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Introduction and Motivation

1. Woods et al. model

 How to generate
connected 2D geometric
shapes in polylogarithmic
time
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and some arbitrary T
shapes et 7

2. Mertzios et al. model - ed =
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[Mertzios et al., ALGOSENSORS’22] Source: [Woods et al., ITCS’'13]
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Contribution

We study three growth operations in a centralized geometric
setting:
1. Full doubling:

» Characterize the structure of the class of shapes that are reachable
from any S,

2. RC doubling:

» There is a linear-time centralized algorithm that for any pair of
shapes (S, Sg) decides if Sk can be constructed from S,

» If yes, returns an O(log n)-time-step constructor

3. Doubling:
« Some shapes cannot be constructed in sub-linear time-steps
» There are two universal constructors of any Sg from a singleton
Si
« Both constructors can be computed by polynomial-time centralized
algorithms for any shape S¢
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Our Model

 Geometric version of the abstract
network-growth model of Mertzios et al.

* n nodes that form a connected shape S

 The considered model operates on a 2D
square grid

» Time consists of discrete time-steps

» Additional properties of growth

(1,3)
(1,2)

(1,1)

(2,1)

operations:
= Parallel operations
= Single-direction growth operations

Note (two distinct notions):
» Time-steps of a growth operation (time-steps)
« The running time of a centralized algorithm (time)
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Problems

1. Class characterization

What is the class of shapes that can be constructed efficiently
from a given initial shape via a sequence of growth operations?

2. SHAPECONSTRUCTION

Is there a polynomial-time centralized algorithm that can decide if
a given target shape Sr can be constructed from a given initial
shape S, and, whenever the answer is positive, return an efficient
constructor of S from S,?
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Growth Operations

A growth operation o is an operation that when applied on a shape
instance S;, for all time-steps t = 0, yields a new shape instance S;.1 =

o(S;), such that |S¢qq| > |S4.

Full Doubling Sit1
L .
hﬁ RC Doubling
> ‘ St
Ch1 Cy C3 C4 E:t IE ‘
S, Ci1 C2 Ch C3 Ca C
Doubling
MEX:: I
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Full Doubling Operation

Reconfiguration Function

(a)
A reconfiguration function F|, maps a

shape to another shape in two Phases: (g, uy)
s(R;, u){ i

Phase 1 C A Ry
The coordinates of |S| points of F;,(S) are —
determined as a function of the w(Cj,u)
coordinates of the points of S.

For each ue S the coordinates of u'e (b)

F,«(S) are given by ®

(ux + (2 = 1)WwW(C;, u), u, + (2 = 1)s(R;, u)).

(ugp + 14, u, + 3)
k2I ' I !
® @
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Full Doubling Operation

Reconfiguration Function
Phase 2

Generate the Cartesian product around u' such that, Rec(u’, 2/, 2«) = {u’,
+1, ..., Uy H2-1)y x{u'\+1, ..., u', +(2% -1)} originating at u".

~
~

T Rec(u/, 2, 2F) ~
180000888 -4
S’/\ 0000000 ¢
° L =8
Rec(u, 2!, 2%) T~ . -7
i @ o

=3
Theorem 1. Given any initial shape S, and any sequence of / east and k
north full doubling operations, the obtained shape is Sg = F; «(S)).
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Theorem 2. A shape S,can generate a shape Sethrough a sequence of RC

doubling operations iff B(S,) = B(Sg) = B and for every column C and row R

of B it holds that MSF(C) 2 MSI(C) and MSF (R) 2 MSI(R)

RC Doubling Operation
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RC Doubling Operation

Theorem 3. There is a linear-time algorithm for ShapeConstruction
under RC doubling operations. In particular, given any pair of shapes (S,,
Sk ), when (S, w Sg) the algorithm returns a constructor o of Sg from S, of
O(log n)-time-steps.

Algorithm 3: Constructor Sy ~> Sp

Input : Decision, from Algorithm 2.

Output: Constructor o.

1 while Decision do

2 /* Find the constructor o for columns. */
3 for every column (C; of Sr) do

4 for every column (C; of S;) do

5 if the index of every column C of Sr and St are equal then
6

7

8

9

if multiplicity of Ms,. (C;) are greater than Mg, (C;) then
compute the difference in m(C}) variable
append (m(Cj) to o)
compute the maximum of ¢ in maz,qiwe variable.

10 /* Count the steps k for doubling columns. */
11 if k = log mazyaive mod2 does not equal 0 then
12 add one extra step to k variable to double the remaining columns that are

not power of 2.
13 return o = {m(C1),m(C2),...,m(C;)}.
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Doubling Operation

Rigidity-Preserving

»

I(Cj,U1 ..... U4)

Rigidity-Breaking
I(Cj(u3))
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Doubling Operation

Proposition. For any shapes S, and Sk, where S, C Sg, there is a linear

time-step constructor of S from S,.

Proof

« Compute spanning tree T using BFS

 Empty and adjacent positions

 Fill all positions without pushing existing nodes
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Doubling Operation

Theorem 4. Given any connected target shape Sg, there is an [O(|B(Sk)|)
+ O(log |SE |)]-time-step constructor of Sefrom S, = {u,} through doubling
operations. Moreover, there is a polynomial-time algorithm computing such
a constructor on every input Se.
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Conclusion

 Summary:

= Two problems were considered: Class characterization and
ShapeConstruction

= There is a linear-time centralized algorithm that for any pair of
shapes (S;, Sg) decides if Sg can be constructed from S, if yes,
returns an O(log n)-time-step constructor

= There are two universal constructors of any Sg from a singleton
Si

« Future Research Directions:
= Obtain an optimal constructor
= Explore our model in 3D setting
= Develop distributed version
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Any Questions?
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