
COMP116 – Work Sheet Five

Associated Module Learning Outcomes

1. basic understanding of the range of techniques used to analyse and reason
about computational settings.

2. Basic understanding of manipulating complex numbers and translating be-
tween different representations.

Question 1: Complex Number Manipulation

We have seen in the lectures (vide also Section 5.4, pages 202–207 of the module
textbook) there are a number of equivalent approaches that can be adopted in spec-
ifying the structure of a complex number z ∈ C. This question concerns not only
translating between different formalisms but also commenting on the advantages
and drawbacks of different schemes. We recall the following:

a. Standard form of z ∈ C: z = α+ ıβ (α = <(z) ∈ R; β = =(z) ∈ R)

b. Matrix form of ∈ C, (denoted Mz)

Mz =

(
<(z) −=(z)
=(z) <(z)

)
c. Argand form of z ∈ C. A coordinate in the Complex plane having the

form (<(z),=(z)) defining the vector < <(z),=(z) > relative to the origin
(0, 0) in this plane. Note: Recall that vectors have size and direction but not
position.

d. Polar form of z ∈ C. Here z is specified by a pair of Real values z = (r, θ)
in which r is the size of z and θ (called the argument of z, denoted arg z) is
the angle in radians formed by the i vector < <(z),=(z) > taken counter-
clockwise from the <-axis.

e. Euler form of z ∈ C. The value z is described by z = reıθ wherein r is the
size of z and θ = arg z.

In Figure 1 the notion of polar and Argand form is expanded in more detail.
In the questions below the Complex numbers x and y are in Standard form with

specification
x = 3 + 4ı
y = 12 + 5ı
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Figure 1: Polar Coordinates: arg u = η; arg v = σ; argw = arg(u+ v) = θ

a. Give the matrix forms Mx and My.

b State the values |x|, |y| (the sizes of x and y).

c. Give the polar coordinate forms of x and y. (Hint: check the translation
from Argand to Polar coordinates on p. 205 of the module textbook).

d. Which do you consider the “easiest” method to calculate arg(x · y)?

1. Find arg(γ + δı) with γ + δı the standard form of (3+ 4ı) · (12+ 5ı)?

2. Construct the Euler representations of x and y?

e. Suppose that x is replaced by x′ ∈ C with x′ = 4+ 3ı and, similarly y by y′

having y′ = 5 + 12ı. What are the Complex numbers x · x′ and y · y′?

f. Having observed the outcomes from (e), what, if anything, can you deduce
about (α+ βı) · (β + αı)?
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Question 2 - Complex Numbers, Fractal Sets and Computer Graphics

One of the more colourful applications of Complex number properties in Computer
Science arises in the behaviour of Complex quadratic functions when these are
used to classify numbers in the Complex Plane.

The structures defined are known as Julia Sets (after the early 20th Century
French scholar Gaston Julia1).

Every Complex Number c ∈ C gives rise to a Julia Set as follows. Letting J(c)
be the Julia set associated with c,

J(c) = {z ∈ C : ∀n ∈W, |zn+1| ≤ R, (zn+1 = z2n + c and z0 = z)}

The value R ∈ R is an escape radius for c and must satisfy R(R− 1) ≥ |c|, i.e.

R ≥
1 +

√
1 + 4|c|
2

Informally J(c) contains only those z ∈ C for which, no matter how often one
iterates the computation z2n + c (starting from z0 = z) the resulting value will
always have size (modulus) at most R.

Julia Sets have been used in (at least) two ways within Computer Science:

1. As a methods for creating very intricate graphical images.

2. As an approach to computer music, promoted in work of Elaine Walker.2

The Java source code at

http://www.csc.liv.ac.uk/∼ped/COMP116/TUTORIALS/Julia.java

Provides an (extremely basic) generator for graphical display of Julia sets.
Some selected outputs are shown in Tables 1 and 2.

In each of these the colour assigned to a pixel is determined (rather crudely)
by the “exit time”, i.e. the number of tests made prior to the z iterating to a value
outside the escape radius.

1G. Julia. Memoire sur l’iteration des fonctions rationnelles. J. Math. Pures Appl., 8:47–245,
1918., see module textbook pages 250–2

2E. Walker. Chaos melody theory. Music in Music Technology New York University, Master’s
thesis, 2001.
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a. Compile and try running the Java code referred to above. The program asks
for three parameters (all double):

i. The Real part of the Complex number, c, being used.

ii. The Imaginary part of the Complex number, c, being used.

iii. The escape radius, R, used both to determine the section of the Com-
plex plane considered and the point at which fnc (z) takes z out of the
Julia set. This value, R, is required to satisfy R(R−1) ≥ |c| (the input
will loop until an appropriateR is provided). A value ofR ∼ 4 suffices
for the cases below.

b. What effect is noticeable keeping =(c) = 0 and allowing <(c) to take the
values in

{−1.5,−1,−0.5}?

c. What effect is noticeable keeping =(c) = 0 and allowing <(c) to take the
values in

{1.5, 1, 0.5}?

d. Is similar behaviour evident using <(c) = 0 and =(c) in

{−1.5,−1,−0.5}

Finally compare these with <(c) = 0 and =(c) from

{1.5, 1, 0.5}

4



Table 1: Julia Sets in Complex Plane using f(z) = z2 + c

c = 0.36− 0.1001ı

c = −0.758− 0.121ı
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Table 2: Julia Sets in Complex Plane using f(z) = z2 + c

c = −0.835 + 0.2321ı

c = −0.70176 + 0.38424ı
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