Remaining topics:

- Equivalence of CFG’s and PDA’s
- Pumping Lemma for CFG’s
- Parser generation
- Turing machines, equivalent to unrestricted grammars
- Halting Problem, undecidability

Class test on Thursday 21st, it covers topics on CFGs
Pushdown automata (PDAs) have the same expressive power as CFGs (ie they accept CFLs)
Pushdown automata (PDAs) have the same expressive power as CFGs (ie they accept CFLs).

A pushdown automaton is like a NFA but with an additional “memory stack” which can hold sequences of symbols from a memory alphabet.
Pushdown automata (PDAs) have the same expressive power as CFGs (ie they accept CFLs).

A pushdown automaton is like a NFA but with an additional “memory stack” which can hold sequences of symbols from a memory alphabet.

Automaton scans an input from left to right - at each step it may push a symbol onto the stack, or pop the stack. It cannot read other elements of the stack.
Pushdown automata (PDAs) have the same expressive power as CFGs (ie they accept CFLs)
A pushdown automaton is like a NFA but with an additional “memory stack” which can hold sequences of symbols from a memory alphabet.
Automaton scans an input from left to right - at each step it may push a symbol onto the stack, or pop the stack. It cannot read other elements of the stack.
Start with empty stack; accept if at end of string state is in subset $T \subseteq Q$ of accepting states and stack is empty.
notation $\mathcal{P} = (Q, A, M, \delta, i, T)$ where M is stack alphabet and δ is transition function.

Action taken by machine is allowed to depend on top element of stack, input letter being read, and state. Action consists of new state, and possibly push/pop the stack.

Formally:

$$\delta : Q \times (A \cup \{\epsilon\}) \times (M \cup \{\epsilon\}) \rightarrow P(Q \times (M \cup \{\epsilon\}))$$

i.e. for each combination of state, letter being read, and topmost stack symbol, we are given a set of allowable new states, and actions on stack.
For example:

\[\delta(q, a, m) = \{(q2, m2), (q3, m3)\} \]
means that in state \(q \), if you read \(a \) with \(m \) at top of stack, you may move to state \(q2 \) and replace \(m \) with \(m2 \). Alternatively you may move to state \(q3 \) and replace \(m \) with \(m3 \).

\[\delta(q, a, \epsilon) = \{(q2, m2)\} \]
means in state \(q \) with input \(a \), go to state \(q2 \) and push \(m2 \) on top of stack.
Example: Palindromes

Input alphabet $A = \{a, b, c\}$

Use stack alphabet $M = \{a', b', c'\}$

States $Q = \{f, s\}$ (f is “reading first half”, s is “reading second half”)

Initial state f.

Accepting states $T = \{s\}$

Transitions:

$\delta(f, a, \epsilon) = \{(f, a'), (s, \epsilon), (s, a')\}$

$\delta(f, b, \epsilon) = \{(f, b'), (s, \epsilon), (s, b')\}$

$\delta(f, c, \epsilon) = \{(f, c'), (s, \epsilon), (s, c')\}$

$\delta(s, a, a') = \{(s, \epsilon)\}$; $\delta(s, b, b') = \{(s, \epsilon)\}$; $\delta(s, c, c') = \{(s, \epsilon)\}$;

δ(anything else) = \emptyset
An Accepting Computation

aabacabaa

aabacabaa

aabacabaa

aabacabaa

a

P

state f

P

state f

P

change to state s

P

state s
Consider palindromes over \{a, b, c\} which contain exactly one c.
Use stack alphabet \(M = \{a', b'\} \)
states \(Q = \{f, s\} \) (\(f \) is “reading first half”, \(s \) is “reading second half”)
Initial state \(f \), accepting states \(T = \{s\} \)
Transitions:
\[
\begin{align*}
\delta(f, a, \epsilon) &= (f, a') \\
\delta(f, b, \epsilon) &= (f, b') \\
\delta(f, c, \epsilon) &= (s, \epsilon) \\
\delta(s, a, a') &= (s, \epsilon) ; \\
\delta(s, b, b') &= (s, \epsilon) ;
\end{align*}
\]
\(\delta(\text{anything else}) \) is undefined (reject input).
Another deterministic example

PDA to recognise “well-formed” strings of parentheses

- A single state s (accepting)
- Input alphabet $\{(,)\}$
- Memory alphabet $\{x\}$

$$\delta(s, (, \epsilon) = \{(s, x)\}$$
$$\delta(s,), x) = \{(s, \epsilon)\}$$

Comments

- The number of x’s on the stack is the number of (’s read so far minus number of)’s read.
PDA’s and CFG’s...

...define the same set of languages. To prove this,

1. Given a CFL, construct a PDA that accepts it
2. and given a PDA, construct a CFG that defines the language of that PDA.

We define “extended PDA”, a generalisation of PDA. But the extension will not allow extra languages to be accepted. Then we can show equivalence between extended PDA’s and Greibach normal form grammars.
Extended PDAs

Allow transitions that write more than 1 memory symbol to the stack.

e.g.
\[\delta(s, a, X) = \{(t, UVW)\} \]

meaning: in state \(s \), with input \(a \) and \(X \) on top of stack, change to state \(t \), replace the \(X \) with \(UVW \).

This could be replaced with:
\[\delta(s, a, X) = \{(s', W)\} \]
\[\delta(s', \epsilon, \epsilon) = \{(s'', V)\} \]
\[\delta(s'', \epsilon, \epsilon) = \{(t, U)\} \]
Converting GNF grammar to Ext. PDA

Use two states: initial state i, accepting state t
Variable symbols in grammar become the elements of the stack alphabet
Let S denote start symbol of grammar. Rules such as

$$S \rightarrow aTUVW$$

become transitions

$$\delta(i, a, \epsilon) = \{(t, TUVW), \ldots\}$$

Rules such as

$$X \rightarrow aTUVW$$

become transitions

$$\delta(t, a, X) = \{(t, TUVW), \ldots\}$$
Finally, to allow the empty string to belong to the language accepted by the PDA (when the grammar has the production $S \rightarrow \epsilon$):
Include transition

$$\delta(i, \epsilon, \epsilon) = \{(t, \epsilon)\}$$

So, to translate from a CFG to a PDA:

1. Convert grammar to Greibach normal form
2. Convert to extended PDA
3. Convert ext. PDA to a standard PDA
Example

Find a PDA that accepts “valid” expressions that use (,), +, x
e.g.

\[x + x + (x + x) \]
\[(x + (x + x)) \]

Let us disallow consecutive pairs of nested parentheses e.g.

\[x + ((x + x)) \]

also disallow singleton x in a pair of parentheses e.g.

\[x + (x) + x \]
Start symbol E. Variable symbol F represents an expression with no matching pair of parentheses on the outside.

\[
\begin{align*}
E & \rightarrow x \\
E & \rightarrow (F) \\
E & \rightarrow E + E \\
F & \rightarrow E + E
\end{align*}
\]

(We don’t have e.g. $F \rightarrow x$, since (x) was disallowed as a substring.)

Need to convert to GNF.
Eliminate leading variables on RHS’s of productions. Luckily this is fairly simple (for this particular grammar), but we need to be careful in arguing new grammar is equivalent.

\[
\begin{align*}
E & \to x \\
E & \to (F) \\
E & \to (F) + E \\
E & \to x + E \\
F & \to x + E \\
F & \to (F) + E \\
F & \to (F) + E + x \\
F & \to x + E + E
\end{align*}
\]

The last 2 \(F \) rules are redundant; we can remove them.
We now have the grammar

\[E \rightarrow x \mid (F) \mid (F)+E \mid x+E \]

\[F \rightarrow x+E \mid (F)+E \]

Now introduce some variables to represent non-leading alphabet symbols

\[X_j \rightarrow) \]

\[X_+ \rightarrow + \]

\[E \rightarrow (FX_j) \mid x \mid (FX_j)X_+E \mid xX_+E \]

\[F \rightarrow xX_+E \mid (FX_j)X_+E \]

This is now in Greibach Normal Form.
Convert to (extended) PDA

states $Q = \{i, t\}$ (initial state, accepting state)
Input alphabet $A = \{(,), +, x\}$
Memory alphabet $M = \{X), X+, E, F\}$
Transitions:
\[
\delta(i, (, \epsilon) = \{(t, FX_j), (t, FX_j)X+E)\}
\]
\[
\delta(i, x, \epsilon) = \{(t, \epsilon), (t, X+E)\}
\]
\[
\delta(t,), X_j) = \{(t, \epsilon)\}
\]
\[
\delta(t, +, X_+) = \{(t, \epsilon)\}
\]
\[
\delta(t, x, F) = \{(t, X+E)\}
\]
\[
\delta(t, (, E) = \{(t, FX_j), (t, FX_j)X+E)\}
\]
\[
\delta(t, x, E) = \{(t, \epsilon), (t, X+E)\}
\]
\[
\delta(t, (, F) = \{(t, FX_jX+E)\}
\]
A Computation

Paul Goldberg COMP 218; slides 11, 2012-13 18 / 52
The Associated Leftmost Derivation

\[
E \quad \Rightarrow \quad (FX)
\]
\[
\quad \Rightarrow \quad (x\ X_+EX)
\]
\[
\quad \Rightarrow \quad (x+EX)
\]
\[
\quad \Rightarrow \quad (x+(FX)X)
\]
\[
\quad \Rightarrow \quad (x+(X_+EX)X)
\]
\[
\quad \Rightarrow \quad (x+(xEX)X)
\]
\[
\quad \Rightarrow \quad (x+(x+X)X)
\]
\[
\quad \Rightarrow \quad (x+(x+x))
\]

Grammar:

\[
E \quad \rightarrow \quad (FX) \mid x \mid (FX)X_+E \mid xX_+E
\]
\[
F \quad \rightarrow \quad xX_+E \mid (FX)X_+E
\]
\[
X_j \quad \rightarrow \quad)
\]
\[
X_+ \quad \rightarrow \quad +
\]
Conversion from PDA to CFG

Problem: PDAs constructed from CFGs have just 2 states \(\{i, t\} \), with the PDA only in state \(i \) at the start, afterwards always in state \(t \).

How do we convert from a PDA with \(>2 \) states?
Problem: PDAs constructed from CFGs have just 2 states \(\{i, t\} \), with the PDA only in state \(i \) at the start, afterwards always in state \(t \).
How do we convert from a PDA with \(> 2 \) states?
General idea: convert it to an extended PDA with 2 states as above. We are arguing that anything we can do with a PDA can be done with a 2-state extended PDA.
Problem: PDAs constructed from CFGs have just 2 states \(\{i, t\} \), with the PDA only in state \(i \) at the start, afterwards always in state \(t \).

How do we convert from a PDA with \(> 2 \) states?

General idea: convert it to an extended PDA with 2 states as above. We are arguing that anything we can do with a PDA can be done with a 2-state extended PDA.

(alternative conversion to CFG is also possible)
Use a bigger memory alphabet, where each symbol represents a symbol from original memory alphabet, together with a state and a letter.

Technically, if $\mathcal{P} = (Q, A, M, \delta, i, T)$ we define

$\mathcal{P}' = (\{i, t\}, A, M \times Q \times A, \delta', i, \{t\})$

Need to define δ', the new transition function.
Constructing new transition function

For example:
Suppose \(\delta(q, a, m) = \{(q', m')\}, \ldots \) .
Then we would say, for all \(a' \in A \),

\[
\delta'(i, a, (m, q, a')) = \{(t, (m', q', a'))\}, \ldots
\]

\[
\delta'(t, a, (m, q, a')) = \{(t, (m', q', a'))\}, \ldots
\]

If we have \(\delta(q, a, \epsilon) = \{(q', m')\}, \ldots \)
Then for all \(m \in M, a' \in A \)

\[
\delta'(t, a, (m, q, a')) = \{(t, (m', q', a'')(m, q, a'))\}, \ldots
\]
for any \(a'' \) satisfying \(\delta(q', a'', m') = \{(q, \epsilon), \ldots \} \).
The Pumping Lemma for CFLs

Given a CFL, any sufficiently long string in that CFL has *two* substrings (at least one of which is non-empty) such that if both of these substrings are “pumped” you generate further words in that CFL.
The Pumping Lemma for CFLs

Given a CFL, any sufficiently long string in that CFL has two substrings (at least one of which is non-empty) such that if both of these substrings are “pumped” you generate further words in that CFL.

More formally...

Given a CFL L, there exists a number N such that any string $\alpha \in L$ with $|\alpha| \geq N$ can be written as

$$\alpha = sxtyu$$

such that

$$sx^2ty^2u, \ sx^3ty^3u, \ sx^4ty^4u, \ldots$$

are all members of L, $|xy| \leq N$ and $|xy| > 0$ (which we need for all strings in this collection to be distinct).
How do we find suitable substrings x and y?

Consider the following (Chomsky normal form) grammar:

- $S \rightarrow XY$
- $U \rightarrow a$
- $V \rightarrow ZX \mid a \mid b$
- $X \rightarrow VW \mid a$
- $Y \rightarrow b \mid c$
- $Z \rightarrow a \mid c$
- $W \rightarrow UZ \mid b$

The string $cabaab$ belongs to the language. Also it contains “suitable substrings” x and y which we can find by looking at a derivation tree.
We find two X’s on the same path. We can say:

$$X \implies^* cXaa$$

(via the sequence $X \Rightarrow VW \Rightarrow ZXW$
$\Rightarrow cXW \Rightarrow cXUZ \Rightarrow cXaZ \Rightarrow cXaa$)

Generally: $X \implies^* ccXaaaa \implies^* cccXaaaaaa\ldots$
The substrings \texttt{c} and \texttt{aa} can be pumped, because a derivation of \texttt{cabaab} can go as follows:

\[
\begin{align*}
S & \implies^* Xb \\
& \implies^* cXaab \\
& \implies^* cabaab
\end{align*}
\]

but the underlined \textit{X} could have been used to generate extra \texttt{c}’s and \texttt{aa}’s on each side of it.
Given a grammar, it’s not hard to see that any sufficiently long string will have a derivation tree in which a path down to a leaf must contain a repeated variable. If the grammar is in Chomsky normal form and has v variables, any string of length $> 2^v$ will necessarily have such a derivation tree.
Prove the following is not a CFL:
\{ 1, 101, 101001, 1010010001, 101001000100001, \ldots \}
Proof by contradiction: suppose string s (in above set) has substrings x and y that can be pumped. x and y must contain at least one 1, or else all new strings generated by repeating x and y would have same number of 1’s, a contradiction. But if x contains a 1, then any string that contains x^3 as a substring must have 2 pairs of 1’s with the same number of 0’s between them, also a contradiction.
Prove the following language is not a CFL: Let L be words of the form ww (where w is any word over \{a, b, c\}) (e.g. aa, abcabc, baaabaaa, ...)

Let N be “sufficiently large” word length promised by pumping lemma.

Choose $w = a^{N+1}b^{N+1}a^{N+1}b^{N+1}$, so $w \in L$

We can argue that there is no subword of w of length N which contains any pair of subwords which, if repeated once, give another member of L.
As noted, brute-force parsing of a string with respect to CFG G is (nearly always) impractical. We would not want to implement an unrestricted PDA. A deterministic PDA (DPDA) would be OK. (we elaborate on this later)

A deterministic context-free language (DCFL) is a CFL that can be recognised by a DPDA. We look at two kinds of DPDA: LL(1) parser and LR(1) parser (and generalisations: LL(k), LR(k) for positive integers k) These parsers have the property that they can be generated automatically from given grammars.

A parser generator is a program that takes a grammar as input and returns a parser (usually one of the kinds named above)

Examples: javacc – a LL parser generator
 javaCUP – a LR parser generator
When we talk about “parsability”, distinguish between parsability of a language and parsability of a grammar.

ie. some grammars are e.g. not LL(1) parsable but can be converted in LL(1) grammars that generate the same language Palindromes are a language that is not parsable (by these standard algorithms) since they require a non-deterministic PDA.

Some grammars are e.g. not LL(k) parsable but are LR parsable. Even if grammar can be converted to LL(k) grammar, you may have really wanted to use the original grammar.
The problem: given a grammar G, convert it to a parser (ie an algorithm that finds a derivation of a string generated by G). We will look at parser generators that generate LL and LR parsers. Not all CFGs, indeed not all CFLs, have LL/LR parser generators. But you may be able to modify the grammar, and most (nearly all) programming languages have appropriate grammars. A brute-force parser is always possible, but we ask for an algorithm that is efficient in the sense that the time taken to find a derivation of a string of length n should be proportional to n, ie $\Theta(n)$.
If we can

1. convert to a deterministic pushdown automaton
2. interpret each transition of DPDA as a derivation step

then we are done because it is not hard to see that the time taken to run a DPDA on a string of length n is indeed $\Theta(n)$.
LL(k): left-to-right scan, leftmost derivation, k symbols of lookahead
LR(k): left-to-right scan, rightmost derivation, k symbols of lookahead
Usually we use 1 symbol of lookahead, so that LL and LR can usually be taken to mean LL(1) and LR(1) respectively.
Observe that “left-to-right scan” is descriptive of pushdown automaton. We observed that palindromes need a general i.e. non-deterministic PDA to recognise them. Palindromes can be efficiently recognised, but not by scanning from left to right with a DPDA.
LL(1): left-to-right scan, leftmost derivation, one symbol lookahead.

Let G be the grammar of interest
Scan input word w from left to right
Each time a new letter (element of alphabet A) is scanned, you have to be able to identify which production in the grammar has been used to generate that letter
Let w' be the suffix of w reached at some stage
That production cannot necessarily be applied in reverse to w' - use a stack of variables (elements of V) and letters in A to keep track of what w' has to be derivable from.
Example

\[S \rightarrow aX \mid bY \quad X \rightarrow cZccZ \]
\[Y \rightarrow aX \quad Z \rightarrow dX \mid e \]

Given a grammar symbol to be parsed and an alphabet symbol (the lookahead symbol, ie the next symbol in a word that is being scanned) we want to know which rule to apply. We can write down a table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(S \rightarrow aX)</td>
<td>(S \rightarrow bY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>(X \rightarrow cZccZ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>(Y \rightarrow aX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td>(Z \rightarrow dX)</td>
<td>(Z \rightarrow e)</td>
</tr>
</tbody>
</table>
Apply the table to problem of parsing input:

bacdcececece

stack represents the remaining stuff to be parsed (the unscanned portion of the input)

<table>
<thead>
<tr>
<th>rule</th>
<th>stack</th>
<th>rest of input</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow bY$</td>
<td>bY</td>
<td>bacdcecececece</td>
</tr>
<tr>
<td>Y $\rightarrow aX$</td>
<td>aX</td>
<td>acdcecececece</td>
</tr>
<tr>
<td>X $\rightarrow cZccZ$</td>
<td>cZccZ</td>
<td>cdcececececece</td>
</tr>
<tr>
<td>Z $\rightarrow dX$</td>
<td>dXccZ</td>
<td>dcecececececece</td>
</tr>
</tbody>
</table>

continued...
input: **bacdcecececece**
rule stack rest of input

<table>
<thead>
<tr>
<th>S</th>
<th>bY bacdcecececece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>acdcececece</td>
</tr>
<tr>
<td>X</td>
<td>cdcececece</td>
</tr>
<tr>
<td>Z</td>
<td>dcececece</td>
</tr>
<tr>
<td>X</td>
<td>cececece</td>
</tr>
<tr>
<td>Z</td>
<td>ececece</td>
</tr>
<tr>
<td>Z</td>
<td>ececece</td>
</tr>
<tr>
<td>Z</td>
<td>ececece</td>
</tr>
<tr>
<td>Z</td>
<td>ececece</td>
</tr>
</tbody>
</table>

...we are done. The sequence of rules down the first column gives a
The leftmost derivation is:

\[S \Rightarrow bY \Rightarrow baX \Rightarrow bacZccZ \Rightarrow bacdXccZ \]
\[\Rightarrow bacdcZccZccZ \Rightarrow bacdceccZccZ \Rightarrow bacdceccceccZ \]
\[\Rightarrow bacdcececece \]

The stack contains a sequence of grammar symbols which is supposed to derive the remainder of the input.

The algorithm is a top-down approach - the stack initially contains the initial symbol of the grammar, and we use the first letter of the string to tell us which rule to apply first.
Example 2

Prolog terms composed from the functors $f(\cdot, \cdot)$ and $g(\cdot)$ and atoms a, b, c.

Examples

a
$f(a, g(a, b))$
$g(f(a, g(a, b)))$
$f(f(c, g(a)), g(a, b))$

Grammar: alphabet \{a, b, c, f, g, (,), \}, variables \{T\} (necessarily T is the start symbol).

Productions:

$T \rightarrow f(T, T) \mid g(T) \mid a \mid b \mid c$
Example 2 (continued)

Productions:

\[T \rightarrow f(T, T) \mid g(T) \mid a \mid b \mid c \]

LL(1) parse table has rows labelled by variables and columns labelled by constants:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>[T]</td>
<td>[T \rightarrow a]</td>
<td>[T \rightarrow b]</td>
<td>[T \rightarrow c]</td>
<td>[T \rightarrow f(T, T)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>g()</th>
</tr>
</thead>
<tbody>
<tr>
<td>[T]</td>
<td>[T \rightarrow g(T)]</td>
</tr>
</tbody>
</table>
meaning that when I read a I assume it was generated by production $T \rightarrow a$ and so in order to get rid of that a I need to reverse that production on it.

Easy to see in this example that in fact a can only be generated by a usage of $T \rightarrow a$ (and similarly for other symbols).

The T labelling the row says that we apply an appropriate rule when T is at the top of the stack. If a constant is at top of stack we have to just check it’s equal to head of string.
$T \Rightarrow^* f(g(g(a)), b)$

where f is lookahead token

$f(T, T) \Rightarrow^* f(g(g(a)), b)$

2 constants on stack match first 2 symbols:

$T, T \Rightarrow^* g(g(a)), b)$

now g is lookahead token

$g(T), T \Rightarrow^* g(g(a)), b)$

$T), T) \Rightarrow^* g(a)), b)$

$T)), T) \Rightarrow^* a)), b)$

$)a)), T) \Rightarrow^* a)), b)$

$T) \Rightarrow^* b)$

$b) \Rightarrow^* b)$

and we are done (the string is parsed).
The problem: need general method for inserting grammar rules into table entries.

Define “FIRST” sets, “FOLLOW” sets and “nullable”, all features of a variable symbol.

Let X be a variable symbol.

1. FIRST(α) is the set of all constants (i.e. grammar symbols other than variables) that can begin any string derived from α.

2. FOLLOW(X) is the set of all constants that can come after X is a string derivable from the start symbol.

3. X is nullable if $X \Rightarrow^* \epsilon$, i.e. X can derive the empty string.

If we can work out what these sets are for all variable symbols, then we have a rule for inserting rules into parse table.
Building the parse table from them:
Extend definition of “nullable” to strings: α is nullable if all symbols in it are nullable.
For each production $X \rightarrow \alpha$, enter that production into row X column a if $a \in \text{FIRST}(\alpha)$. Also, if α is nullable, insert $X \rightarrow \alpha$ into row X column a for each $a \in \text{FOLLOW}(X)$.
If you do this and some entries contain more than one production, then the grammar was not LL(1) parsable.

How to compute them:
Initially FIRST and FOLLOW sets are all set to empty and nullable is set to false, for all variable symbols.
Next slide: “iterate until nothing happens” approach seen in DFA simplification method.
Computing FIRST and FOLLOW sets; nullable symbols

for each terminal symbol \(a \), \(\text{FIRST}(a) = \{a\} \)
repeat
for each production \(X \rightarrow Y_1 Y_2 \ldots Y_k \)
 if all the \(Y_i \) are nullable
 then \(\text{nullable}(X) = \text{true} \)
 if all of \(Y_1, \ldots, Y_{i-1} \) are nullable
 then \(\text{FIRST}(X) = \text{FIRST}(X) \cup \text{FIRST}(Y_i) \)
 if all of \(Y_{i+1}, \ldots, Y_k \) are nullable
 then \(\text{FOLLOW}(Y_i) = \)
 \(\text{FOLLOW}(Y_i) \cup \text{FOLLOW}(X) \)
 if \(Y_{i+1}, \ldots, Y_{j-1} \) are all nullable
 then \(\text{FOLLOW}(Y_i) = \)
 \(\text{FOLLOW}(Y_i) \cup \text{FIRST}(Y_j) \)
until FIRST, FOLLOW and nullable do not change in some iteration.
Example

Write down a LL(1) parse table for the following context-free grammar. \((\{S, A, B, C\}, \{a, b, c, d\}, P, S) \) where \(P \) is the set of rules:

\[
\begin{align*}
S & \rightarrow ABCd \\
A & \rightarrow aS \mid B \\
B & \rightarrow bCC \mid \epsilon \\
C & \rightarrow cC \mid d
\end{align*}
\]
Nullable symbols? $B \Rightarrow \epsilon$ so B is nullable. $A \Rightarrow B \Rightarrow \epsilon$ so A is nullable. S and C are not (look at RHS’s of their rules).

FIRST(S) = \{a, b, c, d\}; FIRST(A) = \{a, b\}; etc

FOLLOW(S) = \{b, c, d\} (e.g. $S \Rightarrow ABCd \Rightarrow aSBCd \Rightarrow aSbCCCd$, hence $b \in$ FOLLOW(S)).

FOLLOW(A) contains c and d

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$S \rightarrow ABCd$</td>
<td>$S \rightarrow ABCd$</td>
<td>$S \rightarrow ABCd$</td>
<td>$S \rightarrow ABCd$</td>
</tr>
<tr>
<td>A</td>
<td>$A \rightarrow aS$</td>
<td>$A \rightarrow B$</td>
<td>$A \rightarrow B$</td>
<td>$A \rightarrow B$</td>
</tr>
<tr>
<td>B</td>
<td>$B \rightarrow bCC$</td>
<td>$B \rightarrow \epsilon$</td>
<td>$B \rightarrow \epsilon$</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>$C \rightarrow cC$</td>
<td>$C \rightarrow d$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Eliminating left recursion

Parser generation succeeds iff no entry to parse table contains more than one production. How to change non-LL(1) parsable into LL(1) parsable grammar?

Two examples (from A.W. Appel: *Modern compiler implementation in Java*):

Suppose a grammar contains the following rules

\[
E \rightarrow E + T \\
E \rightarrow T
\]

Any token in \(\text{FIRST}(T) \) with also be in \(\text{FIRST}(E + T) \). So given a stack with \(E \) at the top and one of the tokens at front of input, don’t know which rule to use. (The algorithm just given would insert both rules into the parse table entry.) Replace with

\[
E \rightarrow TE' \\
E' \rightarrow +TE' \\
E' \rightarrow \epsilon
\]
Suppose a grammar contains the rules:

\[S \rightarrow \text{if } E \text{ then } S \text{ else } S \]
\[S \rightarrow \text{if } E \text{ then } S \]

Clearly we don’t know which to use if we want to parse an \(S \) and we see the next token is an “if”.

Replace with:

\[S \rightarrow \text{if } E \text{ then } S \ X \]
\[X \rightarrow \epsilon \]
\[X \rightarrow \text{else } S \]

this equivalent grammar fragment is LL(1) parsable.
Each row is a variable symbol (as before); each row is a sequence of k constants. Hence the action taken at each step depends on the first k tokens in the input, as well as the top of the stack. A simple generalisation of the LL(1) parser generator to LL(k) (with $|A|^k$ columns in the parse table) would be slow; “local lookahead” with LL(1) is preferable.
Prolog terms composed from the functors \(f(\cdot,\cdot) \) and \(g(\cdot) \) and atoms \(a, b, c, f, g \). (like earlier example but now \(f \) and \(g \) may be atoms.

Grammar: alphabet \(\{a, b, c, f, g, (,), ,\} \), variables \(\{T\} \) (necessarily \(T \) is the start symbol).

Productions:
\[
T \rightarrow f(T,T) \mid g(T) \mid a \mid b \mid c \mid f \mid g
\]

Suppose we want to parse a \(T \) at top of stack and we see an \(f \) at beginning of input. Do we think it was generated by \(T \rightarrow f \) or by \(T \rightarrow f(T,T) \)?

If we look at what comes next, we would know: If the next symbol is \((\) then we should use \(T \rightarrow f(T,T) \) otherwise we should use \(T \rightarrow f \).

(some parser generators a “local lookahead” facility for incorporating facts like that, alternatively we could use LL(2) parser, but you end up with a big parse table.)
Contrasting this with LR parsing (which I will not do in detail)

An LR parser is a DPDA where the stack contains a collection of symbols that can derive the prefix scanned so far (as opposed to symbols that can be used to derive the suffix). On reading a symbol, the symbol can simply be transferred to the stack. Sometimes a rule is applied in reverse to a sequence of stack symbols that correspond to a RHS of a grammar rule.