
An Experimental Study of the Misdirection
Algorithm for Combinatorial Auctions

Jörg Knoche� and Piotr Krysta��

Dept. of Computer Science, University of Dortmund

Abstract. Single-minded combinatorial auctions (CA) are auctions in
which a seller wants to sell diverse kinds of goods and each of the po-
tential buyers, also called bidders, places a bid on a combination, i.e., a
subset of the goods. There is a severe computational limitation in CA,
as the problem of computing the optimal allocation is NP-hard and even
hard to approximate. There is thus interest in polynomial time approxi-
mation algorithms for this problem. Recently, many such approximation
algorithms were designed, among them greedy and local search based
algorithms. One of these is a so-called misdirection algorithm combining
both approaches and using a non-standard, misdirected, local search ap-
proach with neighborhood of size 2. This algorithm has the best known
provable approximation ratio for the problem in terms of the sizes of bids.
Its analysis, however, is quite complicated. We study this algorithm and
its variants on typical instances designed for CAs. On question is if larger
neighborhood helps – the question that seems quite difficult to address
theoretically at the moment, taking into account already complex anal-
ysis for size 2 neighborhood. We also study experimentally other aspects
of the misdirection algorithm, and finally present a comparison to other
approximation algorithms.

1 Introduction

There has been an increasing interest in the recent years in so-called combinato-
rial auctions (CA). These are auctions where a seller wants to sell diverse kinds
of goods and the potential buyers, called bidders, place bids on the combina-
tions, i.e., subsets of goods. Such auctions were suggested for auctioning, e.g.,
spectrum licenses, landing slots or computational resources, see [23] for a survey.

When the auction concerns many related kinds of goods, combinatorial auc-
tions are particularly well suited as they allow buyers to express their valuations
on combinations of goods, which should lead to more economically efficient allo-
cations. One of the main obstacles of dealing with combinatorial auctions is the
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computational hardness of the problem of determining the optimal allocation for
a given collection of buyers. This problem, called also winner determination, is
known to be NP-hard and even hard to approximate [15].

For simplicity, we assume that each bidder desires only a single subset of goods
and places a positive valuation only on this particular set of goods (any superset
obviously values the same for this bidder). Such kind of restricted bidders, called
single-minded, has been introduced by Lehmann et al. in their seminal paper [15],
and has since been intensively investigated, e.g., [2,17,7,14].

In this paper we are interested in the winner determination problem in single-
minded CAs, well known in discrete optimization as the set packing problem.
Given a family of subsets of a given universe, each subset with a prescribed
value, this problem asks for a maximum value set packing, i.e., a pairwise-
disjoint subfamily of the subsets. Here, each single subset models a single bidder
desiring that subset and its value is the bidder’s valuation. The disjointness
constraints corresponds to the fact that the seller cannot sell the same good to
two bidders.

Since the set packing problem is NP-hard and even hard to approximate,
polynomial time approximation algorithms are of interest. In fact, many ap-
proximation algorithms have been designed for this problem, see, e.g., [11] for
a survey. We will be interested in approximating this problem in terms of d,
which is the size of the largest set in the input family. Having the value of d
small in terms of combinatorial auctions (CA) means that the bidder’s pref-
erence sets are of size at most d, which clearly is the natural assumption for
the bidders.

It is known that even unweighted, i.e., when values of the sets are unit,
set packing problem with sets of size at most d is NP-hard to approximate
to within O(d/ log d) [12]. We cannot, thus, expect a much better than merely
d approximation factor for this problem in polynomial time. It is quite easy to
obtain a precisely d-approximation algorithm via the greedy method. In fact, a
d-approximation with a running time O(|S|2) was given by Hochbaum [13], and
a |S|O(1/ε)-time (d− 1+ ε)-approximation for any fixed ε > 0, by Bafna et al. [4]
and Arkin & Hassin [3], where S is the given family of sets.

It turns out that even reducing the constant in front of d is a challenging
problem. Chandra and Halldórsson [8] succeed to give a 2

3 (d+1)-approximation
for this problem, at the expense of running time of Ω(|S|d), which is not polyno-
mial if d is not a fixed constant. Berman [5] has improved this ratio to 1

2 (d + 1)
but the running time is also Ω(|S|d). The first known better than d approxima-
tion in polynomial time is due to Berman and Krysta [6], who gave a factor 2

3d
approximation for this problem in time roughly O(|S|2). This last result is also
the best known to date approximation ratio for the considered problem.

Berman and Krysta [6] consider in fact a slightly more general problem, that
is, a maximum weighted independent set problem in a (d + 1)-claw-free graph.
Their algorithm is based on the local search method with a local misdirected 1

1 Misdirection is meant to mean here that while performing one step of the local
search, we locally optimize a different (misdirected) objective than the original one.
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objective and neighborhood of size 2 2. The theoretical analysis of this algorithm
in [6] is quite technical and complex. Thus, for instance, a natural question of
extending this analysis to neighborhood of size 3 seems quite challenging. This is
the place where experimental analysis may help. This, and other questions and
properties of the misdirection algorithm that seem difficult, or even impossible to
address theoretically, are the subject of this experimental paper. We also study
other greedy algorithms and an LP-based randomized rounding algorithm.

Outline. The rest of this paper is organized as follows. Section 2 has formal
definitions, description of the algorithms and instances. Section 3 includes the
experimental analysis of the misdirection algorithm. Section 4 compares all al-
gorithms by running time and approximation factor.

2 Problem Definition, Algorithms and Instances

We formally define the set packing problem. We are given a finite set of goods
U with |U | = m, and a family of subsets of U denoted by S ⊆ 2U . A given set
S ∈ S models a bidder, and thus we identify set S with the set of bidders, and
|S| = n. Let also each S ∈ S have an associated weight w(S) ∈ R+, modeling
the valuation of bidder S. The set packing problem (winner determination in
CAs) asks for finding a packing, that is, a subfamily S′ ⊆ S such that any
two distinct sets S, T ∈ S′ are disjoint, S ∩ T = ∅, and the total weight of S′,
w(S′) =

∑
S∈S′ w(S), is maximized. We will assume in this paper that d ∈ N+

is the maximum size of any bid, i.e., max{|S| : S ∈ S} = d. Set packing problem
is known to be NP-hard to approximate to within a factor of O(d/ log d) [12].

2.1 Description of the Algorithms

We describe below the approximation algorithms for set packing we will use.

Greedy-1: This is algorithm Greedy-1 from paper [14]. It first sorts the sets in
S by non-increasing values of w(S)/

√
|S|, and then goes through all sets in this

order and puts them into the solution maintaining the feasibility of the pack-
ing. Since our input data is represented as a 0/1 matrix A such that Ae,S = 1
iff e ∈ S, implementing Greedy-1, the time to compute |S| for each S ∈ S is
taken into account. Greedy-1 is know to be

√
m-approximate for set packing [15].

Greedy-2: The same as Greedy-1 above, but the sorting is with respect to non-
increasing values of w(S). Note, that this algorithm is a bit faster than Greedy-1,
since we do not need to compute |S| for S ∈ S. Hochbaum [13] shows that it is
d-approximate for set packing.

Greedy-3: The same as Greedy-1 above, but the sorting is with respect to non-
increasing values of w(S)/|S|. We did not put this algorithm into our
2 We use the term neighborhood to denote a parameter � in the misdirection algorithm,

but in fact the ”real” neighborhood size is roughly O(|S|�).
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diagrams – see further explanations below. In theory Greedy-3 has an approxi-
mation ratio of d (in fact [14] shows ratio d + 1 for Greedy-3 on a more general
problem, but the analysis of [14] slightly modified shows ratio d for set packing).

Misdirect-noGreed: This is the basic misdirection algorithm of Berman and
Krysta [6]. It starts with an empty solution and performs all possible local ex-
changes. While this algorithm is defined in [6] for a slightly more general than
set packing problem we redefine it here for the latter problem. Before we de-
scribe it we need some notation. Let P , R ⊆ 2U be two given set families. We
define N(P , R) = {R ∈ R : ∃P ∈ P such that P ∩ R �= ∅}. We also define
P � R = (P \ N(R, P)) ∪ R. Observe that if family P and family R is a packing
then so is family P �R. Let also wα(P) =

∑
P∈P(w(P ))α, for a given α > 1. Al-

gorithm Misdirect-noGreed, also called � − Impα, with neighborhood size � = 2
and value of α = 1.71 (from [6]), is as follows.

Algorithm 2 − Impα

P ← ∅
while there exists pair of sets {S, T } ⊆ S that improves wα(P) do

P ← P � {S, T }
This algorithm can be described in words simply as follows: start from an empty
packing, and as long as there is a pair of sets that on adding to the current
packing (and removing all conflicting sets) improves the misdirected objective
wα(·), perform such a local exchange. This algorithm may not have polynomial
running time, and it is shown in [6] how to make it polynomial – see algorithm
Misdirect below. Berman and Krysta prove an upper bound of (roughly) 2

3d on
the approximation ratio of algorithm 2 − Imp1.71. More precisely, they prove
that α = 1.71 is the value of α giving the best approximation ratio of 2

3d.

Misdirect: This is the original misdirection algorithm described in paper [6].
First it runs algorithm Greedy-2. Let P be the output greedy packing. Then,
rescale the weights so that w(P) = k · |S| = k · n, for some fixed k ∈ N+, and
run algorithm Misdirect-noGreed after replacing the function w with w(S) =
�w(S)α�1/α, starting with initial solution P . Berman and Krysta show that the
running time of this modified algorithm is bounded by O(kα(dn)2+α), and its
approximation ratio is at most k

k−1 · 2
3 · d, for any choice of k ∈ N+.

RandRound: This is the most typical approximation algorithm, see [18,19,22],
for packing problems like set packing. It first solves the linear programming re-
laxation of the set packing problem and then performs the standard randomized
rounding. An iteration may not produce a feasible packing and that is why we re-
peat the randomized rounding step 750 times and take the best output solution.
Please note that we do not optimize the number of iterations of RandRound and
take it into account just to compare with the above (combinatorial) algorithms,
and our comparison is fair – see further sections. Srinivasan [21] proved that
RandRound has an O(d)-approximation for set packing, where, in particular the
constant in the ratio O(d) is larger than 1.
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2.2 Description of the Instances

Vohra / de Vries: These instances are described by Zurel and Nisan [24], and
by de Vries and Vohra [23]. The description below follows [24]. These instances
are called in our experiments prob.i.m.n.d, where i = 1, 2, 3, 4 according to the
definitions below, and numbers m, n and d are as defined previously. (Some of
the instances may not have the last part d in prob.i.m.n.d defined.)

1. Random: For each bid, pick the number of goods randomly from {1, 2, . . . , m}.
Randomly choose that many goods without replacement. Pick the bid weight
(valuation) randomly from [0, 1]. Then, m ∈ {100, . . . , 400}, n ∈ {500, . . . , 1000}.
2. Weighted Random: The same as for Random, but the bid weight is picked from
[0, number of goods in bid]. Then, m ∈ {100, . . . , 400}, and n ∈ {500, . . . , 2000}.
3. Uniform: For each bid, pick a constant number of goods randomly from
{1, 2, . . . , m}. Randomly choose that many goods without replacement. Pick the
bid weights randomly from [0, 1]. Then, m ∈ {25, . . . , 100}, n ∈ {50, . . . , 1100},
and the bid size d ∈ {3, 8, 11}.
4. Decay: For each bid, give it one random good. Then repeatedly add a new ran-
dom good with probability γ until that good was not added or the bid contains
all m goods. Pick the bid valuations randomly from [0, number of goods in bid].
Also, m ∈ {50, . . . , 200}, n ∈ {50, . . . , 200}, and the probability γ ∈ [5%, 95%].

CATS: These are instances generated by the CATS program described in pa-
per [16] by Leyton-Brown, Pearson and Shoham. The used distributions are
arbitrary, paths, regions and scheduling. We have used the standard parame-
ters to generate these instances, and only the number of bids and goods was
varying. For more precise description of this instance generator see [16] and
the web page http://cats.stanford.edu/. These instances are referred in our
paper to as name.m.n, where name ∈ {arb, paths, reg, sched} and the names
{arb, paths, reg, sched} correspond to the ones above.

Fujishima / Sandholm: These are the instances described in [1], which can
be found at web page http://user.it.uu.se/∼tein/cmb/index.html. They
contain instances generated according to random, uniform, decay, binomial and
exponential distribution. The distributions used in our experiments are uni-
form, binomial with 1500 bids and exponential. From each distribution the first
5 instances have been taken. We refer to those instances as name.nr, where
name ∈ {exp, uni, bin} and nr is the number of the instance. Following the
cited paper, we keep m, n fixed to some specific values.

Uniform ([20]): Draw the same number of randomly chosen items for each bid.
Pick an integer valuation from [500, 1500] and multiply by the number of com-
modities. The number of goods and bids are fixed to m = 100 and n = 500.

Binomial ([9]): The probability distribution for a bid requesting j goods out of
m goods in the market is f(j) = pj · (1 − p)m−j ·

(
m
j

)
with p = 0.2. An integer
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valuation is drawn from 500 to 1500 and multiplied by j. The number of goods
and bids here are m = 150 and n = 1500.

Exponential ([9]): The probability distribution is defined as fe(j) = c ·e−j/5 (c is
implicitly defined by

∑m
j=1 fe(j) = 1, where m as before is the number of goods).

The valuation is an integer, rectangularly drawn from [500, 1500] and multiplied
by the number of requested goods j. Again, we fix m = 30 and n = 3000.

Random: These instances were randomly generated by us with a fixed number
of goods m, bids n, and goods per bid (the d value). We choose randomly n
subsets (bids) of size d out of m goods (possibly with repetitions). Then for
each generated bid its weight is randomly chosen from [0, 1] and multiplied by
d. We call these instances Randomx, where x is the serial number of the instance.

Test-Setup: All algorithms are implemented in Java 1.4.2 and run on AthlonXP
1900 MHz machine with 768 MB RAM under WindowsXP with Service Pack 1.
In all tested instances the optimal solution was found by using CPLEX 6.5.2.

3 Analyzing the Misdirection Algorithm

3.1 Proved Versus Achieved Approximation

A natural question after one succeeds to prove a bound on the approximation
ratio is how rough this bound is as compared to one obtained on typical instances.
Indeed, also in the case of the misdirection algorithm 2 − Imp1.71 with the
starting greedy solution this bound turns out to be rough. This, of course, is not
surprising, but just confirms the known phenomenon that most likely there are
only few worst-case, untypical instances. For some data, see Figure 1.

Fig. 1. The proved approximation ratio is just 2
3d, and the achieved ratio is calculated

by comparing to the optimal solution.

3.2 Larger Neighborhood

We investigate here one of our main questions concerning algorithm Misdirect,
namely if it is worth investing time to find theoretical analysis showing better
factors when � ≥ 3. Let us first consider a tight example in [6] for the ratio of 2

3d
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of 2 − Impα when d = 3. This is given by two examples in Lemma 2.1 and 2.2
in [6]. These two lemmas together imply Lemma 2.3 in [6] stating that for d = 3
the ratio is at least (

√
5d2 − 8d + 4 + 2 − d)/2 = 2

3d = β · d = 2, where βα = 1
2 ,

which implies β = 2
3 and α ≈ 1.71, which is the best theoretical value of α for

d = 3 found in [6]. (Note, taking α ≈ 1.71 gives approximation factor 2
3d for all

values of d. For other values of d slightly better values of α are found [6].)
It can, however, easily be checked that the locally optimal solutions w.r.t. � =

2 in these two examples from [6] are not locally optimal anymore when � = 3
and parameter β from [6] fulfills 1

3 < βα < 1. We, therefore, see that the size
3 neighborhood indeed helps, but certainly this is not enough evidence. What
about typical instances ?

We judge here the improvement in the weight of the solution when we change
the neighborhood size � in algorithm Misdirect from 2 to 4 on CA instances. We
have selected the instances in Figure 2 (a) only from type prob.i.m.n.d (addi-
tional number in the brackets is just the serial number). The reason being that
these are quite small instances and the running time increases rapidly when � is
raised. Obviously, we did not run the tests for larger � if we reached optimum,
i.e., 100% earlier. For each value of � ∈ {3, 4} we used one value of α for all
tested instances, namely the best found.

Fig. 2. (a) 100% on the vertical axis corresponds to the weight of an optimal solution.
(b) shows approximation factors of all algorithms averaged over all instances.

Conclusions: It seems it is worth to try to analyze � − Impα theoretically
for larger values of �. Even in the typical instances we selected we observe an
improvement in the approximation ratio ranging from 1% to about 10%. This
seems not much, but note, that our instances are average “typical” ones. On the
other hand it is plausible that there are better improvements possible on other
larger instances as well, but so far our limiting factor for such tests was rapidly
increasing running time of our implementations.

Testing which α is best for � ≥ 3 we observed that smaller values give bet-
ter results for larger neighborhoods. Our diagram in Fig. 2 (a) shows the best
solution found over all α tested (between 1 and 2 with step size 0.01), but we
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found one value of α = 1.05 which gives these best results for � = 3. Same value
of α gives best results for most of the instances when � = 4, but we could not
test many of them because of high run time. For a majority of instances an α
smaller than 1.1 seemed to be best. But α-values up to 1.2 may also give better
results depending on the instance. For � = 2 we found that on roughly 30% of
the instances smaller values of α in (1.0, 1.2] were better than 1.71.

3.3 Misdirected Versus Standard Local Search

In this section we compare the standard local search, that is with α = 1, with
the misdirected local search, that is with α > 1, both with neighborhood of size
2. More precisely, we compare 2 − Imp1 with 2 − Imp1.71. Both used algorithms
start with an empty initial solution (Misdirect-noGreed).

The diagrams in Fig. 3 show the increase of the solution’s original weight,
w(S), at every local exchange for the respective algorithms. The weight of the
final solution output by 2 − Imp1.71 algorithm is 100% on the vertical axis.

Fig. 3. Misdirected vs. standard local search

Conclusions: One can observe that of course in case of 2 − Imp1.71 there are
many jumps down, which in many cases lead to better locally optimal solutions
in the future exchanges.

Berman and Krysta [6] show an example on which the misdirected algorithm
avoids some bad local optima that would lead to an approximation factor of d,
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which is the case for the standard local search, instead of factor of 2
3d for the

misdirected algorithm. In fact, this example is quite specific one. A question is if
such a behavior also occurs for typical instances. Indeed, we found some instances
where this is the case, see Figure 3 (a) and (b). There are also instances in which
the misdirected solution was worse – see Figure 3 (c) and (d).

The major kind of behavior that we observed is, however, the fact that in
about 80% of all the instances we tested the two curves for 2 − Imp1.71 and for
2 − Imp1 split at some exchange, earlier or later, and at the very point of the
split, the weight of the solution of 2 − Imp1.71 jumps down. As examples, see
Figure 3. Also in these majority of instances the 2 − Imp1.71-curve is below the
2 − Imp1-curve. We also observe that the remaining 20% of the instances where
this behavior does not occur, do not come from one specific type of instances.
We have not observed a clear correlation between the jump down and the fact
that the final Misdirect solution was better than that of standard local search.

3.4 How Fast Is the Local Optimum Reached?

We have taken into account here how many local exchanges are needed to reach
the final locally optimal solution for the Misdirect-noGreed algorithm.

In Figure 4 we draw the quality of the solution (w.r.t. the original weight
w(·)) as a function on the number of local exchanges. We see that within one
class of instances there are easier instances, where there are small number of
high jumps, and there are harder instances, where we have many small jumps.
One striking observation is that for Fujishima/Sandholm instances, see Fig. 4
(a) the instances have been clearly divided into easy, medium, and hard. In
particular easy are instances generated w.r.t. binomial distribution, medium –
ones generated with exponential distribution, and hard – generated with uniform
distribution. Observe, also, that in the case of “medium”, exponential instances
there are many jumps down, which may suggest that in those cases there are
many bad local optima and they are avoided by Misdirect-noGreed.

A similar picture can be obtained for Misdirect-noGreed with neighborhood
of size 3 in Figure 4 (d), where the easiest instances are the ones of Vohra/de
Vries – see also Fig. 4 (c) for those instances and neighborhood of size 2.

Considering Misdirect-noGreed with � = 2 on Vohra/de Vries instances we
found that there are also all levels of difficulty, see Fig. 4 (c).

Finally, we observed that in the case of Misdirect, increasing k which is used in
scaling the weights does not increase its running time on tested instances (though
a bound of O(kα(dn)2+α) on the running time in [6] suggests the opposite). To
explain this we found instances where the value of w(S)α increases by more than
1 in the exchanges, and not just by 1 as assumed in the O(kα(dn)2+α) bound.

4 Comparing All the Algorithms

This section is devoted to the comparison of all the algorithms that we tested,
that is the two greedy algorithms and two misdirection algorithms, and the
randomized rounding algorithm.
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Fig. 4. How fast is the local optimum reached by Misdirect-noGreed for all
distributions?

4.1 Running Times

In terms of running time it is no surprise that the greedy algorithms are much
faster than the misdirection ones. For a comparison see Fig. 5, where we aver-
aged over 13 instances for the Vohra/de Vries distributions, 12 instances of the
CATS distributions and 15 instances of the Fujishima/Sandholm distributions.

Conclusions: We see that typically, the greedy algorithms are faster than
the misdirection ones by at least a factor of 100. We also see that the Fu-
jishima/Sandholm instances are most time demanding for all algorithms, and
the CATS instances are somehow least time demanding for all algorithms.

Note that when calculating the running time of RandRound in Fig. 5 we are
fair and only take into account the randomized rounding iterations and disregard
the time for solving the LP relaxation. The reason for this is that we solve the
LPs exactly by CPLEX, but for such packing LPs there are faster (approximate)
LP solvers, e.g., [10].

For RandRound we observe that our 750 iterations of randomized rounding
phase lead to running time higher than that of greedy algorithms (Fig. 5), but
the approximation factors achieved are much worse (Fig. 6, Fig. 2 (b)).
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Fig. 5. Running times of all algorithms averaged over the instances

We have also found two instances from the Vohra/de Vries distribution where
all the algorithms have a larger running time than on the other instances. Both
have a small d value of 3. Thus, possibly, the running time increases, when
the number of bids is the same but the d value is smaller. Finally we ob-
served that obtaining optimal solution with CPLEX was 10 to 100 times slower
than running a greedy algorithm. Except one type of the Fujishima/Sandholm
instances, namely exponential, where CPLEX was about 4 times faster
than greedy.

4.2 Approximation Factors

We first describe the diagrams for comparing the approximation factors. Fig. 6
(a), (b) shows the approximation factors for every algorithm depending on the
number of goods. Each data point is an average over 3-10 instances. Fig. 6 (c),
(d) shows the approximation factors for every algorithm depending on the num-
ber of bids, where each data point is an average over 3-5 instances. Finally, Fig. 2
(b) shows the approximation factors averaged over all instances of a distribu-
tion. The Vohra/de Vries value is averaged over 13 instances. The CATS value is
averaged over 12 (3 of each kind of distribution), and the Fujishima/Sandholm
value–over 15 instances (5 of each distribution type).

Conclusions: We see that Misdirect has the best approximation factors which
as we know is also the case in the theoretically proven results. This, however, is
with the expense of much higher running times – see the previous subsection.
Also, we did not put here Greedy-3 into the diagrams, because we observed
that Greedy-1 always had better approximation ratio than Greedy-3 (there are
only very few instances of the Fujishima-Sandholm type where the ratio of
Greedy-3 is better only by 0.02%). This is somehow interesting since in the-
ory Greedy-1 has ratio roughly

√
m (which is

√
30 ≈ 5.47 for those instances),

but Greedy-3 has ratio d (which is 4 for those instances).
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Fig. 6. Approximation factors of all algorithms averaged over the instances

Fig. 7. Approximation factors of Misdirect with/without Greedy and of Greedy itself.
The table on the right is the running time (s) for those instances.
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4.3 How Profitable Is Using Greedy Inside Misdirect?

Fig. 7 shows that using greedy solution as the starting point for the misdirection
algorithm does not lead to much better approximation factors. Also, the running
times are not much different between Misdirect with and without Greedy.

Final conclusion: The best algorithm suggested by our experiments is Greedy-
1 if we want a good trade-off for both running time and approximation quality. It
also wins when the simplicity and easy implementation are the concerns. Greedy-
1 is fastest, and gives in most instances the best ratio and in all instances ratios
worse than slowest Misdirect, by at most 8%.

5 Conclusion and Future Work

Our experiments suggest that it should be interesting to try to theoretically prove
better ratios for Misdirect with larger neighborhoods. The theoretical bounds on
the running time of Misdirect appeared to be quite rough on typical instances.
We also observed some interesting behavior on how Misdirect avoids some local
optima. Among the tested algorithms Greedy-1 turns out to be best if we want
a fast algorithm, good approximation ratios and simple implementation. For the
future, we plan to also test other algorithms for multi-packing problems, and
conducting experiments on larger instances.

Acknowledgment. We would like to thank Piotr Berman for some useful
discussions on experimental analysis.
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