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Abstra
t. We study load balan
ing problems of temporary jobs (i.e., jobsthat arrive and depart at unpredi
table time) in two di�erent 
ontexts, namely,ma
hines and network paths. Su
h problems are known as ma
hine load balan
ingand virtual 
ir
uit routing in the literature. We present new on-line algorithmsand improved lower bounds.1 Introdu
tionIn this paper we study on-line algorithms for load balan
ing of temporary jobs (i.e.,jobs that arrive and depart at unpredi
table time) in two di�erent 
ontexts, namely,ma
hines and network paths. Su
h problems are referred to as ma
hine load balan
ingand virtual 
ir
uit routing in the literature (see [4, 12, 16℄ for a survey). As for theformer, we investigate a number of settings, namely, the list model, the interval modeland the tree model. Our results show that these settings, though similar, 
ause the
omplexity of the load balan
ing problem to vary drasti
ally, with 
ompetitive ratiojumping from �(1) to �(logn) and to �(pn), where n is the number of ma
hines.We further extend the study of these settings to the more general 
luster-based model.Regarding the virtual 
ir
uit routing problem, for networks 
omprising edges with same
apa
ity, we give the �rst algorithmwith a sub-linear 
ompetitive ratio ofO(m2=3), wherem is the number of edges; for networks with arbitrary edge 
apa
ities, our algorithm isO(W 2=3)-
ompetitive, where W is the total edge 
apa
ity normalized to the minimumedge 
apa
ity. We also improve the lower bound from 
(m1=4) [3, 17℄ to 
(m1=2), whi
his valid even when randomization is allowed.The remainder of this paper is organized as follows. In the rest of this se
tionwe give the ba
kground and state our results on ma
hine load balan
ing and virtual
ir
uit routing. In Se
tion 2 we study the various settings of the ma
hine load balan
ingproblem. In Se
tion 3 we extend our studies to a 
luster-based model. In Se
tion 4 weexamine the virtual 
ir
uit routing problem. Finally, we dis
uss some open problems inSe
tion 5. 1



1.1 On-line ma
hine load balan
ingWe study the following on-line problem. There are nma
hines with identi
al speed. Jobsarrive and depart at unpredi
table time. Ea
h job 
omes with a positive load. When ajob arrives, it must be assigned immediately to one of the ma
hines for exe
ution in anon-preemptive fashion. At any time, the load of a ma
hine is de�ned to be the totalload of jobs that are 
urrently assigned to that ma
hine and have not yet departed.The obje
tive is to minimize the maximum load of any single ma
hine over all time.As with previous work, we measure the performan
e of an on-line algorithm in terms of
ompetitive ratio (see [12℄ for a survey), whi
h is the worst-
ase ratio of the maximumload generated by the on-line algorithm to the maximum load generated by the optimalo�-line algorithm.The above on-line load balan
ing problem has been studied extensively in the liter-ature (see e.g., [4�7, 17℄). Existing results are distinguished by the presen
e of restri
-tions on ma
hine assignment. In the simplest 
ase, every job 
an be assigned to anyma
hine. It has been known for long that Graham's greedy algorithm is (2 � o(1))-
ompetitive [5, 15℄. A mat
hing lower bound was obtained re
ently by Azar and Ep-stein [6℄. In the model with assignment restri
tion, ea
h job spe
i�es an arbitrarysubset of the ma
hines for possible assignment. For this model, Azar, Broder, and Kar-lin [5℄ proved that the 
ompetitive ratio of any on-line algorithm is 
(pn), and Ma andPlotkin [17℄ further simpli�ed the proof. Re
ently, an algorithm with a mat
hing upperbound was derived by Azar et al. [7℄. This algorithm is referred to as Robin-Hood.Notably, the allowan
e of arbitrary assignment restri
tion makes the problem signif-i
antly harder. It is interesting to investigate the 
omplexities of the settings where theassignment restri
tion is allowed in a more 
ontrollable manner. In parti
ular, Bar-Noyet al. [10℄ initiated the study of the following hierar
hi
al model. The ma
hines arerelated in the form of a tree. Ea
h job spe
i�es a ma
hine M , so that the algorithm isrestri
ted to 
hoose a ma
hine among the an
estors of M . Bar-Noy et al. [10℄ showedthat when the hierar
hy is linear (i.e., the list model), O(1) 
ompetitive ratio 
an bea
hieved. The 
omplexity of the general tree model was left open. In this paper weadapt the result in [17℄ to show that the tree model a
tually admits an 
(pn) lowerbound. In other words, the tree model, though more 
ontrollable, is not easier to handlethan arbitrary assignment restri
tion in the worst 
ase.Intuitively, the list model orders the ma
hines a

ording to their 
apability, and ajob spe
i�es the least 
apable ma
hine that 
an serve the job. A natural extensionof the list model is that a job spe
i�es both the least and the most 
apable ma
hines(as in many appli
ations, more 
apable ma
hines would 
harge more). We 
all thismodel the interval model. The previous O(1)-
ompetitive algorithm fails to work here.We �nd that there is an 
(logn) lower bound, and we obtain an O(logn)-
ompetitivealgorithm. On the other hand, if a job is allowed to request two or more intervals, weshow that every on-line algorithm is 
(pn)-
ompetitive. The lower bounds hold evenwhen randomization is allowed.This paper also initiates the study of 
luster-based assignment restri
tion, whi
h isa pra
ti
al extension of ma
hine-based assignment restri
tion. A 
luster is a 
olle
tionof ma
hines with the same fun
tionality. More formally, the 
luster model states thatea
h ma
hine belongs to one of k 
lusters, and ea
h job requests some 
lusters in whi
h2



Model List Interval Two intervals, Tree,Arbitrary restri
tionn ma
hines �(1) �(logn) �(pn)k 
lusters �(1) �(log k) �(pK)Table 1: Competitive ratios in di�erent settings of assignment restri
tion.any ma
hine 
an be used to serve the job. Similar to ma
hine-based models, we study
lusters related in the form of lists, intervals and trees. The ma
hine-based algorithms
an be easily adapted to these settings, giving O(1), O(logn) and O(pn) upper boundsrespe
tively. However, it is more desirable to derive algorithms with 
ompetitive ratiosdepending on k instead of n sin
e in reality, k is mu
h smaller than n. For the listmodel and the interval model, we observe that the 
ompetitive ratios are �(1) and�(log k), respe
tively. For the tree model, we obtain an algorithm with 
ompetitive ratioO(pK) where K = n=smin and smin is the number of ma
hines in the smallest 
luster.Intuitively, K is the total normalized number of ma
hines. Note that k � K � n. Ifthe 
lusters are of roughly the same size, then K is O(k). This algorithm is a
tually ageneralization of the algorithm Robin-Hood [7℄ and works even when a job 
an requestany 
lusters arbitrarily. Table 1 shows a summary of these results. We 
onje
ture thatthe 
ompetitive ratio for the tree model 
an be improved to O(pk). To support this
onje
ture, we prove that, for trees 
onsisting of two levels, a simple algorithm su�
esto be O(pk)-
ompetitive.Related Work: Other variants of the ma
hine load balan
ing problem have also beenstudied extensively in the literature. They in
lude models in whi
h jobs never departor have predetermined departure time, and in whi
h jobs 
an be reassigned [1, 2, 8, 11,13, 14, 19℄. For details, readers 
an refer to the surveys of Azar [4℄ and Borodin andEl-Yaniv [12℄.1.2 On-line virtual 
ir
uit routingThe virtual 
ir
uit routing problem is a generalization of the ma
hine load balan
ingproblem to the 
ontext of high speed networks [2, 3℄. The virtual 
ir
uit routing problemis de�ned as follows. We are given a dire
ted graph with m edges. Every edge e isasso
iated with a 
apa
ity 
e. A request, whi
h asks for a route from a sour
e to adestination, 
an arrive at any time and last for an unpredi
table period. Ea
h request
arries a weight, denoted by w. When a request arrives, an on-line algorithm assignsthe request to a path 
onne
ting the sour
e to the destination, thereby in
reasing theload of every edge e along that path by w=
e until the request terminates. The obje
tiveis to minimize the maximum load generated on any single edge over all time. Theperforman
e is again measured in terms of 
ompetitive ratio.It is widely known that the 
(pn) lower bound on the 
ompetitive ratio of ma
hineload balan
ing with assignment restri
tion [5℄ 
an lead to an 
(m1=4) lower bound onthe 
ompetitive ratio of the virtual 
ir
uit routing problem [3, 17℄. This lower boundholds even when all edges have the same 
apa
ity. An interesting open problem in the3



literature is to determine the 
ompetitive ratio of the virtual 
ir
uit routing problem(see e.g., [4℄). Prior to our work, the only related result is the work of Awerbu
h etal. [3℄, who sidestepped the lower bound using limited re-routing, produ
ing an O(logm)-
ompetitive algorithm.In this paper we study the original virtual 
ir
uit routing problem and present the�rst algorithm whi
h is O(m2=3)-
ompetitive when all edges have the same 
apa
ity.The virtual 
ir
uit routing problem is more di�
ult than the ma
hine load balan
ingproblem in the sense that an inappropriate assignment may in
rease the total load ofthe network drasti
ally. Our new algorithm is a novel extension of Robin-Hood viaa 
areful trade-o� between the load and the length of the paths. We also observe thatthe previous 
(m1=4) lower bound [3, 17℄ 
an be improved to 
(pm), whi
h holdseven when randomization is allowed. For networks with arbitrary edge 
apa
ities, the
ompetitive ratio of our algorithm be
omes O(W 2=3), where W is the total edge 
apa
itynormalized to the minimum edge 
apa
ity (i.e., Pe 
e=
min, where 
min is the minimumedge 
apa
ity).2 Ma
hine-based assignment restri
tionIn this se
tion we study the 
ompetitiveness of the on-line load balan
ing problem indi�erent models of assignment restri
tion. In the tree model, ma
hines are nodes of arooted tree. Ea
h job spe
i�es a ma
hine, and the job 
an be assigned to any an
estorof the spe
i�ed ma
hine in the tree. The list model is a spe
ial 
ase where ma
hinesare nodes of a list. Ea
h job spe
i�es a ma
hine, and the algorithm 
an assign thejob to any ma
hine in the list between the list head and the spe
i�ed ma
hine. A5-
ompetitive algorithm for the list model has been known [10℄. For the tree model,the best known algorithm is the O(pn)-
ompetitive algorithm inherited from arbitraryassignment restri
tion [7℄.We de�ne the interval model as an extension of the list model. Ea
h job spe
i�es twoma
hines, and the algorithm may 
hoose any ma
hine in the list between these two ma-
hines to serve the job. In this se
tion we show that this extension raises the 
ompetitiveratio to �(logn). The lower bound result holds even if we add the assumptions thatthe jobs never depart, all jobs have the same load, and randomization may be used. Wealso show that all algorithms in the tree model are 
(pn)-
ompetitive, even if all jobshave the same load and randomization is allowed. A similar result is obtained when wefurther extend the interval model to allow two intervals per request. All the randomizedlower bounds hold even when the adversary is oblivious [18℄, i.e. the adversary does notinspe
t the random 
hoi
es made by the algorithm.2.1 The interval modelWe �rst show an O(logn)-
ompetitive algorithm Interval for the interval model. Thenwe present an 
(logn) lower bound on the 
ompetitive ratio of algorithms under thismodel. To ease our dis
ussion, we assume n is a power of two, and de�ne a number ofaligned intervals I(i; j), where i = 1; 2; : : : ; logn and j = 1; 2; : : : ; 2i�1. I(1; 1) is theinterval [1; n℄. Ea
h interval I(i; j), where i < logn, is partitioned into two equal size4



4depth 1 IL(1; 1) IR(1; 1)2 IL(2; 1) IR(2; 1) IR(2; 2)IL(2; 2)3 IR(3; 1) IL(3; 2) IR(3; 2) IL(3; 3) IR(3; 3) IL(3; 4) IR(3; 4)IL(3; 1)Figure 1: Left and right halves of aligned intervals when n = 16. Arrows represent theorientation of the 
opies of Linear running on them.intervals I(i+ 1; 2j � 1) and I(i+ 1; 2j). For example, I(1; 1) is partitioned into I(2; 1)and I(2; 2), de�ned as [1; n=2℄ and [n=2 + 1; n℄ respe
tively. There are n � 1 alignedintervals of sizes ranging from 21 to 2log n. An aligned interval I(i; j) is said to havedepth i. Note that the size of a depth i interval is n=2i�1.Let Linear denote the 5-
ompetitive algorithm shown in [10℄ for the list model.Interval works by running multiple 
opies of Linear on di�erent subsets of ma
hines,and ea
h interval request gets translated into a list request for one of these 
opies. Morepre
isely, Interval runs two 
opies of Linear for ea
h aligned interval I(i; j), one onthe left half IL(i; j) of I(i; j) and one on the right half IR(i; j). Both 
opies of Lineartreat the element 
losest to the middle of I(i; j) as the list head. Figure 1 shows anexample. Note that ea
h of the n ma
hines 
an be assigned a job by logn 
opies ofLinear. Two ma
hines of IL(i; j) and IR(i; j) are said to be mirror-image of ea
h otherif they have the same distan
e from their list heads.Suppose an interval request [l; r℄ arrives. Interval �nds the deepest aligned inter-val I(i; j) whi
h 
ontains the interval [l; r℄. Sin
e I(1; 1) 
ontains all ma
hines, su
h analigned interval always exists. Let L = IL(i; j)\ [l; r℄ and R = IR(i; j)\ [l; r℄. Note that,sin
e I(i; j) is the deepest aligned interval, the heads of IL(i; j) and IR(i; j) are alwaysin
luded in L and R respe
tively. (In the boundary 
ase when i = logn, one of L and Rmay be empty.) Interval translates the interval request [l; r℄ into the list request L forthe 
opy of Linear on IL(i; j) if jLj � jRj, and into the list request R for the 
opy ofLinear on IR(i; j) otherwise. Interval then assigns the job to the ma
hine assignedby Linear.To analyse Interval, 
onsider a sequen
e of interval requests for whi
h the optimalo�-line algorithm generates a load of OPT . Re
all that Interval translates these inter-val requests into list requests. Lemma 1 shows that the list requests for any parti
ular
opy of Linear are not demanding, i.e. admit a good o�-line assignment and hen
e agood assignment under Linear. Then we derive the 
ompetitive ratio of Interval inTheorem 2.Lemma 1. For the list requests for any 
opy of Linear, there exists an o�-line as-signment S whi
h generates at most 2OPT load on any ma
hine on whi
h this 
opy ofLinear runs.Proof. Consider the 
opy of Linear running on IL(i; j) (the 
ase for IR(i; j) is sym-metri
). A list request in this interval is translated from an interval request [l; r℄.Note that, by the way Interval 
hooses between the left and the right intervals,5



j[l; r℄ \ IL(i; j)j � j[l; r℄ \ IR(i; j)j. In other words, if a ma
hine is in [l; r℄ \ IR(i; j),its mirror image is in [l; r℄ \ IL(i; j).Let A denote the optimal o�-line algorithm for Interval. S assigns the list requestsfor IL(i; j) as follows. For ea
h list request, S �nds the ma
hine M to whi
h A assignsthe 
orresponding interval request [l; r℄. If M 2 IL(i; j), S assigns the list request to M .Otherwise, S assigns it to the mirror image of M , whi
h is allowed sin
e that mirrorimage must be in [l; r℄ \ IL(i; j). Note that any ma
hine in I(i; j) only re
eives jobswhi
h A assigns to either the same ma
hine or its mirror image. Sin
e A generates atmost OPT load on any ma
hine, S generates at most 2OPT load on any ma
hine.Theorem 2. Interval is (10 logn)-
ompetitive.Proof. By Lemma 1, for the list requests translated by Interval for a 
opy of Linear,there exists an o�-line assignment whi
h generates at most 2OPT load on any ma
hine.Sin
e Linear is 5-
ompetitive, the load of a ma
hine in that 
opy of Linear is atmost 10OPT . Ea
h ma
hine 
an re
eive requests from logn 
opies of Linear, so themaximum load of any ma
hine is (10 logn)OPT .Now we turn to the lower bound, whi
h shows Interval is asymptoti
ally optimal.Theorem 3. No on-line algorithm for the interval model is better than (logn=2)-
om-petitive. This holds even if (1) jobs never depart, (2) all jobs have the same load, and(3) randomization is allowed.Proof. We establish the randomized lower bound using an oblivious adversary. Thedeterministi
 bound then follows. Given any randomized on-line algorithm, we 
onstru
ta sequen
e of jobs, exe
uting in logn phases, su
h that at the end of the p-th phase,there exists an aligned interval Ip of depth p whi
h has an expe
ted average load of atleast p. Therefore, after logn phases, Ilog n has an expe
ted average load of at least logn,so that one ma
hine has an expe
ted load of at least logn.In the �rst phase, n jobs are released, requesting the interval I1 = I(1; 1). At theend of this phase, the average load of this interval is 1. Indu
tively, for 1 � p < logn,suppose Ip = I(p; j). That is, I(p; j) has an expe
ted average load of at least p afterphase p. Sin
e I(p; j) is partitioned into I(p + 1; 2j � 1) and I(p + 1; 2j), one of themhas an expe
ted average load of at least p. Let this interval be Ip+1. In the (p + 1)-stphase, n=2p jobs are released, requesting Ip+1. The expe
ted average load of Ip+1 afterthe (p+ 1)-st phase is thus at least p+ 1.Note that the optimal o�-line algorithm assigns all requests of phase p evenly toIp � Ip+1, so that ea
h ma
hine gets a load of at most 2. Therefore, the 
ompetitiveratio against the oblivious adversary is at least logn=2.2.2 The tree modelWe show that the O(pn)-
ompetitive algorithm Robin-Hood introdu
ed in [7℄ isasymptoti
ally optimal for the tree model. Note that if jobs never depart, O(1) 
om-petitive ratio 
an be a
hieved [10℄.Lemma 4. No on-line algorithm for the tree model (where jobs may depart) is (pn�1)-
ompetitive. This is true even if all jobs have the same load.6



r2 leaf nodes
r non-leaf nodes

Figure 2: A worst 
ase s
enario for the tree model.Proof. The proof is adapted from the lower bound proof for arbitrary assignment re-stri
tion presented in [17℄. Consider the tree in Figure 2 
ontaining r2 + r nodes, withr non-leaf nodes forming a list, and r2 leaf nodes being 
hildren of the tail of this list.The following job sequen
e ensures that any on-line algorithm assigns at least r jobsto one of the nodes. The job sequen
e 
onsists of r2 phases. In the p-th phase, r jobsare released, requesting an an
estor of the p-th leaf. If the on-line algorithm assigns allthese jobs to the leaf, we are done. Otherwise, we retain a job assigned to a non-leafnode, and let all other jobs depart. After r2 phases, the non-leaf nodes must be servingat least r2 jobs, so one of them must be serving at least r jobs.In an o�-line assignment, only non-departing jobs are assigned to leaf nodes. Themaximum load generated is 1. So the on-line algorithm is no better than r-
ompetitive.Sin
e r > pn� 1, the lemma follows.In the following variant, we show that the 
ompetitive ratio 
annot be signi�
antlyimproved even if we allow randomization.Lemma 5. No randomized on-line algorithm for the tree model (where jobs may depart)is (pn� 1)=2-
ompetitive. This is true even if all jobs have the same load.Proof. Again we establish this with an oblivious adversary. Consider the tree 
onstru
tedin the proof of Lemma 4. The following job sequen
e ensures that any on-line algorithmhas a node with an expe
ted load of r=2. The job sequen
e 
onsists of r2 phases. In thep-th phase, r jobs are released, requesting an an
estor of the p-th leaf. If the expe
tedload of the p-th leaf is r=2, we are done. Otherwise, the expe
ted number of jobs assignedto a non-leaf node is at least r=2, so a job randomly sele
ted from those released in thisphase has a probability at least 1=2 to be assigned to a non-leaf node. The adversaryrandomly sele
ts a job to retain, and lets all other jobs depart. The expe
ted total loadof the non-leaf nodes in
reases by at least 1=2. After r2 phases, the expe
ted total loadof the non-leaf nodes is at least r2=2, so one non-leaf node must have expe
ted load ofat least r=2.In an o�-line assignment, only non-departing jobs are assigned to leaf nodes. Themaximum load generated is 1. So the on-line algorithm is no better than r=2-
ompetitive.Sin
e r > pn� 1, the lemma follows.In the above arguments, if we number the non-leaf nodes from 1 to r, and theleaf nodes from r + 1 to r2 + r, all the jobs have assignment restri
tion in the form7



f1; 2; � � � ; r; jg. Therefore, if we extend the interval model so that ea
h job 
an spe
ifytwo intervals, the same lower bounds hold.Corollary 6. For the two-interval model (where jobs may depart), no deterministi
 on-line algorithm is (pn � 1)-
ompetitive, and no randomized on-line algorithm is (pn �1)=2-
ompetitive. They are true even if all jobs have the same load.3 Cluster-based assignment restri
tionIn reality, assignment restri
tion is usually used to model the requirement of jobs forsome dis
rete 
apabilities possessed only by some ma
hines. The number of the distin
tsets of 
apabilities possessed by the ma
hines is usually mu
h smaller than the numberof ma
hines. This motivates us to study 
luster-based assignment restri
tion models,an extension in whi
h ea
h ma
hine belongs to one of k 
lusters. Ea
h job spe
i�essome 
lusters, so that only ma
hines in these 
lusters 
an serve the job. We de�nethe list, interval, two-interval, tree and arbitrary restri
tion models analogous to thema
hine-based models we studied in Se
tion 2.Here are some simple observations. In the extreme 
ase in whi
h ea
h 
luster 
ontainsonly one ma
hine, the 
luster-based models redu
e to the ma
hine-based models. As aresult, all the lower bounds in Se
tion 2 still apply, repla
ing n by k in the respe
tivebounds. As mentioned earlier, k may be mu
h smaller than n and thus it is moreinteresting to see whether we 
an provide better upper bounds in terms of k.For the list model, the algorithm by Bar-Noy et al. [10℄ is O(1)-
ompetitive, in-dependent of n and k. For the interval model, the algorithm in Se
tion 2.1 
an beextended to produ
e an O(log k)-
ompetitive algorithm, mat
hing the lower bound. Forthe tree model and the arbitrary restri
tion model, a trivial algorithm whi
h alwaysassigns a job to the most-lightly-loaded ma
hine in the largest 
luster spe
i�ed by thejob is (k + 1)-
ompetitive. However, it is not 
lear how we 
an provide better upperbounds.In this se
tion we show that the algorithm of Azar et al. [7℄ 
an be generalized to the
luster-based arbitrary assignment restri
tion model, produ
ing an O(pK)-
ompetitivealgorithm, where K = n=smin and smin is the size of the smallest 
luster. Thus, inthe 
ase when all 
lusters are of similar sizes, it is O(pk)-
ompetitive. Without theassumption of size, we also derive an O(pk)-
ompetitive algorithm that works in thespe
ial 
ase where the 
lusters are organized as a two-level tree.In the rest of this paper, we assume that an on-line algorithm for ma
hine loadbalan
ing or virtual 
ir
uit routing is given in advan
e the value of OPT , the maximumload generated by the optimal o�-line algorithm for the 
oming inputs. The followinglemma states that this algorithm 
an be 
onverted into one that does not know OPTin advan
e (instead, it approximates OPT dynami
ally). This 
onversion employs thedoubling te
hnique [2℄ and degrades the 
ompetitive ratio by only a multipli
ative fa
torof four. Readers 
an refer to [12℄ for details.Lemma 7. [2, 12℄ Suppose we have an on-line algorithm for the load balan
ing problem(or virtual 
ir
uit routing problem) that is given OPT in advan
e and is 
-
ompetitive.Then we 
an 
onstru
t an on-line algorithm A that does not know OPT in advan
e andis 4
-
ompetitive. 8



3.1 Arbitrary assignment restri
tion modelIn this se
tion we study the 
luster-based arbitrary assignment restri
tion model in whi
hea
h ma
hine belongs to one of k 
lusters and ea
h job 
an request an arbitrary subsetof 
lusters. Denote si as the size of the i-th 
luster and smin as the size of the smallest
luster. Let K = n=smin. The lower bound result given in [5℄ implies an 
(pK) lowerbound for the 
luster model. We extend the algorithm Robin-Hood to work in the
luster model, resulting in an O(pK)-
ompetitive algorithm, 
alled Cluster below.By Lemma 7, we assume that Cluster is given OPT in advan
e. At any time,a 
luster is said to be overloaded if its average load is greater than pK OPT underCluster. For any overloaded 
luster, de�ne its windfall time to be the last moment itbe
ame overloaded.When a job arrives, Cluster assigns the job to a 
luster that is not overloaded ifpossible. Otherwise, Cluster assigns it to the 
luster with the greatest windfall time.Whenever a job is assigned to a 
luster, it is assigned to the ma
hine with the smallestload in that 
luster.Now we analyse the 
ompetitive ratio of Cluster. The analysis is based on the 
har-a
teristi
s of Cluster that the average load of any 
luster does not in
rease drasti
allyafter its windfall time.Lemma 8. The in
rease of average load on a 
luster after its windfall time is at mostpK OPT .Proof. Suppose C is a 
luster that is overloaded. Let t be its windfall time and let Obe the set 
omprising C and other overloaded 
lusters at t. At t, the total load of jobsassigned to 
lusters in O is at least Pi2O sipK OPT . All these jobs must be a

om-modated by the optimal o�-line algorithm and thus the total load is at most nOPT =K OPT smin. Therefore, we have Pi2O sipK OPT � K OPT smin whi
h implies thatPi2O si � pK smin.Let J be the set of jobs that are 
urrently assigned to C by Cluster and have arrivaltime after t. Consider a job in J . Sin
e Cluster assigns the job to an overloaded
luster, all feasible 
lusters, in
luding the 
luster assigned by the o�-line algorithm,must be overloaded at t. This implies that the total load of jobs in J is not greaterthan the total load of jobs assigned to O by the optimal o�-line algorithm, whi
h is atmost Pi2O siOPT � pK OPT smin. The in
rease in the average load of C after t is atmost pK OPT sin
e the size of C is at least smin.Theorem 9. With Cluster, the load of any ma
hine at any time is at most (2pK +2)OPT . Thus, Cluster is (2pK + 2)-
ompetitive.Proof. Consider the moment just after some job is assigned to a ma
hineM by Cluster.Suppose C is the 
luster 
ontaining M . Sin
e Cluster assigns the job to the ma
hinewith the smallest load in C, it su�
es to show that the average load of C is at most(2pK + 1)OPT . This is immediate when C is not overloaded.Consider the 
ase when C is overloaded. Before its windfall time, C has an averageload of at most pK OPT . The in
rease of load due to the job making it overloaded isat most OPT . By Lemma 8, the in
rease in average load after its windfall time is atmost pK OPT and the theorem follows. 9



3.2 Two-level treesIn this se
tion we present an O(pk)-
ompetitive algorithm for the model in whi
h the
lusters form a tree 
onsisting of two levels. More pre
isely, the set of ma
hines ispartitioned into k � 1 leaf 
lusters Si (1 � i � k � 1) and a root 
luster S0. Ea
hjob spe
i�es one of Si 
ontaining ma
hines whi
h 
an be used to serve the job, but thealgorithm may instead use a ma
hine in S0. The lower bound results in Se
tion 2.2
an be adapted to this model, giving an 
(pk) lower bound on the 
ompetitive ratio.Here, we prove that a simple algorithm 
alled TwoLevel 
an a
hieve a mat
hing upperbound.By Lemma 7, we assume that TwoLevel is given OPT in advan
e. If a job ar-rives whi
h requests a leaf 
luster 
ontaining a ma
hine with a load less than pkOPT ,TwoLevel assigns the job to that ma
hine. Otherwise, TwoLevel assigns it to ama
hine in S0 with the smallest 
urrent load.Theorem 10. TwoLevel is (pk + 2)-
ompetitive.Proof. Sin
e no job 
reates a load of more than OPT , ea
h ma
hine in a leaf 
lusterhas a load of at most (pk + 1)OPT . The remainder of the proof establishes that noma
hine of the root 
luster gets a load of more than (pk + 2)OPT .Let si denote the number of ma
hines in Si. Consider any parti
ular time t. Denoteni(t) and fi(t) as the total load of ma
hines in S0 at t due to jobs requesting Si underTwoLevel and the optimal o�-line algorithm respe
tively.Note that, at the last time when ni(t) in
reases, all ma
hines in Si must have load atleast pkOPT . The o�-line algorithm must a

ommodate all the load of these ma
hines.That is, sipkOPT + ni(t) � (s0 + si)OPT for 1 � i � k � 1:On the other hand, the o�-line algorithm assigns a load of at least ni(t) to ma
hines inS0 or Si. ni(t) � siOPT + fi(t) for 1 � i � k � 1:Eliminating si, summing over all i and adding the equality n0(t) = f0(t), we havepk k�1Xi=0 ni(t) � s0(k � 1)OPT + (pk � 1) k�1Xi=0 fi(t):Note that Pk�1i=0 fi(t) � s0OPT . As a result, pk Pk�1i=0 ni(t) � (k + pk � 2)s0OPT ;thus,Pk�1i=0 ni(t) � (pk+1)s0OPT . Sin
e TwoLevel always assigns a job to a ma
hinewith the smallest load when using S0, the load of any ma
hine in S0 at t is less than(pk + 2)OPT .4 Virtual Cir
uit RoutingIn this se
tion we study the virtual 
ir
uit routing problem. We are given a dire
tedgraph with a set E of m edges. Ea
h edge e is asso
iated with a 
apa
ity 
e. Requests10



arrive and terminate at unpredi
table time, ea
h requesting a route from a sour
e toa destination. We need to �nd a path from the sour
e to the destination, therebyin
reasing the load of ea
h edge e in the path by w=
e, where w is the weight spe
i�edby the request. Our obje
tive is to minimize, over all time, the maximum load on anyedge.In [2℄, Aspnes et al. studied the problem with the assumption that requests neverterminate. With this assumption, they gave an O(logm)-
ompetitive on-line algorithmand proved that no on-line algorithm 
an have 
ompetitive ratio better than O(logm).We present an on-line algorithm 
alled VC-Routing for the more general 
ase whererequests may terminate at unpredi
table time. It is O(W 2=3)-
ompetitive, where W =Pe2E 
e=
min and 
min is the minimum 
apa
ity of the edges. When all edges haveidenti
al 
apa
ity, the 
ompetitive ratio is equivalent to O(m2=3). We also prove thatany on-line algorithm for the problem is 
(pm)-
ompetitive, even if all the edges haveidenti
al 
apa
ity and randomization is allowed. Again, the randomized lower boundholds even when the adversary is oblivious.4.1 The algorithmVC-Routing is a novel adaptation of Robin-Hood, the algorithm whi
h a
hieves opti-mal 
ompetitive ratio for the ma
hine load balan
ing problem with arbitrary assignmentrestri
tion. The main 
hallenge in the virtual 
ir
uit routing problem is that the lengthof the path 
hosen by the o�-line algorithm may be di�erent from that of the path 
ho-sen by the on-line algorithm. As a result, the aggregate load generated by the on-linealgorithm 
an be very di�erent from that generated by the optimal o�-line algorithm. Inorder to 
ontrol the di�eren
e of the aggregate load, VC-Routing takes into a

ountthe length of paths when assigning a request. Roughly speaking, it prefers relativelyshort paths, and applies a strategy similar to Robin-Hood only to those short paths.The details are as follows.By Lemma 7, we assume that VC-Routing is given OPT in advan
e. At anyparti
ular time, we say an edge is overloaded if its 
urrent load is greater thanW 2=3OPT .An overloaded path is a path whi
h 
ontains an overloaded edge. For an overloadededge, we de�ne its windfall time as the last moment it be
ame overloaded. The windfalltime of an overloaded path is the minimum windfall time of the overloaded edges onthe path. We 
lassify the paths into three 
ategories, namely Short, Medium, and Long,depending on whether their length is in the ranges [1;W 1=3℄, (W 1=3;W 2=3℄, and (W 2=3;W ℄respe
tively. For every request j with weight w(j), we say a path is eligible if every edgeon it satis�es w(j)=
e � OPT . Sin
e the maximum load generated by the optimalo�-line algorithm is at most OPT , an eligible path always exists.When a new request arrives, VC-Routing sele
ts a path among the eligible pathsin the order of Short, Medium, Long. Ties among paths in Short are broken as follows.VC-Routing sele
ts one that is not overloaded if it exists; otherwise, it sele
ts one withmaximum windfall time. For the other two 
ategories, ties are broken arbitrarily.We now analyse the 
ompetitive ratio of VC-Routing, by bounding the load on anyedge. For edges whi
h are not overloaded, this is trivially bounded by W 2=3OPT . Tobound the load on an overloaded edge eo, we partition the requests 
urrently assignedto eo into three sets, depending on the arrival time of the requests and on how the11



o�-line algorithm assigns the requests. Let J1(eo) be the partition 
ontaining requestswhi
h are assigned to eo at or before the windfall time of eo, let J2(eo) be the partition
ontaining those remaining requests whi
h the o�-line algorithm assigns to paths ineither Medium or Long, and let J3(eo) be the partition 
ontaining the other requests.Lemmas 11 and 14 bound the total weight of requests in J2(eo) and J3(eo) respe
tively,allowing us to 
on
lude the 
ompetitive ratio of VC-Routing in Theorem 15. To easethe dis
ussion, we denote, at any parti
ular time, w(e) and w�(e) as the total weight ofrequests assigned to an edge e 2 E by VC-Routing and the optimal o�-line algorithm,respe
tively.Lemma 11. The total weight of requests in J2(eo) is at most W 2=3OPT 
min.Proof. For ea
h edge e 2 E, the weight of requests assigned by the optimal o�-linealgorithm is at most 
eOPT . Therefore, Pe2E w�(e) � Pe2E 
eOPT = W OPT 
min.Sin
e the length of paths in Medium or Long is greater than W 1=3, the total weight ofrequests assigned to paths in Medium or Long by the optimal o�-line algorithm is atmost W 2=3OPT 
min. The lemma follows sin
e J2(eo) is a subset of these requests.Lemma 12. Every request is assigned by VC-Routing to a path of length no morethan W 1=3 times of the length of the path assigned by the optimal o�-line algorithm.Proof. Suppose the optimal o�-line algorithm assigns a request to a path in 
ategoryShort (Medium or Long respe
tively). The path must be eligible, so VC-Routing 
on-sidered the path during the assignment of the request. Due to the priority of pathassignment, VC-Routing sele
ts a path in 
ategory with priority not less than Short(Medium or Long respe
tively). The lemma follows from that the ratio of the length ofthe longest path to that of the shortest path in any 
ategory is at most W 1=3.Corollary 13. At any time t, for any E 0 � E, Pe2E w�(e) �Pe2E0 w(e)=W 1=3.Proof. Let X be the set of all the requests existing at time t. For any su
h request j,let p(j) and p�(j) be the paths to whi
h j is assigned by VC-Routing and the opti-mal o�-line algorithm respe
tively. Note that Pe2E w�(e) = Pj2X w(j)jp�(j)j, wherejp�(j)j denotes the number of edges in p�(j). By Lemma 12, we havePj2X w(j)jp�(j)j �Pj2X w(j)jp(j)j=W 1=3. The latter is equal toPe2E w(e)=W 1=3. Therefore,Pe2E w�(e) �Pe2E w(e)=W 1=3, whi
h is at least Pe2E0 w(e)=W 1=3 as E 0 is a subset of E.Lemma 14. The total weight of requests in J3(eo) is at most W 2=3OPT 
min.Proof. Let t be the windfall time of eo. Denote O as the set 
omprising eo and otheroverloaded edges at t. Denote J as the set of requests that are assigned to some edgesin O by the optimal o�-line algorithm at t. To prove Lemma 14, we �rst show thatthe total weight of J is at most W 2=3OPT 
min, and then argue that J3(eo) has a totalweight no greater than that of J .The requests assigned by the optimal o�-line algorithm to any edge e have a totalweight at most 
eOPT . Thus, the total weight of J is at mostPe2O 
eOPT . The latterquantity is bounded as follows. By Corollary 13,Pe2E w�(e) �Pe2O w(e)=W 1=3. Sin
eall edges in O are overloaded, Pe2O w(e) >Pe2O 
eW 2=3OPT . Thus, we haveXe2O 
eOPT < W� 13Xe2E w�(e):12
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t1t2trFigure 3: A bad s
enario for virtual 
ir
uit routing.On the other hand, Pe2E w�(e) � Pe2E 
eOPT = W OPT 
min. Combining withthe previous inequality, we have Pe2O 
eOPT � W 2=3OPT 
min. Therefore, the to-tal weight of J is at most W 2=3OPT 
min.A

ording to the priority of path assignment, VC-Routing assigns requests in J3(eo)to overloaded paths in Short with maximum windfall time. Therefore, the o�-line algo-rithm must assign requests in J3(eo) to paths whi
h are overloaded at t (as de�ned inVC-Routing); otherwise, VC-Routing would assign the requests to those paths in-stead of the assigned overloaded paths that 
ontain eo. As a result, the total weight of re-quests in J3(eo) is no greater than the total weight of J , whi
h is at mostW 2=3OPT 
min.The lemma follows.Theorem 15. With VC-Routing, the load of any edge at any time is at most (3W 2=3+1)OPT . Thus VC-Routing is (3W 2=3 + 1)-
ompetitive.Proof. The theorem holds for those edges that are not overloaded. Consider any over-loaded edge eo. The total weight of requests assigned to eo before its windfall timeis at most W 2=3
eoOPT . The weight of the request making it overloaded is no morethan 
eoOPT . Thus the total weight of requests in J1(eo) is at most (W 2=3+1)
eoOPT .Together with Lemmas 11 and 14, the total weight of requests assigned to eo is boundedby (W 2=3 + 1)OPT 
eo + 2W 2=3OPT 
min. Sin
e 
eo � 
min, the load of eo is at most(3W 2=3 + 1)OPT and the theorem follows.4.2 Lower boundWe show an 
(pm) lower bound on the 
ompetitive ratio of any on-line algorithm forthe virtual 
ir
uit routing problem.Lemma 16. No on-line algorithm for the virtual 
ir
uit routing problem is (pm=3�1)-
ompetitive. This is true even if all edges have the same 
apa
ity and all requests havethe same weight.Proof. Consider the graph in Figure 3, whi
h has 4r nodes and 3r2 + r edges withidenti
al 
apa
ity. The set of sour
e nodes and the set of destination nodes form a13




omplete bipartite graph. Ea
h of the two sets form a bipartite graph with a distin
t setof r intermediate nodes. The two sets of intermediate nodes form a bipartite mat
hing.Let E 0 be the set of edges 
onne
ting the intermediate nodes.We 
onstru
t a sequen
e of requests with r2 phases so that any on-line algorithmassigns at least r requests to one of the edges. In ea
h phase, r requests of unit weightare released with a distin
t pair of sour
e and destination. If the on-line algorithmassigns all these requests to the edge 
onne
ting the sour
e and the destination, we aredone. Otherwise, at least one of these requests is assigned to a path 
ontaining an edgein E 0. At the end of this phase, all requests ex
ept this one terminate. After r2 phases,r2 requests remain, ea
h in
reases the load of one of the edges in E 0. Sin
e there are redges sharing the load, at least one of them has a load of r.On the other hand, in an o�-line assignment, a request is assigned to the edge
onne
ting the sour
e and the destination involved only if it never terminates. Themaximum load is 1 at all time. So the on-line algorithm is no better than r-
ompetitive.Sin
e r >pm=3� 1, the lemma follows.Using the same argument in Lemma 5, the adversary in Lemma 16 
an be 
onvertedto an oblivious adversary for any randomized algorithm and we have the following 
orol-lary.Corollary 17. No randomized on-line algorithm for the virtual 
ir
uit routing problemis (pm=12� 1=2)-
ompetitive. This is true even if all edges have the same 
apa
ity andall requests have the same weight.5 Open problemsThis paper leaves several open problems. In Se
tion 3, we give an O(pK)-
ompetitivealgorithm for the 
luster-based load balan
ing problem where K is the total normalizednumber of ma
hines. Note that K 
an be mu
h larger than k, the total number of
lusters. Thus, it is desirable to design algorithm whose 
ompetitive ratio depends onlyon k. As a �rst step, we give an O(pk)-
ompetitive algorithm for the problem whenthe 
lusters form a tree of two levels. We 
onje
ture that O(pk)-
ompetitive algorithmexists for general trees. In Se
tion 4, we give an O(W 2=3)-
ompetitive algorithm for thevirtual 
ir
uit routing problem where W is the total normalized edge 
apa
ity. Also, wederive an 
(pm) lower bound on the 
ompetitive ratio where m is the total number ofedges. Note that an 
(pW ) lower bound follows immediately. An open problem is to
lose the gap between the O(W 2=3) upper bound and the 
(pW ) lower bound.Due to pra
ti
al motivation, we think it is interesting to investigate the variants ofthe load balan
ing problem in whi
h the exe
ution of jobs 
an be delayed. On the otherhand, measuring on-line algorithms with respe
t to their maximum load might not bea

urate enough in some 
ases. It might be desirable to also measure, say, the amountof time when the load of the ma
hines are 
lose to their maximum.
14
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