

The Complexity of Growing a Graph

Algosensors 2022

George MertziosOthon MichailGeorge SkretasPaul SpirakisMichail Theofilatos

Why study growing graphs?

 Motivation: Networked systems that start from a single entity and grow into well defined structures

• Examples: social networks, sensor deployment, biological systems

Common notion of a graph growth process which controls growth

Related Work

- No unified model seems to exist
- Literature does not focus on active growth
- Actively Dynamic Network literature: static network
- Network Costructors model: passive growth
- Random Graph Generators, Graph Editing...

- Systems that exhibit growth are very distinct and vary from abstract to geometrical
- *Woods et al* [ITCS'13] : Geometric and movement
- *Michail and Almalki* [Algosensors'22]: Geometric
- In this work: disregard geometry and focus on locality

Our Model

- Initial graph G₀ of a single vertex
- Centralized control
- Operations: Vertex Generation, Edge Activation at birth and Edge Deletion
- Discrete time-steps called slots
- Goal: Compute a growth process that grows Go into a target graph G
- Edge Activation Distance for locality constraint

- a) 1→2
- b) $1\rightarrow 3$ c) $1\rightarrow 4$
- d) $1 \rightarrow 5$
- e) $1 \rightarrow 6$ f) $1 \rightarrow 7$
- g) $1 \rightarrow 8$
- h) 1→9

Growth Schedule

a) 1→2

Growth Schedule

a) 1→2 b) 1→4, 2→3 (3,1)

a)
$$1 \rightarrow 2$$

b) $1 \rightarrow 4$, $2 \rightarrow 3$ (3,1)
c) $1 \rightarrow 5$, $2 \rightarrow 9$ (9,1), $3 \rightarrow 6$ (6,1),
 $4 \rightarrow 8$ (8,1)

a)
$$1 \rightarrow 2$$

b) $1 \rightarrow 4$, $2 \rightarrow 3$ (3,1)
c) $1 \rightarrow 5$, $2 \rightarrow 9$ (9,1), $3 \rightarrow 6$ (6,1),
 $4 \rightarrow 8$ (8,1)
d) $1 \rightarrow 7$

a)
$$1 \rightarrow 2$$

b) $1 \rightarrow 4$, $2 \rightarrow 3$ (3,1)
c) $1 \rightarrow 5$, $2 \rightarrow 9$ (9,1), $3 \rightarrow 6$ (6,1),
 $4 \rightarrow 8$ (8,1)
d) $1 \rightarrow 7$

a)
$$1 \rightarrow 2$$

b) $1 \rightarrow 4$, $2 \rightarrow 3$ (3,1)
c) $1 \rightarrow 5$, $2 \rightarrow 9$ (9,1), $3 \rightarrow 6$ (6,1),
 $4 \rightarrow 8$ (8,1)
d) $1 \rightarrow 7$, (2,3) (2,9) (3,6) (4,8)

a)
$$1 \rightarrow 2$$

b) $1 \rightarrow 4$, $2 \rightarrow 3$ (3,1)
c) $1 \rightarrow 5$, $2 \rightarrow 9$ (9,1), $3 \rightarrow 6$ (6,1),
 $4 \rightarrow 8$ (8,1)
d) $1 \rightarrow 7$, (2,3) (2,9) (3,6) (4,8)

The Problem

• Trade off between slots and excess edges

a)
$$1 \rightarrow 2$$

b) $1 \rightarrow 3$
c) $1 \rightarrow 4$
d) $1 \rightarrow 5$
e) $1 \rightarrow 6$
f) $1 \rightarrow 7$
g) $1 \rightarrow 8$
h) $1 \rightarrow 9$
a) $1 \rightarrow 2$
b) $1 \rightarrow 4$, $2 \rightarrow 3$ (3,1)
c) $1 \rightarrow 5$, $2 \rightarrow 9$ (9,1), $3 \rightarrow 6$ (6,1),
 $4 \rightarrow 8$ (8,1)
d) $1 \rightarrow 7$, (2,3) (2,9) (3,6) (4,8)

 Graph Growth Problem: Given an input graph G, compute in polynomial time a growth schedule with at most k slots and with at most l excess edges if it exists.

Growth Schedule

a) 1→2

Growth Schedule

a) 1→2 b) 1→4, 2→3 (3,1)

Growth Schedule

a) 1→2 b) 1→4, 2→3 (3,1)

Theorem

For d = 1, the trimming algorithm that computes in polynomial time an optimal growth schedule with k slots for any tree graph G.

Lemma

For $d \ge 3$, a graph G = (V, E) with n nodes can be generated with a growth schedule with log n slots and with O(n) excess edges.

- We focused on d=2 since its more natural and interesting
- Study two edge cases: Very fast schedules of very efficient schedules

 Independency: The vertices generated in the same time slot form an independent set in the final graph

 Independency: The vertices generated in the same time slot form an independent set in the final graph

 Independency: The vertices generated in the same time slot form an independent set in the final graph

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

- Independency: The vertices generated in the same time slot form an independent set in the final graph
- Inheritance: The vertices in the birth path of a vertex u must activate an edge with every neighbor v of u

Growth Schedule

a) $1 \rightarrow 2$ b) $2 \rightarrow 3$ (3,1) c) $3 \rightarrow 4$ (4,1) d) $4 \rightarrow 5$ (5,1) e) $5 \rightarrow 6$ (6,1) f) $6 \rightarrow 7$ (7,1)

Theorem

The Tree algorithm computes, in polynomial time, a growth schedule for any given tree graph G with $O(\log^2 n)$ slots and with O(n) excess edges.

Decomposition strategy where vertices are removed in phases until a single node is present

Theorem

The Tree algorithm computes, in polynomial time, a growth schedule for any given tree graph G with $O(\log^2 n)$ slots and with O(n) excess edges.

- Decomposition strategy where vertices are removed in phases until a single node is present
- The phases can be reversed using O(log²n) slots and O(n) excess edges

Growth Schedule for Planar Graphs

Theorem

The Planar algorithm computes, in polynomial time, a growth schedule for any given planar graph G with $O(\log n)$ slots and with $O(n \log n)$ excess edges.

- Compute a 5-coloring of the input planar graph
- Grow the vertices of each color class one by one using a star growth schedule for each color

Growth Schedule for Planar Graphs

Definition

Definition

- A graph can be grown with *I*=0 excess edges if and only if it has a candidate vertex ordering
- The Candidate vertex algorithm can decide in polynomial time, whether a given graph G has a growth schedule with n-1 slots and 0 excess edges.

Faster Growth Algorithm

Lemma

The fast growth algorithm computes in polynomial time a growth schedule σ for any graph G = (V, E), where $|V| = 2^{\delta}$, with log n slots and l = 0 excess edges, if and only if such a σ exists for G.

- Find every candidate vertex and put them in set S
- Find a subset L of set S such that
 - L=n/2
 - L is an independent set
 - Perfect Matching

Faster Growth Algorithm

Lemma

The fast growth algorithm computes in polynomial time a growth schedule σ for any graph G = (V, E), where $|V| = 2^{\delta}$, with log n slots and l = 0 excess edges, if and only if such a σ exists for G.

- Find every candidate vertex and put them in set S
- Find a subset L of set S such that
 - L=n/2
 - L is an independent set
 - Perfect Matching

Faster Growth Algorithm

Lemma

The fast growth algorithm computes in polynomial time a growth schedule σ for any graph G = (V, E), where $|V| = 2^{\delta}$, with log n slots and l = 0 excess edges, if and only if such a σ exists for G.

- Find every candidate vertex and put them in set S
- Find a subset L of set S such that
 - L=n/2
 - L is an independent set
 - Perfect Matching

Negative Results

Theorem

The decision version of the zero-waste growth schedule problem is NP-complete.

Theorem

Let $\epsilon > 0$. If there exists a polynomial-time algorithm, which, for every graph G, computes a $n^{\frac{1}{3}-\epsilon}$ -approximate growth schedule, then P=NP.

Both reductions are from the coloring problem

Open Problems

- Distributed Control
- Minimum number of edges for k=n-1 slots
- Parameterized Complexity
- Changes to the model

Thank you!