COMP116 – Work Sheet Six

Associated Module Learning Outcomes

1. Basic understanding of the range of techniques used to analyse and reason about computational settings.

Statistics & Data Analysis

Q1: Basic Statistical Measures

The first question concerns the three samples given below:

 $\begin{array}{rcl} A & = & \{10,\,10,\,25,\,80,\,2,\,32,\,100\} \\ B & = & \{5,\,90,\,15,\,40,\,35\} \\ C & = & \{1,\,2,\,95,\,90,\,5,\,85,\,8,\,10,\,37\} \end{array}$

- a. What are the **average** value(s) for each case (i.e. E[A], E[B] and E[C]).
- b. Similarly what are the **median** values for A, B and C.
- c. Suppose these three samples arose as the outcome of collections of 7 (sample *A*), 5 (sample *B*) and 9 (sample *C*) student marks represented by different groups taking different class tests.
 - 1. Does anything seem "unreasonable" in the respective performances of the three groups with respect to the different test papers used?
 - 2. Of the three different papers which, in your view, seemed to be the "fairest" assessment?
 - 3. Give a more formal justification of your answer to (2) by computing the **variance** within each of the three samples.
- d. Suppose, instead of analyzing the three data sets separately these are collected together into a single population of 21 members. What would be the average, median and variance for the resulting collection?

e. The three separate tests that had led to the data in *A*, *B*, *C* are replaced using a single test of all 21 candidates. This results in the outcome shown in Table 1.

ruere it rest cute chies				
Score	# Candidates Achieving	Score	# Candidates Achieving	
10	1	55	2	
15	2	64	2	
20	2	70	3	
35	2	85	3	
45	2	90	2	

Table 1: Test outcomes

- 1. What are now the median, average, and variance of the outcome?
- 2. Do you consider (on the basis of your answer to (1) and the overall performance) that the new test is "fairer", "worse" or "just as bad/good" as the three separate tests it replaced?

Q2: Data Analysis

This question concerns applying **Linear regression** methods (discussed in Lectures and discussed in Section 6.12, pages 331–349 of the course textbook).

An experimental study reports a set of ten observations presented in Table 2.

Table 2:	Experiment	observation

Value for x	Outcome y
1	0.19
2	0.483
3	0.64
4	0.76
5	0.95
6	1.371
7	1.33
8	1.52
9	2.016
10	1.9

- a. Using **Linear Least Squares** (course textbook page 341) find the best fit **line** for these data.
- b. Similarly (as described on pages 344–5) find the best fit function of the form $f(x) = \alpha x^{\beta}$ for these data.
- c. Comparing the two functions found against the actual data which of the two looks like a "better match"?
- d. How might it be possible to justify your answer to (c) using **only** the experimental data and the two functions discovered? (that is without relying on subjective opinions).