
The Complexity of
Growing a Graph

Algosensors 2022

George Mertzios Othon Michail George Skretas

Paul Spirakis Michail Theofilatos

Why study growing graphs?

▪ Motivation: Networked systems that start from a single entity and
grow into well defined structures

▪ Examples: social networks, sensor deployment, biological systems

▪ Common notion of a graph growth process which controls growth

Related Work

▪ No unified model seems to exist

▪ Literature does not focus on active growth

▪ Actively Dynamic Network literature: static network

▪ Network Costructors model: passive growth

▪ Random Graph Generators, Graph Editing…

Related Work

▪ Systems that exhibit growth are very distinct and vary from abstract
to geometrical

▪ Woods et al [ITCS’13] : Geometric and movement

▪ Michail and Almalki [Algosensors’22]: Geometric

▪ In this work: disregard geometry and focus on locality

Our Model

▪ Initial graph G0 of a single vertex

▪ Centralized control

▪ Operations: Vertex Generation, Edge Activation at birth and Edge
Deletion

▪ Discrete time-steps called slots

▪ Goal: Compute a growth process that grows G0 into a target graph G

▪ Edge Activation Distance for locality constraint

Growth Example

Growth Example

Growth Example

Growth Example

Growth Example

Growth Example

Growth Example

Growth Example

Growth Example

Growth Example

Growth Example

1

7

9

8

6

5

4

3

2 Growth Schedule

a) 1→2
b) 1→3
c) 1→4
d) 1→5
e) 1→6
f) 1→7
g) 1→8
h) 1→9

Faster Growth Example

Faster Growth Example

Growth Schedule

a) 1→2

Faster Growth Example

Growth Schedule

a) 1→2
b) 1→4, 2→3

Faster Growth Example

Growth Schedule

a) 1→2
b) 1→4, 2→3 (3,1)

Faster Growth Example

Growth Schedule

a) 1→2
b) 1→4, 2→3 (3,1)
c) 1→5, 2→9, 3→6, 4→8

Faster Growth Example

Growth Schedule

a) 1→2
b) 1→4, 2→3 (3,1)
c) 1→5, 2→9 (9,1), 3→6 (6,1),

4→8 (8,1)

Faster Growth Example

Growth Schedule

a) 1→2
b) 1→4, 2→3 (3,1)
c) 1→5, 2→9 (9,1), 3→6 (6,1),

4→8 (8,1)
d) 1→7

Faster Growth Example

1

7

9

8

6

5

4

3

2 Growth Schedule

a) 1→2
b) 1→4, 2→3 (3,1)
c) 1→5, 2→9 (9,1), 3→6 (6,1),

4→8 (8,1)
d) 1→7

Faster Growth Example

1

7

9

8

6

5

4

3

2 Growth Schedule

a) 1→2
b) 1→4, 2→3 (3,1)
c) 1→5, 2→9 (9,1), 3→6 (6,1),

4→8 (8,1)
d) 1→7, (2,3) (2,9) (3,6) (4,8)

Faster Growth Example

1

7

9

8

6

5

4

3

2 Growth Schedule

a) 1→2
b) 1→4, 2→3 (3,1)
c) 1→5, 2→9 (9,1), 3→6 (6,1),

4→8 (8,1)
d) 1→7, (2,3) (2,9) (3,6) (4,8)

The Problem

▪ Trade off between slots and excess edges

▪ Graph Growth Problem: Given an input graph G, compute in
polynomial time a growth schedule with at most k slots and with at
most l excess edges if it exists.

a) 1→2
b) 1→4, 2→3 (3,1)
c) 1→5, 2→9 (9,1), 3→6 (6,1),

4→8 (8,1)
d) 1→7, (2,3) (2,9) (3,6) (4,8)

a) 1→2
b) 1→3
c) 1→4
d) 1→5
e) 1→6
f) 1→7
g) 1→8
h) 1→9

Edge Activation Distance

Growth Schedule

a) 1→2

Edge Activation Distance

Growth Schedule

a) 1→2
b) 1→4, 2→3 (3,1)

Edge Activation Distance

Growth Schedule

a) 1→2
b) 1→4, 2→3 (3,1)

Edge Activation Distance

▪ We focused on d=2 since its more natural and interesting

▪ Study two edge cases: Very fast schedules of very efficient schedules

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

Fundamental Properties

▪ Independency: The vertices generated in the same time slot form an
independent set in the final graph

▪ Inheritance: The vertices in the birth path of a vertex u must activate an
edge with every neighbor v of u

1 2 3 4 5 6 7

Growth Schedule

a) 1→2
b) 2→3
c) 3→4
d) 4→5
e) 5→6
f) 6→7

(3,1)
(4,1)
(5,1)
(6,1)
(7,1)

Growth Schedule for Tree Graphs

▪ Decomposition strategy where vertices are removed in phases until a
single node is present

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

Growth Schedule for Tree Graphs

▪ Decomposition strategy where vertices are removed in phases until a
single node is present

▪ The phases can be reversed using O(log2n) slots and O(n) excess edges

Growth Schedule for Planar Graphs

▪ Compute a 5-coloring of the input planar graph

▪ Grow the vertices of each color class one by one using a star growth
schedule for each color

Growth Schedule for Planar Graphs

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

Zero Waste Growth Schedule Problem

▪ A graph can be grown with l=0 excess edges if and only if it has a
candidate vertex ordering

▪ The Candidate vertex algorithm can decide in polynomial time,
whether a given graph G has a growth schedule with n-1 slots and 0
excess edges.

Faster Growth Algorithm

▪ Find every candidate vertex and put them in set S

▪ Find a subset L of set S such that

▪ L=n/2

▪ L is an independent set

▪ Perfect Matching

Faster Growth Algorithm

▪ Find every candidate vertex and put them in set S

▪ Find a subset L of set S such that

▪ L=n/2

▪ L is an independent set

▪ Perfect Matching

Faster Growth Algorithm

▪ Find every candidate vertex and put them in set S

▪ Find a subset L of set S such that

▪ L=n/2

▪ L is an independent set

▪ Perfect Matching

Negative Results

▪ Both reductions are from the coloring problem

Open Problems

▪ Distributed Control

▪ Minimum number of edges for k=n-1 slots

▪ Parameterized Complexity

▪ Changes to the model

Thank you!

	Slide 1: The Complexity of Growing a Graph
	Slide 2: Why study growing graphs?
	Slide 3: Related Work
	Slide 4: Related Work
	Slide 5: Our Model
	Slide 6: Growth Example
	Slide 7: Growth Example
	Slide 8: Growth Example
	Slide 9: Growth Example
	Slide 10: Growth Example
	Slide 11: Growth Example
	Slide 12: Growth Example
	Slide 13: Growth Example
	Slide 14: Growth Example
	Slide 15: Growth Example
	Slide 16: Growth Example
	Slide 17: Faster Growth Example
	Slide 18: Faster Growth Example
	Slide 19: Faster Growth Example
	Slide 20: Faster Growth Example
	Slide 21: Faster Growth Example
	Slide 22: Faster Growth Example
	Slide 23: Faster Growth Example
	Slide 24: Faster Growth Example
	Slide 25: Faster Growth Example
	Slide 26: Faster Growth Example
	Slide 27: The Problem
	Slide 28: Edge Activation Distance
	Slide 29: Edge Activation Distance
	Slide 30: Edge Activation Distance
	Slide 31: Edge Activation Distance
	Slide 32: Fundamental Properties
	Slide 33: Fundamental Properties
	Slide 34: Fundamental Properties
	Slide 35: Fundamental Properties
	Slide 36: Fundamental Properties
	Slide 37: Fundamental Properties
	Slide 38: Fundamental Properties
	Slide 39: Fundamental Properties
	Slide 40: Fundamental Properties
	Slide 41: Fundamental Properties
	Slide 42: Fundamental Properties
	Slide 43: Fundamental Properties
	Slide 44: Fundamental Properties
	Slide 45: Fundamental Properties
	Slide 46: Growth Schedule for Tree Graphs
	Slide 47: Growth Schedule for Tree Graphs
	Slide 48: Growth Schedule for Tree Graphs
	Slide 49: Growth Schedule for Tree Graphs
	Slide 50: Growth Schedule for Tree Graphs
	Slide 51: Growth Schedule for Tree Graphs
	Slide 52: Growth Schedule for Tree Graphs
	Slide 53: Growth Schedule for Tree Graphs
	Slide 54: Growth Schedule for Tree Graphs
	Slide 55: Growth Schedule for Tree Graphs
	Slide 56: Growth Schedule for Tree Graphs
	Slide 57: Growth Schedule for Tree Graphs
	Slide 58: Growth Schedule for Tree Graphs
	Slide 59: Growth Schedule for Tree Graphs
	Slide 60: Growth Schedule for Tree Graphs
	Slide 61: Growth Schedule for Tree Graphs
	Slide 62: Growth Schedule for Tree Graphs
	Slide 63: Growth Schedule for Planar Graphs
	Slide 64: Growth Schedule for Planar Graphs
	Slide 65: Zero Waste Growth Schedule Problem
	Slide 66: Zero Waste Growth Schedule Problem
	Slide 67: Zero Waste Growth Schedule Problem
	Slide 68: Zero Waste Growth Schedule Problem
	Slide 69: Zero Waste Growth Schedule Problem
	Slide 70: Zero Waste Growth Schedule Problem
	Slide 71: Zero Waste Growth Schedule Problem
	Slide 72: Zero Waste Growth Schedule Problem
	Slide 73: Zero Waste Growth Schedule Problem
	Slide 74: Zero Waste Growth Schedule Problem
	Slide 75: Zero Waste Growth Schedule Problem
	Slide 76: Zero Waste Growth Schedule Problem
	Slide 77: Faster Growth Algorithm
	Slide 78: Faster Growth Algorithm
	Slide 79: Faster Growth Algorithm
	Slide 80: Negative Results
	Slide 81: Open Problems
	Slide 82

