
Vertex Cover

U

The vertex coverU has cardinality3
2
τ(G) (an optimal cover is shown

on the left). HenceR(G, U) = 3/2. How close to the optimum can

we get?

Vertex Cover is an example of a problem for which we can attain

some bounded approximation ratio, but this ratio cannot be pushed

too close to one.

1

In the following slides we will present several approximation

algorithms for the VC problem.

We will be considering “nearly” four algorithms each of which is

based on a distinct idea.

One reason for this overly extensive coverage of the various

algorithms is that some of the ideas appear to be extremely novel and

may be exportable to other problems.

Moreover, as we will see later, even a small improvement in the

best-known approximation ratio for VC will have profound

implications. It is curious, therefore, that we have several different

algorithms which all achieve the same ratio (asymptotically 2) but

there appears to be no way of improving this ratio at the present time.

2

Simplest Greedy

A natural heuristic for VC is a greedy algorithm which repeatedly

picks an edge that has not yet been covered, and places one of its

end-points in the current covering set.

GREEDY1 (G)

C ← ∅

while E 6= ∅

Pick any edgee ∈ E and choose an end-pointv of e

C ← C ∪ {v}

E ← E \ {e ∈ E : v ∈ e}

return C

3

Exercises

• Prove that GREEDY1 always outputs a vertex cover.

• Is the vertex cover problem any easier on a bipartite graph?

How good is this algorithm??

4

Algorithm analysis

We claim that algorithm GREEDY1 does not achieve any bounded

ratio. To see this, consider the following bipartite graph

B = (L, R, E). The vertex setL consists ofr vertices. The vertex set

R is further sub-divided intor sets calledR1, . . . , Rr. Each vertex in

Ri has an edge toi vertices inL and no two vertices inRi have a

common neighbour inL; thus,|Ri| = br/ic. It follows that each

vertex inL has degree at mostr and each vertex inRi has degreei.

The total number of verticesn = Θ(r log r).

5

5 R6 R7 R8 R9 R10

L

R R R R R1 2 3 4

Suppose that (out of sheer bad luck) the algorithm considersan edge out of

Rr first, choosing the end-point inR as the vertex to be placed in the cover.

Then it picks an edge out ofRr−1, again choosing its end-point inR for the

coverC; and, so on. Therefore the vertex cover chosen isC = R. But L is

itself a vertex cover since the graph is bipartite. It follows that the ratio

achieved by this algorithm is no better than|R|/|L| = Ω(log n).

6

Clever greedy algorithm

How do we achieve a better ratio than this?

Let us try the obvious strategy of modifying the Algorithm GREEDY1
to be less arbitrary in its choice of vertices to be included in the cover.
A natural modification is to repeatedly choose vertices which are
incident to the largest number ofcurrently uncovered edges.

GREEDY2 (G)

C ← ∅

while E 6= ∅

Pick a vertexv ∈ V of

maximum degree in thecurrent graph

C ← C ∪ {v}

E ← E \ {e ∈ E : v ∈ e}

return C

7

Algorithm analysis

Let us consider the behaviour of this algorithm on the graphB. It

should be easy to see that GREEDY2 could also outputR as a vertex

cover. It could choose vertices fromRr at the very first stage. After

this, it could choose vertices fromRr−1. In general, it would choose

the highest degree vertices fromR at each stage. It is very surprising

that a seemingly much more intelligent heuristic does no better than

the rather simple-minded heuristic GREEDY1. However this

algorithm is not totally useless. It may be shown that it always

achieves the ratioO(log n) for the much more general problem of set

cover and hence also for vertex cover.

8

Maximal matchings and vertex covers

We now describe a different heuristic which achieves a bounded ratio

for the vertex cover problem.

The basic idea is to modify GREEDY1 by placingboth end-points of

some uncovered edge intoC. Most people find the fact that this

algorithm performs better than GREEDY1 and GREEDY2 to be very

counter-intuitive at first.

Algorithm MM

Pick anymaximal matchingM in the graphG = (V, E).

Place both end-points of each edge inM into the cover.

9

Algorithm analysis

Claim. MM always computes a vertex cover in the input graphG.

Moreover, it is a 2-approximation algorithm.

SinceM is a maximal matching all edges inE \ M are such that at

least one of their end-points is incident to somee ∈ M (otherwise,

that edge could be added toM to provide a larger matching). Thus

every edge inE has at least one end-point inC.

To see that the ratio is 2, consider the edges inM . To cover these

edges we need at least|M | vertices, since no two of them share a

vertex. This implies that the optimal vertex cover has size at least

|M |. The coverC contains exactly2|M | vertices.

10

Exercises

1. What is the behaviour of algorithm MM on the graphB?

2. Show that there exist input graphs for which the performance of

MM is no better than a ratio of 2.

3. Show that using a maximum matching instead of a maximal

matching does not improve the worst-case performance of MM.

11

Better algorithms?

Another algorithm which achieves a ratio of 2 for this problem is due

to Savage. This algorithm, which we call DFS, is as simple as the one

outlined above. The basic idea is to find a depth-first spanning tree in

the graphG. The coverC is then the set of non-leaf nodes in the tree.

We leave the analysis of this algorithm as an exercise (proving that

the set is a vertex cover is simple, giving a bound on the

approximation ratio is non-trivial).

It is an important open problem to find anyc-approximation

algorithm for the VC problem with2 − c = Ω(1).

12

Example

1

2 3

4

5

6

13

A Depth-first spanning tree

1

2 3

4

5

6

18

Final vertex cover

1

2 3

4

5

6

19

