On Geometric Shape Construction via Growth Operations

ALGOSENSORS 2022, 8th Sep 2022, Potsdam, Germany

Nada Almalki and Othon Michail Department of Computer Science, University of Liverpool, UK

Introduction and Motivation

1. <u>Woods et al. model</u>

- How to generate connected 2D geometric shapes in polylogarithmic time
- Develop lines, squares and some arbitrary shapes
- 2. Mertzios et al. model
- Network-level abstraction of programmable matter systems
- Self-replication and local reconfiguration

ERSITY

[Mertzios et al., ALGOSENSORS'22]

Source: [Woods et al., ITCS'13]

Contribution

We study three growth operations in a **centralized geometric** setting:

1. Full doubling:

- Characterize the structure of the class of shapes that are reachable from any S₁
- 2. <u>RC doubling:</u>
 - There is a linear-time centralized algorithm that for any pair of shapes (S₁, S_F) decides if S_F can be constructed from S₁
 - If yes, returns an O(log n)-time-step constructor

3. <u>Doubling:</u>

- Some shapes cannot be constructed in **sub-linear** time-steps
- There are two universal constructors of any S_F from a singleton S_I
- Both constructors can be computed by polynomial-time centralized algorithms for any shape S_F

Our Model

- **Geometric** version of the abstract network-growth model of Mertzios *et al.*
- *n nodes* that form a connected shape S
- The considered model operates on a 2D square grid
- Time consists of **discrete** time-steps
- Additional properties of growth operations:
 - Parallel operations
 - Single-direction growth operations

Note (two distinct notions):

- Time-steps of a growth operation (time-steps)
- The running time of a centralized algorithm (time)

Problems

1. <u>Class characterization</u>

What is the **class of shapes** that can be constructed efficiently from a given initial shape via a sequence of growth operations?

2. SHAPECONSTRUCTION

Is there a **polynomial-time** centralized algorithm that can decide if a given target shape S_F can be constructed from a given initial shape S_I and, whenever the answer is positive, return an **efficient constructor** of S_F from S_I ?

Growth Operations

A growth operation o is an operation that when applied on a shape instance S_t , for all time-steps $t \ge 0$, yields a new shape instance $S_{t+1} = o(S_t)$, such that $|S_{t+1}| \ge |S_t|$.

Full Doubling Operation

Reconfiguration Function

A reconfiguration function $F_{l,k}$ maps a shape to another shape in **two Phases**:

Phase 1

The coordinates of |S| points of $F_{l,k}(S)$ are determined as a function of the coordinates of the points of S. For each $u \in S$ the coordinates of $u' \in$ $F_{l,k}(S)$ are given by $(u_x + (2^l - 1)w(C_j, u), u_y + (2^k - 1)s(R_i, u)).$

Full Doubling Operation

Reconfiguration Function

Phase 2

Generate the **Cartesian product** around u' such that, $Rec(u', 2', 2^k) = \{u'_x + 1, \ldots, u'_x + (2^l - 1)\} \times \{u'_y + 1, \ldots, u'_y + (2^k - 1)\}$ originating at u'.

Theorem 1. Given any initial shape S_l and any sequence of *l* east and *k* north full doubling operations, the obtained shape is $S_F = F_{l,k}(S_l)$.

RC Doubling Operation

<u>Theorem 2.</u> A shape S_l can generate a shape S_F through a sequence of RC doubling operations iff $B(S_l) = B(S_F) = B$ and for every column C and row R of B it holds that $M_{SF}(C) \ge M_{Sl}(C)$ and $M_{SF}(R) \ge M_{Sl}(R)$.

RC Doubling Operation

Theorem 3. There is a **linear-time** algorithm for **ShapeConstruction** under *RC* doubling operations. In particular, given any pair of shapes (S_I , S_F), when ($S_I \nleftrightarrow S_F$) the algorithm returns a constructor σ of S_F from S_I of **O(log** *n*)-time-steps.

Algorithm 3: Constructor $S_I \stackrel{\sigma}{\leadsto} S_F$		
	Input : Decision, from Algorithm 2.	
	Output: Constructor σ .	
1	while Decision do	
2	/* Find the constructor σ for columns.	*/
3	for every column (C_j of S_F) do	
4	for every column $(C_j \text{ of } S_I)$ do	
5	if the index of every column C_j of S_F and S_I are equal then	
6	if multiplicity of $M_{S_F}(C_j)$ are greater than $M_{S_I}(C_j)$ then	
7	compute the difference in $m(C_j)$ variable	
8	append $(m(C_j) \text{ to } \sigma)$	
9	compute the maximum of σ in max_{value} variable.	
10	/* Count the steps k for doubling columns.	*/
11	if $k = \log max_{value} \mod 2$ does not equal 0 then	
12	add one extra step to k variable to double the remaining columns that a	\mathbf{re}
	not power of 2.	
13	$\mathbf{return} \ \sigma = \{m(C_1), m(C_2), \dots, m(C_j)\}.$	

Doubling Operation

Nada Almalki and Othon Michail

Doubling Operation

<u>**Proposition</u></u>. For any shapes S_I and S_F, where S_I \subseteq S_F, there is a linear time-step constructor of S_F from S_I.</u>**

Proof

- Compute spanning tree **T** using **BFS**
- Empty and adjacent positions
- Fill all positions without pushing existing nodes

Doubling Operation

Theorem 4. Given any connected target shape S_F , there is an $[O(|B(S_F)|) + O(\log |S_F|)]$ -time-step constructor of S_F from $S_I = \{u_0\}$ through doubling operations. Moreover, there is a polynomial-time algorithm computing such a constructor on every input S_F .

Conclusion

• Summary:

- Two problems were considered: Class characterization and ShapeConstruction
- There is a linear-time centralized algorithm that for any pair of shapes (S₁, S_F) decides if S_F can be constructed from S₁, if yes, returns an O(log n)-time-step constructor
- There are two universal constructors of any S_F from a singleton S_I

Future Research Directions:

- Obtain an **optimal** constructor
- Explore our model in 3D setting
- Develop distributed version

Any Questions?

