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Why study growing graphs?

▪ Motivation: Networked systems that start from a single entity and 
grow into well defined structures

▪ Examples: social networks, sensor deployment, biological systems

▪ Common notion of a graph growth process which controls growth



Related Work

▪ No unified model seems to exist

▪ Literature does not focus on active growth

▪ Actively Dynamic Network literature: static network

▪ Network Costructors model: passive growth

▪ Random Graph Generators, Graph Editing… 



Related Work

▪ Systems that exhibit growth are very distinct and vary from abstract 
to geometrical

▪ Woods et al [ITCS’13] : Geometric and movement

▪ Michail and Almalki [Algosensors’22]: Geometric

▪ In this work: disregard geometry and focus on locality



Our Model

▪ Initial graph G0 of a single vertex

▪ Centralized control

▪ Operations: Vertex Generation, Edge Activation at birth and Edge 
Deletion

▪ Discrete time-steps called slots

▪ Goal: Compute a growth process that grows G0 into a target graph G

▪ Edge Activation Distance for locality constraint
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Growth Example
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a) 1→2
b) 1→3
c) 1→4
d) 1→5
e) 1→6
f) 1→7
g) 1→8
h) 1→9
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The Problem

▪ Trade off between slots and excess edges

▪ Graph Growth Problem: Given an input graph G, compute in 
polynomial time a growth schedule with at most k slots and with at 
most l excess edges if it exists.

a) 1→2
b) 1→4, 2→3 (3,1)
c) 1→5, 2→9 (9,1), 3→6 (6,1), 

4→8 (8,1)
d) 1→7, (2,3) (2,9) (3,6) (4,8)

a) 1→2
b) 1→3
c) 1→4
d) 1→5
e) 1→6
f) 1→7
g) 1→8
h) 1→9
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Growth Schedule

a) 1→2
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Edge Activation Distance

▪ We focused on d=2 since its more natural and interesting

▪ Study two edge cases: Very fast schedules of very efficient schedules
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Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an 
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an 
edge with every neighbor v of u

1 2 3 4 5 6 7

Growth Schedule

a) 1→2
b) 2→3 
c) 3→4 
d) 4→5 
e) 5→6 
f) 6→7

(3,1)
(4,1)
(5,1)
(6,1)
(7,1)



Growth Schedule for Tree Graphs

▪ Decomposition strategy where vertices are removed in phases until a 
single node is present
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Growth Schedule for Tree Graphs

▪ Decomposition strategy where vertices are removed in phases until a 
single node is present

▪ The phases can be reversed using O(log2n) slots and O(n) excess edges



Growth Schedule for Planar Graphs

▪ Compute a 5-coloring of the input planar graph

▪ Grow the vertices of each color class one by one using a star growth 
schedule for each color



Growth Schedule for Planar Graphs
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Zero Waste Growth Schedule Problem

▪ A graph can be grown with l=0 excess edges if and only if it has a 
candidate vertex ordering

▪ The  Candidate vertex  algorithm can  decide  in  polynomial  time,  
whether  a  given graph G has a growth  schedule with n-1 slots and 0 
excess edges.



Faster Growth Algorithm

▪ Find every candidate vertex and put them in set S

▪ Find a subset L of set S such that

▪ L=n/2

▪ L is an independent set

▪ Perfect Matching
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Faster Growth Algorithm

▪ Find every candidate vertex and put them in set S

▪ Find a subset L of set S such that

▪ L=n/2

▪ L is an independent set

▪ Perfect Matching



Negative Results

▪ Both reductions are from the coloring problem



Open Problems

▪ Distributed Control

▪ Minimum number of edges for k=n-1 slots  

▪ Parameterized Complexity

▪ Changes to the model



Thank you!
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