Two characterisations of regular languages

A “regular language” means a language that can be defined using a regular expression.

Kleene’s theorem

Regular languages are those languages that can be accepted by finite automata.

We have already seen that any NFA has an equivalent DFA. So when we talk about languages that can be accepted by finite automata, we don’t need to specify whether we are talking about DFAs or NFAs.

We prove Kleene’s theorem by showing how to convert from a NFA to a reg expr, and vice versa.

Convert regular expression to NFA

Recall: we have seen to convert NFA to DFA!

Recall how r.e.’s are defined. To show that any r.e. has an equivalent NFA:

1. Construct a NFA that accepts any single one-letter word (easy!)
2. Given two NFAs, construct a new one that accepts the concatenation of their languages
3. Given two NFAs, construct a new one that accepts the union of their languages
4. Given any single NFA, construct a new one that accepts the closure of its language

Claim 1

Let L_1 and L_2 be languages over an alphabet A. If there are finite automata accepting L_1 and L_2 then there is a finite automaton accepting L_1L_2.

Proof. Assume L_1 and L_2 are accepted by DFAs $A_1 = (Q_1, A, \phi_1, i_1, T_1)$ and $A_2 = (Q_2, A, \phi_2, i_2, T_2)$.

Define A to be the automaton $(Q_1 \cup Q_2, A, \psi, i_1, T_2)$ where ψ is defined for $q_1 \in Q_1$ by

$$\psi(q_1, a) = \{\phi_1(q_1, a)\} \text{ if } \phi_1(q_1, a) \not\in T_1$$

and for $q_2 \in Q_2$ by

$$\psi(q_2, a) = \{\phi_2(q_2, a)\}.$$
Next: verify that L_1L_2 is the language accepted by A. First, prove that $L_1L_2 \subseteq L(A)$.
Suppose $w_1 \in L_1$ and $w_2 \in L_2$. Then $\phi_1(i_1, w_1) \in T_1$ and $\phi_2(i_2, w_2) \in T_2$. By the definition of ψ we see that $i_2 \in \psi(i_1, w_1)$ and $\phi_2(i_2, w_2) \in \psi(i_1, w_1w_2)$. Now in A the path with label w_1w_2 has the form

$$i_1 \rightarrow w_1 \rightarrow \{ \ldots, i_2, \ldots \} \rightarrow w_2 \rightarrow \{ \ldots, \phi_2(i_2, w_2), \ldots \}$$

so the final set $\psi(i_1, w_1w_2)$ contains a state from T_2, i.e. an accepting state of A. Hence w_1w_2 is accepted by A. This shows that $L_1L_2 \subseteq L(A)$.

Then, prove that $L(A) \subseteq L_1L_2$.
Proof sketch (see textbook for full proof):
Suppose that $w \in L(A)$.
There is an accepting path in A labelled by the letters of w. From each set of states on the path, choose one that is “the right choice” for the non-deterministic machine A.
At some point the path passes from states in Q_1 to states in Q_2, and never returns to Q_1.
This point gives the right point to split w into two words w_1 and w_2 accepted by A_1 and A_2 respectively.

Claim 2
Let L_1 and L_2 be languages over an alphabet A. If there are finite automata accepting L_1 and L_2 then there is a finite automaton accepting $L_1 \cup L_2$.

We will show how to do it on the above example, then give a general description.
Make the 2 original DFAs have complete transition functions.

New state for each pair of old states...

Initial state: pair of initial states...

Accepting states: pairs containing accepting states...
Claim 2

Let \(L_1 \) and \(L_2 \) be languages over an alphabet \(A \). If there are finite automata accepting \(L_1 \) and \(L_2 \) then there is a finite automaton accepting \(L_1 \cup L_2 \).

Proof. Let \(A_1 = (Q_1, A, \phi_1, i_1, T_1) \) be an automaton accepting \(L_1 \) and \(A_2 = (Q_2, A, \phi_2, i_2, T_2) \) be an automaton accepting \(L_2 \), where we may assume both are deterministic. Define \(A = (Q, A, \phi, i, T) \) as follows:

\[
Q = Q_1 \times Q_2
\]
\[
\phi((q_1, q_2), a) = (\phi_1(q_1, a), \phi_2(q_2, a))
\]
for all \(q_1 \in Q_1 \); \(q_2 \in Q_2 \); \(a \in A \)
\[
i = (i_1, i_2).
\]
\[
T = \{(p, q) : p \in T_1 \text{ or } q \in T_2\}
\]

Then
\[
\phi(i, w) = (\phi_1(i_1, w), \phi_2(i_2, w)) \text{ for all } w \in A^*.
\]

Now we have
\[
w \in L_1 \cup L_2 \iff \phi_1(i_1, w) \in T_1 \text{ or } \phi_2(i_2, w) \in T_2
\]
\[
\iff \phi(i, w) = (p, q)
\]
where \(p \in T_1 \) or \(q \in T_2 \) (or both)

So from the definition of the set \(T \) of terminal states of \(A \) we have
\[
w \in L_1 \cup L_2 \iff \phi(i, w) \in T \iff w \text{ is accepted by } A.
\]

Hence the language accepted by \(A \) is \(L_1 \cup L_2 \).
Observation

The 2 constructions so far give a general way of constructing a finite automaton that accepts any **finite** language.

A word in a finite language is built from a sequence of concatenations

The language is built from a sequence of unions of sets of words

Claim 3

If language L is accepted by some finite automaton, then so is language L^*.

Make new initial state i', with $i' \in T$.

Let ϕ' be the new transition function, where ϕ' contains all transitions of ϕ, and in addition:

If $\phi(i, a) = q$ for $a \in A$, $q \in Q$ then $\phi'(i', a) = q$.

If $\phi(q, a) = t \in T$ for $q \in Q$, then let $\phi'(q, a) = \{i', t\}$. (making the automaton non-deterministic)

Comment

“union” construction could be modified in obvious (?) way to get an “intersection” result; could also do symmetric difference, or complicated boolean combinations of more than 2 languages. (eg: given 4 languages L_1, L_2, L_3, L_4, define a new language L_{new} as $w \in L_{\text{new}}$ iff $w \in$ exactly 2 of L_1, L_2, L_3, L_4.)

But it’s not so obvious how to do that with regular expressions!

Next: conversion from any finite automaton to an equivalent r.e. (which completes Kleene’s theorem)