
COMP116 – Work Sheet Three

Associated Module Learning Outcomes

1. basic understanding of the range of techniques used to analyse and reason
about computational settings.

2. Ability to apply basic rules to differentiate commonly arising functions.

Question 1: Derivatives and Critical Points

For each of the following Real valued functions f : R→ R describe:

a. Its first derivative with respect to x, i.e. f ′(x).

b. Whether after some fixed number, k say, repeatedly finding the derivative
produces no change. e.g. if f(x) = 3, then f ′(x) = 0 and f ′′(x) = 0, so in
this case k = 2.

c. Comment on the critical points of f(x). Note you are not asked to compute
these only to give an informal justification as to whether these exist, are
minima or maxima, indeterminate, etc.

1. f(x) = x2 + 2x− 8.

2. f(x) = x3/3 + x + 10.

3. f(x) = x2−5x+6
x−2 .

4. f(x) =
√
x.

5. f(x) = 1/x2.

6. f(x) = sin2(x) + cos2(x) + x2.

7. f(x) = sin(x2) + cos(x2) + x2.

8. f(x) = exp(x log x) (recall that log is Natural, i.e. base e unless explicitly
stated to be otherwise).
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Question 2 – Roots Revisited

A very basic method for discovering a root of a polynomial function was discussed
in the first worksheet. An informal realization of the approach outlined would be

Algorithm 1 Simple root-finding method for polynomials with coefficients in R
1: Input: p(x) ∈ R[X]; a, b ∈ R with p(a) < 0 and p(b) > 0
2: Input: MAX ∈ N; ε ∈ R with ε > 0;
3: {MAX is a “cut-off” to prevent indefinite looping; ε a “tolerance” threshold.}
4: low := a; high := b; k := 0;
5: repeat
6: x := (low + high)/2; {Find value in “middle”, i.e. average of

{low, high}.}
7: if p(x) < 0 then
8: low := x;
9: else if p(x) ≥ 0 then

10: high := x;
11: end if
12: k := k + 1;
13: until |p(x)| ≤ ε or k > MAX
14: return x;

Algorithm 1 uses a simple “binary search” (if you have not met “binary search”
already in Year 1, then you will certainly be introduced to it on COMP108: this
is one of the most basic and effective data searching techniques). It can (provided
suitable initial values a and b are identified) be applied as an approach to (try and)
find not only roots of polynomials but also so-called “zeros” of arbitrary Real val-
ued functions, i.e. for f : R→ R, values c with which f(c) = 0.

Following the discovery of Differential Calculus in the 17th Century, rather
more sophisticated techniques were developed. One of these (the Newton–Raphson
method) is still widely taught. As with the binary search technique in Algorithm 1
this can be adapted to arbitrary functions (subject to some technical conditions).
Another very powerful general method is Halley’s Method mentioned briefly in
the first worksheet.

Halley’s Method is presented in Algorithm 2.
One required property of f(x) in order to use Halley’s Method to find zeros of

f is that not only is f ′(x) (the first derivative of f ) well-defined but also f ′′(x) (its
second derivative). Depending on how the transitions from x0 to x1 through to xk
develop this might lead to complications, although it should be noted that it is not
required that f ′(x) and f ′′(x) are well defined for every x ∈ R.
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Algorithm 2 Halley’s Method for finding roots of f(x)
1: Input: f : R→ R; {e.g. could be name of an implemented function.}
2: Input: x0 ∈ R; {An initial guess for f(x0) = 0.}
3: Input: MAX ∈ N; ε ∈ R with ε > 0;
4: {MAX is a “cut-off” to prevent indefinite looping; ε a “tolerance” threshold.}
5: k := 0;
6: repeat
7:

xk+1 := xk −
2f(xk)f

′(xk)

2(f ′(xk))2 − f(xk)f ′′(xk)

8: k := k + 1;
9: until |f(xk)| ≤ ε or k > MAX

10: return xk;

One significant advantage of Halley’s Method for high-degree polynomials is
that, unlike a number of methods, it does not require the computation of square
roots, i.e. functions of the form

√
f(x). This can be especially useful, in com-

parison with techniques such as Laguerre’s (module textbook, pages 156-7), when
dealing with polynomial functions.
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a. Suppose f(x) = cos(5x+1)
x+5 .

VERY IMPORTANT: Measures are in radians and not degrees.

1. Why is it sufficient to consider only the behaviour of cos(5x+1) when
seeking zeros of f(x)?

2. Using a = −1 (so that cos(5a + 1) ∼ −0.654) and b = 1 (with
cos(5b+1) ∼ 0.96) what are the first five values found for cos(5x+1)
using the method of Algorithm 1?

2. Similarly what are the first five values identified using Halley’s method
and an initial guess x0 = 0 (that is to say, (−1+1)/2) for cos(5x+1).

3. If xbinary is the value discovered by Algorithm 1 and xhalley that found
with Algorithm 2, which of these describes a “better zero” of f(x), i.e.
which of {|f(xbinary)|, |f(xhalley)|} is smaller (closest to 0)?

b. For the degree 5 polynomial

p(x) = x5 + 2x4 − 11x3 − 22x2 + 30x + 60

1. Carry out the same comparison (again with 5 iterations) of Algorithm 1
and Algorithm 2, this time for the degree 5 polynomial p(x). Use
a = −2.7 (with p(a) ∼ −2.068) and b = 0 (so that p(b) = 60) in
Algorithm 1 and x0 = −1.35 (i.e. (−2.7 + 0)/2) in Algorithm 2.

2. Which of the two seems to converge to a root of p(x) more quickly?

3. Do Algorithm 1 and Algorithm 2 seem to converge to the same root?

Suggestion: You may it less cumbersome and error-strewn to write a short
piece of code that will carry out this process.
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