A fair payoff distribution for myopic rational

Stéphane Airiau
ILLC - University of Amsterdam

Sandip Sen
University of Tulsa
Summary

- How to partition a population of agents? (e.g. making multiple teams from a pool of players, groups of students, etc.)
- Each agent has a valuation for a partition
- Preference of agents conflicts
 → there may not exist any stable partition.
- Which partition to form?
- How to make it stable?

Proposed Solution

Form a partition s^* that maximizes utilitarian social welfare (efficiency of the population)

Use side payments to stabilize population

Agents have incentive to follow our mechanism.
Summary

- How to partition a population of agents?
 (e.g. making multiple teams from a pool of players, groups of students, etc.)
- Each agent has a valuation for a partition
- Preference of agents conflicts
 → there may not exist any stable partition.
- Which partition to form?
- How to make it stable?

Proposed Solution

Form a partition s^\star that maximizes utilitarian social welfare (efficiency of the population)

Use side payments to stabilize population

Agents have incentive to follow our mechanism.
Summary

- How to partition a population of agents?
 (e.g. making multiple teams from a pool of players, groups of students, etc.)
- Each agent has a valuation for a partition
- Preference of agents conflicts → there may not exist any stable partition.
- Which partition to form?
- How to make it stable?

Proposed Solution

- Form a partition s^* that maximizes utilitarian social welfare (efficiency of the population)
Summary

- How to partition a population of agents?
 (e.g. making multiple teams from a pool of players, groups of students, etc.)
- Each agent has a valuation for a partition
- Preference of agents conflicts
 → there may not exist any stable partition.
- Which partition to form?
- How to make it stable?

Proposed Solution

- Form a partition s^* that maximizes utilitarian social welfare (efficiency of the population)
- Use side payments to stabilize population
Summary

- How to partition a population of agents?
 (e.g. making multiple teams from a pool of players, groups of students, etc.)
- Each agent has a valuation for a partition
- Preference of agents conflicts
 → there may not exist any stable partition.
- Which partition to form?
- How to make it stable?

Proposed Solution

- Form a partition s^* that maximizes utilitarian social welfare (efficiency of the population)
- Use side payments to stabilize population
- Agents have incentive to follow our mechanism.
Population N of n agents.

Definition (Coalition)

A **coalition** \mathcal{C} is a set of agents: $\mathcal{C} \in 2^N$.

\mathcal{C} is the set of all coalitions.

Definition (Coalition structure)

A **coalition structure** s is partition of agents into coalitions: $s = \{C_1, \ldots, C_k\}$ where $\bigcup_{i \in {1..k}} C_i = N$ and $i \neq j \Rightarrow C_i \cap C_j = \emptyset$

\mathcal{S} is the set of all coalition structures.

$s(i)$ denotes the coalition of agent i in the coalition structure s.
Valuation function $v : N \times \mathcal{I} \mapsto \mathbb{R}$

→ private valuation (hedonic coalition formation flavor)

→ valuation may depend on other coalition in the population (externalities, endogeneous coalition formation)

→ Preference order over CSs \succeq_i
Hypothesis

- Self interested agents: agents maximize expected private utility
- Myopic agents: agents only care about immediate reward and do/can not analyze future implication of their actions.
 - no coordinated change of coalition (only individual actions)
 - one agent at a time can change coalition
 - a coalition’s member can veto the arrival of a new agent in the coalition (individually stable)

Fairness & efficiency

- Agents should feel that the payoff they obtain corresponds to their abilities
- The coalition chosen should maximize social welfare
Definition (\succsim_i denotes preferences over coalitions)

A coalition structure s is **core stable** iff $\not\exists C \subset N | \forall i \in C, C \succ_i s(i)$.

A coalition structure s is **Nash stable**

$$(\forall i \in N) \ (\forall C \in s \cup \{\emptyset\}) \ s(i) \succsim_i C \cup \{i\}$$

A coalition structure s is **individually stable** iff

$$(\not\exists i \in N) \ (\not\exists C \in s \cup \{\emptyset\}) \ | \ (C \cup \{i\} \succ_i s(i)) \text{ and } (\forall j \in C, C \cup \{i\} \succsim_j C)$$

A coalition structure s is **contractually individually stable** iff

$$(\not\exists i \in N) \ (\not\exists C \in s \cup \{\emptyset\}) \ | \ (C \cup \{i\} \succ_i s(i)) \text{ and } (\forall j \in C, C \cup \{i\} \succsim_j C) \text{ and } (\forall j \in s(i) \setminus \{i\}, s(i) \setminus \{i\} \succsim_j s(i))$$
Additional criteria

Individual rationality: \(\forall i \in N, u(i) \geq v(\{i\}) \)
agent obtains at least its self-value as payoff.

Pareto Optimal: \(\nexists y | \exists i \in N | y_i > u_i \) and \(\forall j \neq i, y_j \geq u_j. \)
no agent can improve its payoff without lowering the payoff of another agent.
Example of a transition function

\[
\begin{align*}
\{1, 2, 3\} & \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} \\
\{1, 2\} \{3\} & \quad \frac{11}{32} \quad \frac{13}{32} \quad \frac{1}{4} \\
\{1, 3\} \{2\} & \quad \frac{13}{32} \quad \frac{11}{32} \quad \frac{1}{4} \\
\{2, 3\} \{1\} & \quad \frac{11}{32} \quad \frac{13}{32} \quad \frac{1}{4} \\
\{1\} \{2\} \{3\} & \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}
\end{align*}
\]
Markov chains

Transient states: states the chain will eventually leave to never visit again

Ergodic states: states the chain will keep coming back to

Communication class: set of ergodic states where the chain is trapped (sink equilibrium). Which communication class is reached depends on 1) initial state 2) transient states visited
Proposed approach

Provide an incentive to form a social welfare maximizing coalition structure

1. Compute the expected utility of each agent i, $E(v_i)$, when agents are acting as myopic rational agents (exact computation requires the analysis of a Markov chain)

2. Share the value of the social maximizing coalition structure proportionally to the expected value.

$$u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*)$$
Guarantees a payoff that is at least the expected utility:

\[u_i = \sum_{j \in N} \frac{E(v_i)}{E(v_j)} v(s^*) \geq E(v_i), \]

i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.
Properties

- Guarantees a payoff that is at least the expected utility:
 \[u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \geq E(v_i), \]
 i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.

- Pareto Optimal
Properties

- Guarantees a payoff that is at least the expected utility:
 \[u_i = \sum_{j \in N} \frac{E(v_j)}{E(v_i)} v(s^*) \geq E(v_i), \]
i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.

- Pareto Optimal

- Individually rational
 If (\(\forall s \in S \)) \(v(i, s) \geq r_i \), then \(u_i \geq r_i \).
Guarantees a payoff that is at least the expected utility:
\[u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \geq E(v_i), \]
i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.

- Pareto Optimal
- Individually rational
 If (\(\forall s \in S \)) \(v(i, s) \geq r_i \), then \(u_i \geq r_i \).
- Requires revealing valuation in the general case (possibility for manipulation).
Properties

- Guarantees a payoff that is at least the expected utility:
 \[u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \geq E(v_i), \]
 i.e., the payoff of an agent is at least as good as the expected utility that an
 agent would get on average if the agents are myopically rational.

- Pareto Optimal

- Individually rational
 If (\(\forall s \in S\)) \(v(i, s) \geq r_i\), then \(u_i \geq r_i\).

- Requires revealing valuation in the general case (possibility for
 manipulation).

- When the agents are sharing a niche, revelation of preference order is
 sufficient
Properties

- Guarantees a payoff that is at least the expected utility:
 \[u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \geq E(v_i), \]
 i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.

- Pareto Optimal

- Individually rational
 If (\(\forall s \in S \)) \(v(i, s) \geq r_i \), then \(u_i \geq r_i \).

- Requires revealing valuation in the general case (possibility for manipulation).

- When the agents are sharing a niche, revelation of preference order is sufficient

- Exact computation limits usability to small set of agents.
Properties

- Guarantees a payoff that is at least the expected utility:
 \[u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \geq E(v_i), \]
 i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.

- Pareto Optimal

- Individually rational
 If (\(\forall s \in \mathcal{S} \)) \(v(i, s) \geq r_i \), then \(u_i \geq r_i \).

- Requires revealing valuation in the general case (possibility for manipulation).

- When the agents are sharing a niche, revelation of preference order is sufficient

- Exact computation limits usability to small set of agents.

- Size of the share is “Fair” in the sense that, on average, assuming equal probability of the initial state, an agent gets \(E(v_i) \).
Experimental results

Average payoff over all CSs, expected value, weight and protocol payoff for each agent for a random valuation function in D

<table>
<thead>
<tr>
<th>agent</th>
<th>avg</th>
<th>\bar{V}_i</th>
<th>w_i</th>
<th>u_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>0.61</td>
<td>0.17</td>
<td>0.96</td>
</tr>
<tr>
<td>1</td>
<td>0.49</td>
<td>0.63</td>
<td>0.17</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>0.50</td>
<td>0.60</td>
<td>0.16</td>
<td>0.93</td>
</tr>
<tr>
<td>3</td>
<td>0.51</td>
<td>0.64</td>
<td>0.18</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>0.56</td>
<td>0.54</td>
<td>0.15</td>
<td>0.85</td>
</tr>
<tr>
<td>5</td>
<td>0.50</td>
<td>0.58</td>
<td>0.16</td>
<td>0.90</td>
</tr>
<tr>
<td>total</td>
<td>3.06</td>
<td>3.60</td>
<td>1.00</td>
<td>5.63</td>
</tr>
</tbody>
</table>
Experimental results - Approximation

Dynamics of the error of the estimated payoff averaged over 50 instances of the ART problem

![Graph showing dynamics of the error](image)

Dynamics of the error

\[\frac{\| \text{estimate} - \text{true value} \|}{\text{mean(score)}} \]

5 agents
6 agents
7 agents
8 agents

Airiau, Sen (UvA, TU)
it is possible that, for each coalition $C \in s^*$, $\sum_{i \in C} u_i \neq \sum_{i \in C} v_i(s^*)$. (unbalanced inter coalition side payments)
it is possible that, for each coalition $C \in s^*$, $\sum_{i \in C} u_i \neq \sum_{i \in C} v_i(s^*)$. (unbalanced inter coalition side payments)

given the valuation function, the agents have the choice between signing a bidding contract and receive u_i, or go on with a coalition formation process.
it is possible that, for each coalition $C \in s^*$, $\sum_{i \in C} u_i \neq \sum_{i \in C} v_i(s^*)$. (unbalanced inter coalition side payments)

given the valuation function, the agents have the choice between signing a bidding contract and receive u_i, or go on with a coalition formation process.

a rational agent should choose our protocol.
it is possible that, for each coalition $C \in s^*$, $\sum_{i \in C} u_i \neq \sum_{i \in C} v_i(s^*)$. (unbalanced inter coalition side payments)

given the valuation function, the agents have the choice between signing a biding contract and receive u_i, or go on with a coalition formation process.

a rational agent should choose our protocol.

problem: expensive, requires revelation of v_i or \succeq_i
Discussion and Conclusion

1. it is possible that, for each coalition $C \in s^*$, $\sum_{i \in C} u_i \neq \sum_{i \in C} v_i(s^*)$. (unbalanced inter coalition side payments)

2. given the valuation function, the agents have the choice between signing a bidding contract and receive u_i, or go on with a coalition formation process.

3. a rational agent should choose our protocol.

4. problem: expensive, requires revelation of v_i or \succ_i

Future Work

- Analysis of approximations
- Analysis of manipulation
- Complete protocols
contacts

stephane@illc.uva.nl