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Introduction and Motivation
1. Woods et al. model
• How to generate 

connected 2D geometric 
shapes in polylogarithmic 
time

• Develop lines, squares 
and some arbitrary 
shapes

2.  Mertzios et al. model 
• Network-level abstraction 

of programmable matter 
systems

• Self-replication and local 
reconfiguration

Source: [Woods et al., ITCS’13]
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[Mertzios et al., ALGOSENSORS’22]



Contribution
We study three growth operations in a centralized geometric 
setting:
1. Full doubling: 

• Characterize the structure of the class of shapes that are reachable 
from any SI

2. RC doubling: 
• There is a linear-time centralized algorithm that for any pair of 

shapes (SI, SF) decides if SF can be constructed from SI

• If yes, returns an O(log n)-time-step constructor
3. Doubling: 

• Some shapes cannot be constructed in sub-linear time-steps
• There are two universal constructors of any SF from a singleton 

SI 

• Both constructors can be computed by polynomial-time centralized 
algorithms for any shape SF
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Our Model
• Geometric version of the abstract 

network-growth model of Mertzios et al.
• n nodes that form a connected shape S
• The considered model operates on a 2D

square grid
• Time consists of discrete time-steps 
• Additional properties of growth 

operations:
§ Parallel operations
§ Single-direction growth operations
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Note (two distinct notions):
• Time-steps of a growth operation (time-steps)
• The running time of a centralized algorithm (time)



Problems
1. Class characterization 
What is the class of shapes that can be constructed efficiently 
from a given initial shape via a sequence of growth operations?

2. SHAPECONSTRUCTION
Is there a polynomial-time centralized algorithm that can decide if 
a given target shape SF can be constructed from a given initial 
shape SI and, whenever the answer is positive, return an efficient
constructor of SF from SI?
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Growth Operations
A growth operation o is an operation that when applied on a shape 
instance St, for all time-steps t ≥ 0, yields a new shape instance St+1 = 
o(St), such that |St+1| > |St|.
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Full Doubling Operation
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l = 3

(ux + 14, uy + 3)
k = 2

(ux, uy)
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w(Cj, u)

Cl Rb

Reconfiguration Function

A reconfiguration function Fl,k maps a 
shape to another shape in two Phases:

Phase 1
The coordinates of |S| points of Fl,k(S) are 
determined as a function of the 
coordinates of the points of S. 
For each u∈ S the coordinates of uʹ∈
Fl,k(S) are given by
(ux + (2l − 1)w(Cj , u), uy + (2k − 1)s(Ri, u)). 

(a)

(b)



Full Doubling Operation
Reconfiguration Function
Phase 2
Generate the Cartesian product around uʹ such that, Rec(uʹ, 2l, 2k) = {uʹx
+1, . . . , uʹx +(2l−1)}×{uʹy+1, . . . , uʹy +(2k −1)} originating at uʹ. 

Rec(u′, 2l, 2k)

l = 3

k = 2

23 = 8

22 = 4

Rec(u′, 2l, 2k)

S ′

Theorem 1. Given any initial shape SI and any sequence of l east and k
north full doubling operations, the obtained shape is SF = Fl,k(SI).



RC Doubling Operation

Theorem 2. A shape SI can generate a shape SF through a sequence of RC
doubling operations iff B(SI ) = B(SF) = B and for every column C and row R
of B it holds that MSF (C) ≥ MSI(C) and MSF (R) ≥ MSI(R). 
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• B(SI) = B(SF)
• MSF(C) ≥ MSI(C)
• MSF(R) ≥ MSI(R)
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RC Doubling Operation
Theorem 3. There is a linear-time algorithm for ShapeConstruction
under RC doubling operations. In particular, given any pair of shapes (SI , 
SF ), when (SI ⇝ SF) the algorithm returns a constructor σ of SF from SI of 
O(log n)-time-steps. 
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Doubling Operation
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Doubling Operation
Proposition. For any shapes SI and SF, where SI ⊆ SF, there is a linear
time-step constructor of SF from SI. 

Proof
• Compute spanning tree T using BFS
• Empty and adjacent positions
• Fill all positions without pushing existing nodes
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Doubling Operation

Theorem 4. Given any connected target shape SF, there is an [O(|B(SF )|) 
+ O(log |SF |)]-time-step constructor of SF from SI = {u0} through doubling 
operations. Moreover, there is a polynomial-time algorithm computing such 
a constructor on every input SF.



















Conclusion 

• Summary:
§ Two problems were considered: Class characterization and 

ShapeConstruction
§ There is a linear-time centralized algorithm that for any pair of 

shapes (SI, SF) decides if SF can be constructed from SI, if yes, 
returns an O(log n)-time-step constructor

§ There are two universal constructors of any SF from a singleton 
SI

• Future Research Directions: 
§ Obtain an optimal constructor
§ Explore our model in 3D setting
§ Develop distributed version
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Any Questions?
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