
COMP116 – Work Sheet Three – Solutions

Associated Module Learning Outcomes

1. basic understanding of the range of techniques used to analyse and reason
about computational settings.

2. Ability to apply basic rules to differentiate commonly arising functions.

Question 1: Derivatives and Critical Points

For each of the following Real valued functions f : R→ R describe:

a. Its first derivative with respect to x, i.e. f ′(x).

b. Whether after some fixed number, k say, repeatedly finding the derivative
produces no change. e.g. if f(x) = 3, then f ′(x) = 0 and f ′′(x) = 0, so in
this case k = 2.

c. Comment on the critical points of f(x). Note you are not asked to compute
these only to give an informal justification as to whether these exist, are
minima or maxima, indeterminate, etc.

1. f(x) = x2 + 2x− 8.

2. f(x) = x3/3 + x + 10.

3. f(x) = x2−5x+6
x−2 .

4. f(x) =
√
x.

5. f(x) = 1/x2.

6. f(x) = sin2(x) + cos2(x) + x2.

7. f(x) = sin(x2) + cos(x2) + x2.

8. f(x) = exp(x log x) (recall that log is Natural, i.e. base e unless explicitly
stated to be otherwise).

Answers:

1. f ′(x) = 2x+2 with a single critical point (at x = −1) which is a minimum
(f ′′(x) = 2 and positive). Since f ′′′(x) = 0 there are no further derivatives
(i.e. different functions).
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2. f ′(x) = x2 + 1, however, this function has no Real-valued critical points.
As with (1) there are only a finite number of times f(x) can be differentiated
before reaching 0.

3. The key point to notice is that x2− 5x+6 = (x− 2)(x− 3) so that f(x) =
x− 3. As f ′(x) = 1 there are no critical points.

4. f ′(x) = 0.5/
√
x. There are no critical points but unlike the previous exam-

ples this can be differentiated infinitely often with different functions arising.

5. f ′(x) = −2/x3. Again there are no critical points and like (4) this can be
differentiated infinitely often with different functions arising. Denoting by
fk(x) the result after k so that f1(x) ≡ f ′(x), f2(x) ≡ f ′′(x) etc fk(x) =
(k + 1)!/xk+1.

6. As with example (3), see if there are “obvious” simplifications possible.
Here, since sin2(x) + cos2(x) = 1 for every x, we get f(x) ≡ x2 with
f ′(x) = 2x, a single critical point (x = 0) which is a minimum. Only
finitely many differentations are possible before reaching 0.

7. Combining trigonomentric and chain rules gives f ′(x) = 2x cos(x2) −
2x sin(x2) + 2x. The function f(x) has infinitely many critical points (mix-
ing minima with maxima) and arising from the periodic behaviour of sin and
cos. It also may be differentiatied infinitely often.

8. Again, using the chain, product (for x log x), exp and log rules we have
f ′(x) = exp(x log x)(1 + log x). Although exp(y) > 0 for all y the term
1 + log x is 0 when x = 1/e. This is the only critical point and a minimum.
This function is, again, infinitely differentiable.
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Question 2 – Roots Revisited

A very basic method for discovering a root of a polynomial function was discussed
in the first worksheet. An informal realization of the approach outlined would be

Algorithm 1 Simple root-finding method for polynomials with coefficients in R
1: Input: p(x) ∈ R[X]; a, b ∈ R with p(a) < 0 and p(b) > 0
2: Input: MAX ∈ N; ε ∈ R with ε > 0;
3: {MAX is a “cut-off” to prevent indefinite looping; ε a “tolerance” threshold.}
4: low := a; high := b; k := 0;
5: repeat
6: x := (low + high)/2; {Find value in “middle”, i.e. average of

{low, high}.}
7: if p(x) < 0 then
8: low := x;
9: else if p(x) ≥ 0 then

10: high := x;
11: end if
12: k := k + 1;
13: until |p(x)| ≤ ε or k > MAX
14: return x;

Algorithm 1 uses a simple “binary search” (if you have not met “binary search”
already in Year 1, then you will certainly be introduced to it on COMP108: this
is one of the most basic and effective data searching techniques). It can (provided
suitable initial values a and b are identified) be applied as an approach to (try and)
find not only roots of polynomials but also so-called “zeros” of arbitrary Real val-
ued functions, i.e. for f : R→ R, values c with which f(c) = 0.

Following the discovery of Differential Calculus in the 17th Century, rather
more sophisticated techniques were developed. One of these (the Newton–Raphson
method) is still widely taught. As with the binary search technique in Algorithm 1
this can be adapted to arbitrary functions (subject to some technical conditions).
Another very powerful general method is Halley’s Method mentioned briefly in
the first worksheet.

Halley’s Method is presented in Algorithm 2.
One required property of f(x) in order to use Halley’s Method to find zeros of

f is that not only is f ′(x) (the first derivative of f ) well-defined but also f ′′(x) (its
second derivative). Depending on how the transitions from x0 to x1 through to xk
develop this might lead to complications, although it should be noted that it is not
required that f ′(x) and f ′′(x) are well defined for every x ∈ R.
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Algorithm 2 Halley’s Method for finding roots of f(x)
1: Input: f : R→ R; {e.g. could be name of an implemented function.}
2: Input: x0 ∈ R; {An initial guess for f(x0) = 0.}
3: Input: MAX ∈ N; ε ∈ R with ε > 0;
4: {MAX is a “cut-off” to prevent indefinite looping; ε a “tolerance” threshold.}
5: k := 0;
6: repeat
7:

xk+1 := xk −
2f(xk)f

′(xk)

2(f ′(xk))2 − f(xk)f ′′(xk)

8: k := k + 1;
9: until |f(xk)| ≤ ε or k > MAX

10: return xk;

One significant advantage of Halley’s Method for high-degree polynomials is
that, unlike a number of methods, it does not require the computation of square
roots, i.e. functions of the form

√
f(x). This can be especially useful, in com-

parison with techniques such as Laguerre’s (module textbook, pages 156-7), when
dealing with polynomial functions.

a. Suppose f(x) = cos(5x+1)
x+5 .

VERY IMPORTANT: Measures are in radians and not degrees.

1. Why is it sufficient to consider only the behaviour of cos(5x+1) when
seeking zeros of f(x)?

2. Using a = −1 (so that cos(5a + 1) ∼ −0.654) and b = 1 (with
cos(5b+1) ∼ 0.96) what are the first five values found for cos(5x+1)
using the method of Algorithm 1?

3. Now use Halley’s Method to compute the first three values using an
initial guess x0 = 0, i.e. (−1 + 1)/2.

4. If xbinary is the value discovered by Algorithm 1 and xhalley that found
with Algorithm 2, which of these describes a “better zero” of f(x), i.e.
which of {|f(xbinary)|, |f(xhalley)|} is smaller (closest to 0)?
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Answers

1. Whether cos(5x+1))
x+5 = 0 is dependent only on cos(5x + 1) = 0 irre-

spective (assuming x 6= −5) of the value of x+ 5.

Table 1: Bisection Method zero search case
a b m cos(5m+ 1)

−1 1 0 0.54

−1 0 −0.5 0.071

−1 −0.5 −0.75 −0.92
−0.75 −0.5 −0.625 −0.526
−0.625 −0.5 −0.5625 −0.234

2. This very small example illustrates one problem with the Bisection Ap-
proach: an actual root of cos(5x + 1) is x ∼ −0.514 (radians). Al-
though the case −0.5 produces the best approximation to this root it
will take some further iterations to come close to it depending on the
precision required. The problem is that when the upper estimate (b)
is already close to a zero the lower estimate (a) is still some distance
away: this is what has happened when b = m = −0.5, f(b) > 0,
|f(b)| < 0.072, but f(a) < 0 with |f(a)| > 0.526.

3. Halley’s method discovers the next x using

f(x) = cos(5x+ 1)
f ′(x) = −5 sin(5x+ 1)
f ′′(x) = −25 cos(5x+ 1)

Notice that

f(x)f ′(x) = −5 cos(5x+ 1) sin(5x+ 1)
(f ′(x))2 = 25 sin2(5x+ 1)
f(x)f ′′(x) = −25 cos2(5x+ 1)

So that successive approximations are found by iterating

xk +
10 cos(5x+ 1) sin(5x+ 1)

50 sin2(5x+ 1) + 25 cos2(5x+ 1)
≡ xk+

10 cos(5x+ 1) sin(5x+ 1)

25(1 + sin2(5x+ 1)

(Again using the relation sin2(x) + cos2(x) = 1). Simplifying further
gives the final form to be iterated as,

xk+1 = xk +
2

5

(
cos(5x+ 1) sin(5x+ 1)

1 + sin2(5x+ 1)

)
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Table 2: Halley’s Method zero search case
k xk xk+1 |cos(5xk+1 + 1)|
0 0 0.106 0.041

1 0.106 0.114 0.0008

2 0.114 0.114 0.0008

Applying Halley’s method with initial guess x0 = 0 Notice this con-
verges to a zero (0.1142) “quickly”.

d. We find xbinary ∼ −0.5625 and, after sufficiently many further itera-
tions will hone in on the zero −0.514. In contrast, xhalley ∼ 0.114: a
different zero of cos(5x+ 1) and discovered after fewer iterations.

b. For the degree 5 polynomial

p(x) = x5 + 2x4 − 11x3 − 22x2 + 30x + 60

1. Carry out the same comparison (again with 5 iterations) of Algorithm 1
and Algorithm 2, this time for the degree 5 polynomial p(x). Use
a = −2.7 (with p(a) ∼ −2.068) and b = 0 (so that p(b) = 60) in
Algorithm 1 and x0 = −1.35 (i.e. (−2.7 + 0)/2) in Algorithm 2.

2. Which of the two seems to converge to a root of p(x) more quickly?

3. Do Algorithm 1 and Algorithm 2 seem to converge to the same root?

Solutions:

1. Using Algorithm 1.

Table 3: Bisection Method Polynomial Root search
a b m p(m)

−2.7 0 −1.35 8.628

−2.7 −1.35 −2.025 −0.0427
−2.025 −1.35 −1.688 2.214

−2.025 −1.688 −1.856 0.572

−2.025 −1.856 −1.94 0.166

−2.025 −1.94 −1.98 0.045

In this case we see a similar problem to that observed in the cos(5x+1)
example: an actual root is x = −2 which a value (−2.025) close to this
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is found quickly. However given the disparity between a and b the next
stages move away from this root.
With Halley’s method we find:

p(x) = x5 + 2x4 − 11x3 − 22x2 + 30x+ 60
p′(x) = 5x4 + 8x3 − 33x2 − 44x+ 30
p′′(x) = 20x3 + 24x2 − 66x− 44

Leading to,

p(x)p′(x) = (x5 + 2x4 − 11x3 − 22x2 + 30x+ 60)(5x4 + 8x3 − 33x2 − 44x+ 30)
(p′(x))2 = (5x4 + 8x3 − 33x2 − 44x+ 30)2

p(x)p′′(x) = (x5 + 2x4 − 11x3 − 22x2 + 30x+ 60)(5x4 + 8x3 − 33x2 − 44x+ 30)

and

Table 4: Halley’s Method Polynomial roots
k xk xk+1 |p(xk)|
0 −1.35 1.789050709692225 8.628104062499997

1 −1.789050709692225 1.9594126779330223 1.062502901033703

2 −1.9594126779330223 1.998813215491566 0.1017902028870985

3 −1.998813215491566 1.9999999514789264 0.0023904922205915113

4 −1.9999999514789264 1.9999999999999998 9.704217518446967× 10−8

5 −1.9999999999999998 2.0000000000000018 3.552713678800501× 10−15

Halley’s method in this example has (when k = 3) come very close
to identifying the root x = −2. The estimation improves so that by
k = 5 the value identified differs from −2 by under 10−15. Notice that
(unlike the cos(5x + 1) case) this is the same root discovered by the
bisection method.
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