Convert this DFA M to equivalent r.e.

Language: even number of a’s or an odd number of b’s.
\[L(M) = L(M1) \cup L(M2) \cup L(M3) \]
$L(M_2) = L(M_1)^* L(M_4)$
\[L(M4) = aL(M5) \cup bL(M6) \]
\(L(M1) = L(M7)^* \)
\[L(M7) = aL(M8) \cup bL(M9) \]
Given a DFA $M = (Q, A, \phi, i, T)$.

Construct a regular expression for $L(M)$.
Given a DFA $M = (Q, A, \phi, i, T)$.

Construct a regular expression for $L(M)$

Recursive: express solution in terms of solutions to simpler instances of this problem.
Given a DFA $M = (Q, A, \phi, i, T)$.

Construct a regular expression for $L(M)$

Recursive: express solution in terms of solutions to simpler instances of this problem.

Base case: M has no labelled transitions to an accepting state.
- If $i \in T$ then $L(M) = \{\epsilon\}$
- Else $L(M) = \emptyset$
The algorithm (continued)

Recursive case: there’s a transition to accepting state

If $T = \{q_1, \ldots, q_k\}$ where $k > 1$

Then $L(M) = \bigcup_{j=1}^{k} L(M_j)$

where $M_j = (Q, A, \phi, i, \{q_j\})$

Evaluations of regular expressions for $L(M_j)$ are done recursively.
Else /* one accepting state */

Let \(T = \{ t \} \) (i.e. \(M = (Q, A, \phi, i, \{ t \}) \))

If \(t = i \)

Then \(L(M) = L(M')^* \)

where \(M' = (Q \cup \{ t' \}, A, \phi', i, \{ t' \}) \)

and \(\phi'(q, a) = t' \) whenever \(\phi(q, a) = i \)

otherwise \(\phi'(q, a) = \phi(q, a) \).

Regular expression for \(L(M') \) is found recursively.
Else /* $T = \{t\}, \ t \neq i */$

If M has labelled transitions to i
Then $L(M) = L(M')^* L(M'')$
where $M' = (Q, A, \phi, i, \{i\})$,
M'' is like M but without the labelled transitions to i
Else /* no labelled transitions to $i */$
$L(M) = \bigcup_{a \in A} aL(M_a)$
where M_a is like M but without transition from i labelled by a (don’t include M_a
if no such transition is in M)
Initial state of M_a is $\phi(i, a)$.

Regular expressions for $L(M')$, $L(M'')$, $L(M_a)$ etc are found recursively.
The algorithm expresses the language accepted by a given DFA M in terms of languages accepted by other DFAs - recursive.

Want to verify that:

1. $L(M)$ is the same as the language accepted by the combinations of DFAs constructed in the recursive calls.
2. The algorithm terminates.
Justifying the DFA to r.e. algorithm

The algorithm expresses the language accepted by a given DFA M in terms of languages accepted by other DFAs - recursive
Want to verify that:

1. \(L(M) \) is the same as the language accepted by the combinations of DFAs constructed in the recursive calls

2. The algorithm terminates.

Regarding (1): We saw that in all the cases that arose the languages are the same
Justifying the DFA to r.e. algorithm

The algorithm expresses the language accepted by a given DFA M in terms of languages accepted by other DFAs - recursive
Want to verify that:

1. $L(M)$ is the same as the language accepted by the combinations of DFAs constructed in the recursive calls
2. The algorithm terminates.

Regarding (1): We saw that in all the cases that arose the languages are the same
Regarding (2): Define “simpler” such that the algorithm decomposes a task into “simpler” tasks, until we reach base case (the “simplest” tasks where it’s obvious what to do)
Proving that the algorithm terminates

Say what we mean by “simpler”
Verify that the algorithm always expresses a language in terms of languages accepted by “simpler” machines.

Prove that any sequence of machines M_1, M_2, M_3, \ldots where M_i is simpler than M_{i-1}, is finite.
That will prove that the depth of recursion is finite.
Comparing finite automata M_1 and M_2

Define the number of transitions of M to be the number of pairs (q, a) for which $\phi(q, a)$ is defined.

1. If M_1 and M_2 have differing numbers of transitions, the one with the smaller number is simpler.

2. Failing that, the one with the smaller number of accepting states is simpler.

3. If one (but not both) of M_1, M_2 has no transitions to initial state, that one is simpler.

4. If one (but not both) of M_1, M_2 has initial state accepting, the other one is simpler.

Check that in each case given in the algorithm, the machines constructed for the recursive calls are simpler.
Priority of rules is top to bottom, ie apply rule 1, if that can’t be used to compare DFAs, then apply rule 2, etc. Not all pairs of distinct machines can be compared this way, but argue that M_1 and M_2 — where M_2 is generated by a recursive call from applying algo to M_1 — can be compared (and M_2 is simpler). That’s good enough for us.

Structure of this comparison method mimics structure of algorithm, but points out what we look for to be convinced M_2 is simpler.
Finally, prove that our definition of “simpler” does not allow infinite sequences of simpler and simpler machines.

Prove that any sequence of machines $M_1, M_2, M_3,...$ where M_i is simpler than M_{i-1}, is finite.

Proof. Let N be the number of transitions in M_1.

Going from M_i to M_{i+1}, rule 1 can only be used $\leq N$ times.

Let M_k be the machine we reach after the final usage of rule 1 in the sequence.

Let N' be the number of states of M_k.

Now rule 2 can only be used $\leq N'$ times. In between each usage of rule 2, rules 3 and 4 can only be used once.

Conclude the sequence is indeed finite.
Kleene’s Theorem (overview)

1. General method for converting from reg expr to DFA
2. General method for converting from DFA to reg expr (note: current version is different from these slides)

Method 1 also needs general method for converting NFA to DFA (given earlier). (Due to the fact that the constructions for closure and concatenation of languages accepted by DFAs may create a NFA.)

Note that an expression/finite automaton may (typically) be much larger than smallest possible.
“short cuts” are possible if you don't follow the general method. (The point of the general method is that it always works) e.g. if a DFA has a “bottleneck” (a transition that accepting paths must use) that may suggest its language is the concatenation of 2 languages accepted by machines each side of that transition. (And, maybe the general algorithm would start by expressing the DFA as the union of several DFAs that are only slightly smaller...)
Taking stock

Usually easy to describe a programming language’s tokens using regular expressions (often a natural way of expressing a description symbolically). But it’s obvious how to implement a DFA (giving algorithm to scan tokens)

Example

A token is `<`, `<=`, `=`, `>=`, `=`, `>`, `<>`, `(`, `)`, `+`, `−`, `∗`, `/`, `:=`, `;`, or an identifier, keyword, constant or literal.

- **identifier** = 〈A〉(〈A〉 ∪ 〈D〉)*
- **keyword** = {for, to, if, ...}
- **constant** = 〈D〉*
- **literal** = '〈D〉 ∪ 〈A〉 ∪ {<, =, >, +, ...})*'
 (any string of symbols in single quotes)
- **comment** = / ∗ (〈A〉 ∪ 〈D〉 ∪ {<, =, ...})* ∗ /
convention: A token is recognised whenever an accepting state is reached, and next transition is undefined for following char
Recall: any formal language is a well-defined set of words over some given alphabet.
A regular language is one that is given by some regular expression or accepted by some DFA (or NFA)
A regular language will have many different but equivalent DFAs or reg exprs that represent it.

Which of the following regular expressions over alphabet \{a, b\} are equivalent:
- \(b(a^*)b\),
- \(bb \cup ba(a^*)b\),
- \(ba(a^*)\),
- \(\{b, \epsilon\}a(a^*)\),
- \(\{ba, a\}(a^*)\)
Let R, S and T denote regular expressions. We can note some general rules governing equivalence of regular expressions such as:

- $R \cup S = S \cup R$
- $(R \cup S) \cup T = R \cup (S \cup T)$
- $R(S \cup T) = (RS) \cup RT$
Let R, S and T denote regular expressions. We can note some general rules governing equivalence of regular expressions such as

\[
R \cup S = S \cup R \\
R \cup (S \cup T) = (R \cup S) \cup T \\
R(ST) = (RS)T \\
R(S \cup T) = (RS) \cup RT
\]
Equivalences amongst regular expressions

Some properties of closure
Equivalences amongst regular expressions

Some properties of closure

\[(R^*)^* = R^*\]
\[R(R^*) = (R^*)R\]
\[R(R^*) \cup \epsilon = R^*\]
\[R(SR)^* = (RS)^*R\]
\[(R \cup S)^* = (R^* \cup S^*)^* = (R^*S^*)^* = R^*(S(R^*))^*\]
Prove that \((R^*)^* = R^*\).
Example proof

Prove that \((R^*)^* = R^*\).

Suppose \(w \in (R^*)^*\).
Then \(w = w_1 w_2 \ldots w_n\) for \(w_i \in R^*\).
\(w_i \in R^*\) means that \(w_i = w_{i,1} w_{i,2} \ldots w_{i,n(i)}\) for \(w_{i,j} \in R\).
Hence \(w\) is a concatenation of words that belong to \(R\), so \(w \in R^*\).
Prove that \((R^*)^* = R^*\).

Suppose \(w \in (R^*)^*\).

Then \(w = w_1 w_2 \ldots w_n\) for \(w_i \in R^*\).

\(w_i \in R^*\) means that \(w_i = w_{i,1} w_{i,2} \ldots w_{i,n(i)}\) for \(w_{i,j} \in R\).

Hence \(w\) is a concatenation of words that belong to \(R\), so \(w \in R^*\).

Then, prove that if \(w \in R^*\) then \(w \in (R^*)^*\).
Prove that $(R^*)^* = R^*$.

Suppose $w \in (R^*)^*$. Then $w = w_1 w_2 \ldots w_n$ for $w_i \in R^*$. $w_i \in R^*$ means that $w_i = w_{i,1} w_{i,2} \ldots w_{i,n(i)}$ for $w_{i,j} \in R$. Hence w is a concatenation of words that belong to R, so $w \in R^*$.

Then, prove that if $w \in R^*$ then $w \in (R^*)^*$. If $w \in R^*$ then it follows immediately that $w \in (R^*)^*$, since the closure of a language contains all words in that language and possibly more.