steps called slots
- Goal: Compute a growth process that grows Go into a target graph G
- Edge Activation Distance for locality constraint


## Growth Example



## Growth Example

## Growth Example

## Growth Example

0

## Growth Example



Growth Schedule
a) $1 \rightarrow 2$
b) $1 \rightarrow 3$
c) $1 \rightarrow 4$
d) $1 \rightarrow 5$
e) $1 \rightarrow 6$
f) $1 \rightarrow 7$
g) $1 \rightarrow 8$
h) $1 \rightarrow 9$

## Faster Growth Example

## Faster Growth Example

## Growth Schedule

a) $1 \rightarrow 2$

## Faster Growth Example

Growth Schedule
a) $1 \rightarrow 2$
b) $1 \rightarrow 4,2 \rightarrow 3$

## Faster Growth Example

Growth Schedule
a) $1 \rightarrow 2$
b) $1 \rightarrow 4,2 \rightarrow 3(3,1)$

## Faster Growth Example

## Growth Schedule

a) $1 \rightarrow 2$
b) $1 \rightarrow 4,2 \rightarrow 3(3,1)$
c) $1 \rightarrow 5,2 \rightarrow 9,3 \rightarrow 6,4 \rightarrow 8$

## Faster Growth Example



## Growth Schedule

a) $1 \rightarrow 2$
b) $1 \rightarrow 4,2 \rightarrow 3(3,1)$
c) $1 \rightarrow 5,2 \rightarrow 9(9,1), 3 \rightarrow 6(6,1)$, $4 \rightarrow 8(8,1)$

## Faster Growth Example



## Growth Schedule

a) $1 \rightarrow 2$
b) $1 \rightarrow 4,2 \rightarrow 3(3,1)$
c) $1 \rightarrow 5,2 \rightarrow 9(9,1), 3 \rightarrow 6(6,1)$, $4 \rightarrow 8(8,1)$
d) $1 \rightarrow 7$

## Faster Growth Example



## Growth Schedule

a) $1 \rightarrow 2$
b) $1 \rightarrow 4,2 \rightarrow 3(3,1)$
c) $1 \rightarrow 5,2 \rightarrow 9(9,1), 3 \rightarrow 6(6,1)$, $4 \rightarrow 8(8,1)$
d) $1 \rightarrow 7$

## Faster Growth Example



## Growth Schedule

a) $1 \rightarrow 2$
b) $1 \rightarrow 4,2 \rightarrow 3(3,1)$
c) $1 \rightarrow 5,2 \rightarrow 9(9,1), 3 \rightarrow 6(6,1)$, $4 \rightarrow 8(8,1)$
d) $1 \rightarrow 7,(2,3)(2,9)(3,6)(4,8)$

## Faster Growth Example



## Growth Schedule

a) $1 \rightarrow 2$
b) $1 \rightarrow 4,2 \rightarrow 3(3,1)$
c) $1 \rightarrow 5,2 \rightarrow 9(9,1), 3 \rightarrow 6(6,1)$, $4 \rightarrow 8(8,1)$
d) $1 \rightarrow 7,(2,3)(2,9)(3,6)(4,8)$

## The Problem

- Trade off between slots and excess edges
a) $1 \rightarrow 2$
b) $1 \rightarrow 3$
a) $1 \rightarrow 2$
c) $1 \rightarrow 4$
b) $1 \rightarrow 4,2 \rightarrow 3(3,1)$
d) $1 \rightarrow 5$
c) $1 \rightarrow 5,2 \rightarrow 9(9,1), 3 \rightarrow 6(6,1)$, $4 \rightarrow 8(8,1)$
f) $1 \rightarrow 7$
d) $1 \rightarrow 7,(2,3)(2,9)(3,6)(4,8)$
g) $1 \rightarrow 8$
h) $1 \rightarrow 9$
- Graph Growth Problem: Given an input graph G, compute in polynomial time a growth schedule with at most $\boldsymbol{k}$ slots and with at most / excess edges if it exists.


## Edge Activation Distance

## Growth Schedule

a) $1 \rightarrow 2$

## Edge Activation Distance



Growth Schedule
a) $1 \rightarrow 2$
b) $1 \rightarrow 4,2 \rightarrow 3(3,1)$

## Edge Activation Distance



## Growth Schedule

a) $1 \rightarrow 2$
b) $1 \rightarrow 4,2 \rightarrow 3(3,1)$

## Edge Activation Distance

## Theorem

For $d=1$, the trimming algorithm that computes in polynomial time an optimal growth schedule with $k$ slots for any tree graph $G$.

## Lemma

For $d \geq 3$, a graph $G=(V, E)$ with $n$ nodes can be generated with a growth schedule with $\log n$ slots and with $O(n)$ excess edges.

- We focused on $\mathrm{d}=2$ since its more natural and interesting
- Study two edge cases: Very fast schedules of very efficient schedules


## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph


## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$



## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$


## Fundamental Properties

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor $v$ of $u$

Growth Schedule

a) $1 \rightarrow 2$
b) $2 \rightarrow 3(3,1)$
c) $3 \rightarrow 4(4,1)$
d) $4 \rightarrow 5(5,1)$
e) $5 \rightarrow 6(6,1)$
f) $6 \rightarrow 7(7,1)$

## Growth Schedule for Tree Graphs

## Theorem

The Tree algorithm computes, in polynomial time, a growth schedule for any given tree graph $G$ with $O\left(\log ^{2} n\right)$ slots and with $O(n)$ excess edges.

- Decomposition strategy where vertices are removed in phases until a single node is present


## Growth Schedule for Tree Graphs



## Growth Schedule for Tree Graphs

## Growth Schedule for Tree Graphs

## Growth Schedule for Tree Graphs



## Growth Schedule for Tree Graphs



## Growth Schedule for Tree Graphs

## Growth Schedule for Tree Graphs

## Theorem

The Tree algorithm computes, in polynomial time, a growth schedule for any given tree graph $G$ with $O\left(\log ^{2} n\right)$ slots and with $O(n)$ excess edges.

- Decomposition strategy where vertices are removed in phases until a single node is present
- The phases can be reversed using $O\left(\log ^{2} n\right)$ slots and $O(n)$ excess edges


## Growth Schedule for Planar Graphs

## Theorem

The Planar algorithm computes, in polynomial time, a growth schedule for any given planar graph $G$ with $O(\log n)$ slots and with $O(n \log n)$ excess edges.

- Compute a 5-coloring of the input planar graph
- Grow the vertices of each color class one by one using a star growth schedule for each color


## Growth Schedule for Planar Graphs

| $\bullet$ | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| $\bullet$ | 0 | 0 | 0 | 0 |
| $\bullet$ | 0 | 0 | 0 | 0 |
| $\bullet$ | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.


## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.


## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.


## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.


## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.


## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.


## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.


## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.

## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.

## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.

## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.

## Zero Waste Growth Schedule Problem

## Definition

Candidate Vertex: A vertex $v \in V$ can be the last generated vertex in a growth schedule of $\ell=0$ for $G$ if there exists a vertex $w \in V \backslash v$ such that $N[v] \subseteq N[w]$.

- A graph can be grown with $\boldsymbol{I}=0$ excess edges if and only if it has a candidate vertex ordering
- The Candidate vertex algorithm can decide in polynomial time, whether a given graph G has a growth schedule with $\mathrm{n}-1$ slots and 0 excess edges.


## Faster Growth Algorithm

## Lemma

The fast growth algorithm computes in polynomial time a growth schedule $\sigma$ for any graph $G=(V, E)$, where $|V|=2^{\delta}$, with $\log n$ slots and $I=0$ excess edges, if and only if such a $\sigma$ exists for $G$.

- Find every candidate vertex and put them in set S
- Find a subset $L$ of set $S$ such that
- $L=n / 2$
- $L$ is an independent set
- Perfect Matching



## Faster Growth Algorithm

## Lemma

The fast growth algorithm computes in polynomial time a growth schedule $\sigma$ for any graph $G=(V, E)$, where $|V|=2^{\delta}$, with $\log n$ slots and $I=0$ excess edges, if and only if such a $\sigma$ exists for $G$.

- Find every candidate vertex and put them in set $S$
- Find a subset $L$ of set $S$ such that
- $L=n / 2$
- $L$ is an independent set
- Perfect Matching



## Faster Growth Algorithm

## Lemma

The fast growth algorithm computes in polynomial time a growth schedule $\sigma$ for any graph $G=(V, E)$, where $|V|=2^{\delta}$, with $\log n$ slots and $I=0$ excess edges, if and only if such a $\sigma$ exists for $G$.

- Find every candidate vertex and put them in set S
- Find a subset $L$ of set $S$ such that
- $L=n / 2$
- $L$ is an independent set
- Perfect Matching



## Negative Results

## Theorem

The decision version of the zero-waste growth schedule problem is NP-complete.

## Theorem

Let $\epsilon>0$. If there exists a polynomial-time algorithm, which, for every graph $G$, computes a $n^{\frac{1}{3}-\epsilon}$-approximate growth schedule, then $P=N P$.

- Both reductions are from the coloring problem


## Open Problems

- Distributed Control
- Minimum number of edges for $k=n-1$ slots
- Parameterized Complexity
- Changes to the model

Thank you!

