Debugging of \(A\mathcal{L}C \)-Ontologies via Minimal Model Generation

Fabio Papachchini Renate A. Schmidt

The University of Manchester
\{papachf,schmidt\}@cs.man.ac.uk

Ontology Debugging

Ontologies are the basis for semantic web and knowledge-based systems

Widely used in practice: BBC, NHS, Klappo, . . .

Ontology debugging aims to guarantee that an ontology

- is coherent
- models properly (implicit) domain knowledge
- keeps these properties over time

Relation between individuals of two models \(I = (\Delta, I) \) and \(I' = (\Delta', I') \) s.t. for any two individuals \(a \) and \(a' \), if \(a S a' \) then the following hold.

- \(V(a) \subseteq V(a') \) (where \(V(a) = \{ A \in N_C \mid a \in A^2 \} \)), and
- if \(r(a, b) \), then there exists a \(b'' \in \Delta' \) such that \(r(a', b') \) and \(b S b'' \).

A model \(I \) of an ontology \(O \) is minimal modulo subset-simulation iff for any model \(I' \) of \(O \), if \(I' \leq I \), then \(I \leq I' \).

Features of the calculus:

- lazy clausification (\((\alpha)\) rule) to reduce the number of inferences
- complement splitting (\((\beta)\) rule) to close “non-minimal” branches as soon as possible
- selection-based resolution to reduce the number of inferences and to close branches
- handling of Boolean ABoxes

The calculus is refutationally sound and complete.

The calculus is minimal model complete.

Subset-simulation test

- If the model extracted from a branch \(B \) subset-simulates a model extracted from a branch \(B' \), then close \(B \).

The test guarantees minimal model soundness. Easily generalisable to cover more expressive logics.

for \(A\mathcal{L}C'\mathcal{H} \)

\[(H) \quad \frac{r(a, b)}{s(a, b)} \]

Termination via dynamic ancestor equality blocking.

References