COMP116 — Work Sheet One

Associated Module Learning Outcome

Basic understanding of the range of techniques used to analyse and reason
about computational settings

Numbers and Polynomial Properties

The topics on this work sheet deal with properties of types of number and basic
polynomial properties (Q1). More detailed review of this behaviour is the theme

of (Q2).

Question 1

I. Consider the following situations involving numerical data. What types of
number are most suitable to use for describing possible outcomes?

Give brief, informal reasons for your answers.

a.

The number of correctly answered questions on an MCQ test (Multiple
Choice Questions).

The goal difference of the middle placed team in the Scottish Lowland
League football division at the end of a season.

The pay of soi-disant ‘senior’ mmgers relative to that of Workers and
Academics in universities.

The total number of points awarded to the UK entry in the Eurovision
Song Contest in a particular year.

The time a vehicle takes to reach a speed of 80 K'm /h after starting.

The majority achieved when legislation is successfully passed in the
House of Commons, i.e. without requiring the Speaker to separate
outcomes by use of a casting vote.

II. You have seen on COMP109 and COMP124 that computers represent data
as collections of bits (binary 0 and 1). What implications do you think this
convention has for computing applications requiring Real numbers (R)?

III. The following questions deal with some simple manipulation of polynomial
expressions.



a. Suppose p(x) has degree k and ¢(z) has degree . What is the degree
of p(x) - q(x)?

b. If all coefficients of p(z) are greater than zero and all coefficients of
q(z) are greater than zero how many coefficients of p(x) - g(z) are
non-zero?

c. If the condition on the coefficients of p(x) and ¢(z) is changed from
greater than zero to not equal to zero is your answer to (b) unchanged?
[Hint: Consider the two degree 1 polynomials x — 1 and = + 1 all of
whose coefficients are non-zero.]

d. Suppose that

p(z) = 725+ 32" +92% + 522 + 3z + 1
qiz) = 8xP+223+22+z2+9

Describe one way of interpreting p(10), ¢(10) and p(10) - ¢(10). What
does this suggest to you as a reason why being able to compute the
product of two polynomials quickly may be computationally useful?

Question 2 - Manipulating Polynomials

An extremely important operation involving polynomials (and, as we shall later in
the course, functions in general) is that of finding their roots. If the degree of p(z)
is “small” (4 or less) then there are various direct methods than can be used. For
example for so-called quadratics p(z) = ax? + bx + ¢ the two roots are found by

computing,
{—b+\/62—4ac —b—\/b2—4ac}
2a ’ 2a

(which will always find answers, provided that b > 4ac).

Similar formulae can be written for the three roots of a cubic: az34bx?+cx+d
(see pages 44-45 of the recommended course textbook) and even for the four roots
of a quartic: az* + bx® 4 cx? + d (you do not want to go there, this solution is
notationally horrendous).

No such direct “closed-form” can be used when the degree is five or more. This
is more than “no such solution has been discovered” it means “no such solution is
possible”.

In applications, however, one often finds polynomial expressions for which the
degree is much larger than five and (as will be seen when considering the important
CS area called “Optimization” and, at the end of the course, when discussing the
notion of “eigenvalue”) finding roots of such polynomials is required.



Suppose that p(z) is a polynomial whose degree is k with & > 3. Suppose,
further, that we can find two distinct Real values, a and b, for which p(a) < 0
(i.e. evaluating p(z) when = = a produces a negative outcome) and p(b) > 0, (i.e.
evaluating p(x) when = = b produces a positive outcome).

a. What does this allow us to deduce about one root of p(x)?

b. Describe (using pseudo-code) how the fact that p(a) < 0 and p(b) > 0 can
be used in an algorithm to find either an exact root of p(z) (that is a value
¢ for which p(c) = 0) or, at worst an arbitrarily good approximation to an
exact root (that is, a value ¢ for which, although we may have p(c) # 0 we
can make |p(c)| as “small as desired”, e.g. < 107° or < 1073 etc.)

c. Having found (or found a “good enough approximation to”’) one root, c,
of a degree k polynomial, p(z), how could we use this information to find
other (Real) roots of p(x)? [Hint: Look at pages 33-37 of the recommended
course textbook.]

d. There are (at least) three difficulties that might arise when trying to find
other roots of p(x). Describe (in informal terms) two such difficulties.

e. In principle, the thinking underlying part (a) could be applied to find zeros
(as they are called) of arbitrary Real valued functions, e.g. f(x) = sin?(x) —
2 cos(x). Why might it be the case that such an approach would fail despite
having found @ and b with f(a) < 0 and f(b) > 0?
[Hint: Consider the function f(x) = z — 1/x with choices a = 0.5 and
b = —0.5 as well as the choice a = 0.5and b = 1.5.]

Two (of the many such that have been discovered) approaches to finding roots
of polynomials one of which (Halley’s Method) can, under suitable conditions,
be adapted to find zeros of arbitrary functions; the other (Laguerre’s Method) is
specifically intended for polynomials, are discussed in Section 4.6, pages 152-161
of the course textbook.

The most efficient known polynomial root-finding techniques are the Jenkins-
Traub algorithms from 1972 and 1975. These are technically quite complex.



