COMP116 - Work Sheet Two - Solutions

Associated Module Learning Outcome

Ability to solve problems involving the outcome of matrix-vector products as might arise in standard transformations

Vectors \& Matrices

Q1: There are a number of ways of defining the "size" of an n-vector. These include, often regarded as the standard approach, what is called the Euclidean distance (also known as the L_{2}-norm) which is denoted $\|\mathbf{x}\|$ and, as we shall use, $\|\mathbf{x}\|_{2}$. For the n-vector, $\mathbf{x}=<x_{1}, x_{2}, \ldots, x_{n}>$, as described in the lectures (and on page 67 of the course textbook)

$$
\left\|<x_{1}, x_{2}, \ldots, x_{n}>\right\|_{2}=\sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}}
$$

The positive square root being used. Although, strictly speaking the $\left|x_{i}\right|$ qualification is not needed as the operation of squaring renders this redundant, i.e $\left(-x_{i}\right)^{2}=\left(x_{i}\right)^{2}=\left|x_{i}\right|^{2}$, it is, however, useful to include this as it helps with describing generalizations.

Another widely used, in CS contexts, definition of "vector size" is the so-called Manhattan distance (also called the L_{1}-norm) which is denoted $\|\mathrm{x}\|_{1}$. This often arises in robot-motion control contexts in which the robot cannot turn about through arbitrary angles and is only able to move in one of four ways: continue in the direction being travelled; turn around and move in the opposite direction that had been used; turn 90° right; turn 90° left.

The Manhattan distance of the n-vector $\mathbf{x}=<x_{1}, x_{2}, \ldots, x_{n}>$ is

$$
\left\|<x_{1}, x_{2}, \ldots, x_{n}>\right\|_{1}=\sum_{k=1}^{n}\left|x_{k}\right|
$$

One way of thinking of this is as moving in an n-dimensional grid with movement limited to being able to reach an immediately adjacent, i.e. connected by a "grid line" point from the current point.

The first collection of questions concerns differences between these two measures of distance.
a. Suppose that we have 4 -vectors, $\mathbf{x}=<-2,3,-5,8>$ and $\mathbf{y}=<5,-3,7,10>$. What is the value of the following quantities?

1. $\|\mathrm{x}\|_{2}$.
2. $\|\mathrm{x}\|_{1}$.
3. $\|\mathbf{y}\|_{2}$.
4. $\|\mathbf{y}\|_{1}$.

Answers:

1. $\|\mathrm{x}\|_{2}=$

$$
\sqrt{|-2|^{2}+|3|^{2}+|-5|^{2}+|8|^{2}}=\sqrt{4+9+25+64}=\sqrt{102}
$$

2. $\|\mathrm{x}\|_{1}=$

$$
|-2|+|3|+|-5|+|8|=2+3+5+8=18
$$

3. $\|\mathbf{y}\|_{2}=$

$$
\sqrt{|5|^{2}+|-3|^{2}+|7|^{2}+|10|^{2}}=\sqrt{25+9+49+100}=\sqrt{183}
$$

4. $\|\mathbf{y}\|_{1}=$

$$
|5|+|-3|+|7|+|10|=5+3+7+10=25
$$

b. Similarly what are the values of the following quantities?

1. $\|\mathbf{x}\|_{2}+\|\mathbf{y}\|_{2}$.
2. $\|\mathrm{x}\|_{1}+\|\mathbf{y}\|_{1}$.
3. $\|x+y\|_{2}$.
4. $\|x+y\|_{1}$.

Answers

1. $\|\mathbf{x}\|_{2}+\|\mathbf{y}\|_{2}=\sqrt{102}+\sqrt{183}$
2. $\|\mathbf{x}\|_{1}+\|\mathbf{y}\|_{1}=18+25=43$
3. $\|\mathbf{x}+\mathbf{y}\|_{2}=\|<3,0,2,18>\|_{2}=$

$$
\sqrt{9+0+4+324}=\sqrt{337}
$$

4. $\|\mathbf{x}+\mathbf{y}\|_{1}=\|<3,0,2,18>\|_{1}=23$
c. What relationship is suggested by your answer to (b1) compared with your answer to (b3). Similarly when comparing your answer to (b2) with that of (b4)?
Answer: $\sqrt{102}+\sqrt{183} \sim 23.63$ but $\sqrt{337} \sim 18.36$. In $\|\cdots\|_{2}$ traversing x then y is a longer distance than going directly from the starting point of \mathbf{x} to where the endpoint after adding \mathbf{y} would result. Similarly, with $\|\cdots\|_{1}$: $43>23$.
d. Is the behaviour you notice in answering (c) indicative of a more general relationship between $\|\mathbf{x}\|_{2}+\|\mathbf{y}\|_{2}$ and $\|\mathbf{x}+\mathbf{y}\|_{2}$. Similarly between $\|\mathbf{x}\|_{1}+\|\mathbf{y}\|_{1}$ and $\|\mathbf{x}+\mathbf{y}\|_{1}$.
Answer: These relationships describe the so-called Triangle Inequality which (in standard arithmetic) indicates that what is called Euclidean length will satisfy $\operatorname{Length}(\mathbf{x}+\mathbf{y}) \leq \operatorname{Length}(\mathbf{x})+\operatorname{Length}(\mathbf{y})$. Equality will hold if and only if \mathbf{x} and \mathbf{y} are "on the same line".
e. What does your answer to (d) allow you to deduce (if anything) about combining three or more 4 -vectors, i.e. $\|\mathbf{x}\|_{2},\|\mathbf{y}\|_{2},\|\mathbf{z}\|_{2}$ and $\|\mathbf{x}+\mathbf{y}+\mathbf{z}\|_{2}$? Is the same true if the Manhattan distance $\left(\|\mathbf{x}\|_{1}\right)$ is used?
Answer: In general for n-vectors we have

$$
\text { Length }\left(\sum_{i=1}^{k} \mathbf{x}_{i}\right) \leq \sum_{i=1}^{k} \operatorname{Length}\left(\mathbf{x}_{i}\right)
$$

f. Suppose one tries to compute $\|\mathbf{x}\|_{1}$ for the 3 -vector $\mathbf{x}=<x_{1}, x_{2}, x_{3}>$ using a matrix-vector product $\mathbf{M} \cdot \mathbf{x}^{\top}$ with \mathbf{M} the 1×3 matrix

$$
\mathbf{M}=(1,1,1)
$$

What important feature of the Manhattan distance is such an attempt failing to consider?
Answer: This approach fails to recognise that $|x|$ must be used, whereas $(1,1,1)$ just implements simple addition.
If \mathbf{M} was replaced by the 8×3 matrix

$$
\mathbf{P}=\left(\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & -1 & 1 \\
-1 & 1 & -1 \\
-1 & 1 & 1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

How might $\mathbf{P} \cdot \mathbf{x}^{\top}$ (which is an 8×1-matrix) be used to find $\|\mathbf{x}\|_{1}$?
Answer: By selecting the maximum component in the outcome.

2-D Graphics Transformations and Matrices

Q2 This question deals with a very basic 2-D vector-graphic game that involves moving a circular puck around a playing area 100 units wide and 100 units high. The general configuration is shown in Figure 1.

Figure 1: Simple Game Environment
Standard reference systems for graphical images will often use x (Horizonal/width) values between 0 and some maximum W and, similarly y (Vertical/height) values between 0 and some maximum H.

This can, however, prove rather awkward as a framework for realizing effects (for example if integers less than 0 could result). In such cases an animation effect might be thought of as carried out in three stages:

S1. Map the coordinate (x, y) to be manipulated within the display system to a coordinate (p, q) in another coordinate reference scheme.

S2. Compute the coordinates $\left(p^{\prime}, q^{\prime}\right)$ resulting by applying some transformation, \mathbf{M} to (p, q).

S3. Map the coordinate $\left(p^{\prime}, q^{\prime}\right)$ back to the corresponding coordinate $\left(x^{\prime}, y^{\prime}\right)$ in the display system.

In Figure 1 effects in the Display System are realized by mapping to the coordinate system in which x values range between -50 and 50 ; similarly y values between -50 and 50 .
a. What are the two 3×3-matrices, $\mathbf{M}_{d-t o-w}$ and $\mathbf{M}_{w-t o-d}$ that should be used to translate the homogenous coordinate $<x, y, 1\rangle$ in the Display setting to the homogenous coordinate $<x-50, y-50,1>$ in Workspace system and vice-versa? That is for which

$$
\begin{aligned}
& \mathbf{M}_{d-t o-w} \cdot<x, y, 1>^{\top}=<x-50, y-50,1>^{\top} \\
& \mathbf{M}_{w-t o-d} \cdot<p, q, 1>^{\top}=<p+50, q+50,1>^{\top}
\end{aligned}
$$

Answer:

$$
\mathbf{M}_{d-t o-w}=\left(\begin{array}{ccc}
1 & 0 & -50 \\
0 & 1 & -50 \\
0 & 0 & 1
\end{array}\right) ; \mathbf{M}_{w-t o-d}=\left(\begin{array}{ccc}
1 & 0 & 50 \\
0 & 1 & 50 \\
0 & 0 & 1
\end{array}\right)
$$

b. Consider the point $(0, y)$ (Display coordinates). Describe the animation effect (on the Display) of applying

$$
\mathbf{M}_{w-t o-d} \cdot \mathbf{F}_{1} \cdot \mathbf{M}_{d-t o-w} \cdot<0, y, 1>^{\top}
$$

where \mathbf{F}_{1} is the 3×3 matrix,

$$
\mathbf{F}_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 100 \\
0 & 0 & 1
\end{array}\right)
$$

(for instance the effect could be displayed by drawing a line on the display joining (x, y) to the new position).

Answer:

Applying $\mathbf{M}_{d-t o-w}$ to the display coordinate, $(0, y, 1)$ will produce the workspace coordinate $(-50, y-50,1)$. The result of applying \mathbf{F}_{1} to $(-50, y-$ $50,1)$ is the workspace coordinate $(y-50,50,1)$ which then is translated back to the display coordinate (through $\mathbf{M}_{w-t o-d}$) to give ($y, 100,1$). Displaying this as a line will connect $(0, y, 1)$ to $(y, 100,1)$, i.e. the "old" y values becomes the "new" x coordinate and the new y-value becomes the maximum possible (whereas the previous X value in $(0, y, 1)$ had been the minimal possible x value, i.e. the line drawn would go from the extreme left of the display to the top of the drawing area).
c. Now suppose we introduce 2 new 3×3 matrices \mathbf{F}_{2} and \mathbf{F}_{3} with

$$
\mathbf{F}_{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad ; \quad \mathbf{F}_{3}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & -100 \\
0 & 0 & 1
\end{array}\right)
$$

Let

$$
\begin{aligned}
& \mathbf{T}_{1}=\mathbf{M}_{w-t o-d} \cdot \mathbf{F}_{1} \cdot \mathbf{M}_{d-t o-w} \\
& \mathbf{T}_{2}=\mathbf{M}_{w-t o-d} \cdot \mathbf{F}_{2} \cdot \mathbf{M}_{d-t o-w} \\
& \mathbf{T}_{3}=\mathbf{M}_{w-t o-d} \cdot \mathbf{F}_{3} \cdot \mathbf{M}_{d-t o-w}
\end{aligned}
$$

1. Describe the effect on $(0, y, 1)$ displayed after animating

$$
\begin{array}{lr}
\mathbf{T}_{1} \cdot<0, y, 1>^{\top} & \text { then } \\
\mathbf{T}_{2} \cdot \mathbf{T}_{1} \cdot<0, y, 1>^{\top} & \text { then } \\
\mathbf{T}_{3} \cdot \mathbf{T}_{2} \cdot \mathbf{T}_{1} \cdot<0, y, 1>^{\top} & \text { then } \\
\mathbf{T}_{2} \cdot \mathbf{T}_{3} \cdot \mathbf{T}_{2} \cdot \mathbf{T}_{1} \cdot<0, y, 1>^{\top} &
\end{array}
$$

Answer:

We have already seen that \mathbf{T}_{1} takes the point $(0, y, 1)$ to $(y, 100,1)$. Applying \mathbf{T}_{2} to $(y, 100,1)$ first takes this display coordinate and maps it to the workspace coordinate $(y-50,50,1)$. The effect of \mathbf{F}_{2} on $(y-$ $50,50,1)$ is to produce the workspace coordinate ($50, y-50,1$) which (after mapping map to the display coordinates) becomes ($100, y, 1$). This is the point at the same height as the original coordinate, $(0, y, 1)$ but now at the extreme right of the display. In total \mathbf{T}_{1} followed by \mathbf{T}_{2} traces the perimeter of (half) a quadrilateral extending from the starting point, $(0, y, 1)$ to a point $(y, 100,1)$ and then to the "opposite wall" at ($100, y, 1$). When \mathbf{T}_{3} is applied to ($100, y, 1$) (in the display system) we get $(50, y-50,1)$ in the workspace coordinate scheme, a coordinate which translates to $(y-50,-50,1)$ (worskpace) then to $(y, 0,1)$ (display). This point is directly opposite $(y, 100,1)$ so tracing the line produced gives a third side of the four-sided figure. Finally applying \mathbf{T}_{2} to $(y, 0,1)$ gives $(y-50,-50,1)$ (workspace) then $(-50, y-50,1)$ (workspace from \mathbf{F}_{2}) and $(0, y, 1)$ (display), i.e. the start point.
Overall the effect is to trace out a four-sided figure with corners $(0, y)$, $(y, 100),(100, y)$ and $(y, 0)$ and connecting lines drawn in that order. The whole process is illustrated in Table 1.
2. If the ordering was

$$
\begin{array}{lr}
\mathbf{T}_{2} \cdot<0, y, 1>^{\top} & \text { then } \\
\mathbf{T}_{3} \cdot \mathbf{T}_{2} \cdot<0, y, 1>^{\top} & \text { then } \\
\mathbf{T}_{2} \cdot \mathbf{T}_{3} \cdot \mathbf{T}_{2} \cdot<0, y, 1>^{\top} & \text { then } \\
\mathbf{T}_{1} \cdot \mathbf{T}_{2} \cdot \mathbf{T}_{3} \cdot \mathbf{T}_{2} \cdot<0, y, 1>^{\top} &
\end{array}
$$

What would be the resulting effect?
Answer: The perimeter would be traced out anticlockwise (instead of clockwise). See Figure 2.

Table 1: Graphics \& Matrix effects

Figure 2: Applying transformations in Reverse order

