
On-line Load Balaning of Temporary TasksRevisitedTak-Wah Lam Hing-Fung Ting Kar-Keung To Wai-Ha WongDepartment of Computer Siene and Information SystemsThe University of Hong KongEmail: {twlam,hfting,kkto,whwong}�sis.hku.hk
Abstrat. We study load balaning problems of temporary jobs (i.e., jobsthat arrive and depart at unpreditable time) in two di�erent ontexts, namely,mahines and network paths. Suh problems are known as mahine load balaningand virtual iruit routing in the literature. We present new on-line algorithmsand improved lower bounds.1 IntrodutionIn this paper we study on-line algorithms for load balaning of temporary jobs (i.e.,jobs that arrive and depart at unpreditable time) in two di�erent ontexts, namely,mahines and network paths. Suh problems are referred to as mahine load balaningand virtual iruit routing in the literature (see [4, 12, 16℄ for a survey). As for theformer, we investigate a number of settings, namely, the list model, the interval modeland the tree model. Our results show that these settings, though similar, ause theomplexity of the load balaning problem to vary drastially, with ompetitive ratiojumping from �(1) to �(logn) and to �(pn), where n is the number of mahines.We further extend the study of these settings to the more general luster-based model.Regarding the virtual iruit routing problem, for networks omprising edges with sameapaity, we give the �rst algorithmwith a sub-linear ompetitive ratio ofO(m2=3), wherem is the number of edges; for networks with arbitrary edge apaities, our algorithm isO(W 2=3)-ompetitive, where W is the total edge apaity normalized to the minimumedge apaity. We also improve the lower bound from 
(m1=4) [3, 17℄ to 
(m1=2), whihis valid even when randomization is allowed.The remainder of this paper is organized as follows. In the rest of this setionwe give the bakground and state our results on mahine load balaning and virtualiruit routing. In Setion 2 we study the various settings of the mahine load balaningproblem. In Setion 3 we extend our studies to a luster-based model. In Setion 4 weexamine the virtual iruit routing problem. Finally, we disuss some open problems inSetion 5. 1



1.1 On-line mahine load balaningWe study the following on-line problem. There are nmahines with idential speed. Jobsarrive and depart at unpreditable time. Eah job omes with a positive load. When ajob arrives, it must be assigned immediately to one of the mahines for exeution in anon-preemptive fashion. At any time, the load of a mahine is de�ned to be the totalload of jobs that are urrently assigned to that mahine and have not yet departed.The objetive is to minimize the maximum load of any single mahine over all time.As with previous work, we measure the performane of an on-line algorithm in terms ofompetitive ratio (see [12℄ for a survey), whih is the worst-ase ratio of the maximumload generated by the on-line algorithm to the maximum load generated by the optimalo�-line algorithm.The above on-line load balaning problem has been studied extensively in the liter-ature (see e.g., [4�7, 17℄). Existing results are distinguished by the presene of restri-tions on mahine assignment. In the simplest ase, every job an be assigned to anymahine. It has been known for long that Graham's greedy algorithm is (2 � o(1))-ompetitive [5, 15℄. A mathing lower bound was obtained reently by Azar and Ep-stein [6℄. In the model with assignment restrition, eah job spei�es an arbitrarysubset of the mahines for possible assignment. For this model, Azar, Broder, and Kar-lin [5℄ proved that the ompetitive ratio of any on-line algorithm is 
(pn), and Ma andPlotkin [17℄ further simpli�ed the proof. Reently, an algorithm with a mathing upperbound was derived by Azar et al. [7℄. This algorithm is referred to as Robin-Hood.Notably, the allowane of arbitrary assignment restrition makes the problem signif-iantly harder. It is interesting to investigate the omplexities of the settings where theassignment restrition is allowed in a more ontrollable manner. In partiular, Bar-Noyet al. [10℄ initiated the study of the following hierarhial model. The mahines arerelated in the form of a tree. Eah job spei�es a mahine M , so that the algorithm isrestrited to hoose a mahine among the anestors of M . Bar-Noy et al. [10℄ showedthat when the hierarhy is linear (i.e., the list model), O(1) ompetitive ratio an beahieved. The omplexity of the general tree model was left open. In this paper weadapt the result in [17℄ to show that the tree model atually admits an 
(pn) lowerbound. In other words, the tree model, though more ontrollable, is not easier to handlethan arbitrary assignment restrition in the worst ase.Intuitively, the list model orders the mahines aording to their apability, and ajob spei�es the least apable mahine that an serve the job. A natural extensionof the list model is that a job spei�es both the least and the most apable mahines(as in many appliations, more apable mahines would harge more). We all thismodel the interval model. The previous O(1)-ompetitive algorithm fails to work here.We �nd that there is an 
(logn) lower bound, and we obtain an O(logn)-ompetitivealgorithm. On the other hand, if a job is allowed to request two or more intervals, weshow that every on-line algorithm is 
(pn)-ompetitive. The lower bounds hold evenwhen randomization is allowed.This paper also initiates the study of luster-based assignment restrition, whih isa pratial extension of mahine-based assignment restrition. A luster is a olletionof mahines with the same funtionality. More formally, the luster model states thateah mahine belongs to one of k lusters, and eah job requests some lusters in whih2



Model List Interval Two intervals, Tree,Arbitrary restritionn mahines �(1) �(logn) �(pn)k lusters �(1) �(log k) �(pK)Table 1: Competitive ratios in di�erent settings of assignment restrition.any mahine an be used to serve the job. Similar to mahine-based models, we studylusters related in the form of lists, intervals and trees. The mahine-based algorithmsan be easily adapted to these settings, giving O(1), O(logn) and O(pn) upper boundsrespetively. However, it is more desirable to derive algorithms with ompetitive ratiosdepending on k instead of n sine in reality, k is muh smaller than n. For the listmodel and the interval model, we observe that the ompetitive ratios are �(1) and�(log k), respetively. For the tree model, we obtain an algorithm with ompetitive ratioO(pK) where K = n=smin and smin is the number of mahines in the smallest luster.Intuitively, K is the total normalized number of mahines. Note that k � K � n. Ifthe lusters are of roughly the same size, then K is O(k). This algorithm is atually ageneralization of the algorithm Robin-Hood [7℄ and works even when a job an requestany lusters arbitrarily. Table 1 shows a summary of these results. We onjeture thatthe ompetitive ratio for the tree model an be improved to O(pk). To support thisonjeture, we prove that, for trees onsisting of two levels, a simple algorithm su�esto be O(pk)-ompetitive.Related Work: Other variants of the mahine load balaning problem have also beenstudied extensively in the literature. They inlude models in whih jobs never departor have predetermined departure time, and in whih jobs an be reassigned [1, 2, 8, 11,13, 14, 19℄. For details, readers an refer to the surveys of Azar [4℄ and Borodin andEl-Yaniv [12℄.1.2 On-line virtual iruit routingThe virtual iruit routing problem is a generalization of the mahine load balaningproblem to the ontext of high speed networks [2, 3℄. The virtual iruit routing problemis de�ned as follows. We are given a direted graph with m edges. Every edge e isassoiated with a apaity e. A request, whih asks for a route from a soure to adestination, an arrive at any time and last for an unpreditable period. Eah requestarries a weight, denoted by w. When a request arrives, an on-line algorithm assignsthe request to a path onneting the soure to the destination, thereby inreasing theload of every edge e along that path by w=e until the request terminates. The objetiveis to minimize the maximum load generated on any single edge over all time. Theperformane is again measured in terms of ompetitive ratio.It is widely known that the 
(pn) lower bound on the ompetitive ratio of mahineload balaning with assignment restrition [5℄ an lead to an 
(m1=4) lower bound onthe ompetitive ratio of the virtual iruit routing problem [3, 17℄. This lower boundholds even when all edges have the same apaity. An interesting open problem in the3



literature is to determine the ompetitive ratio of the virtual iruit routing problem(see e.g., [4℄). Prior to our work, the only related result is the work of Awerbuh etal. [3℄, who sidestepped the lower bound using limited re-routing, produing an O(logm)-ompetitive algorithm.In this paper we study the original virtual iruit routing problem and present the�rst algorithm whih is O(m2=3)-ompetitive when all edges have the same apaity.The virtual iruit routing problem is more di�ult than the mahine load balaningproblem in the sense that an inappropriate assignment may inrease the total load ofthe network drastially. Our new algorithm is a novel extension of Robin-Hood viaa areful trade-o� between the load and the length of the paths. We also observe thatthe previous 
(m1=4) lower bound [3, 17℄ an be improved to 
(pm), whih holdseven when randomization is allowed. For networks with arbitrary edge apaities, theompetitive ratio of our algorithm beomes O(W 2=3), where W is the total edge apaitynormalized to the minimum edge apaity (i.e., Pe e=min, where min is the minimumedge apaity).2 Mahine-based assignment restritionIn this setion we study the ompetitiveness of the on-line load balaning problem indi�erent models of assignment restrition. In the tree model, mahines are nodes of arooted tree. Eah job spei�es a mahine, and the job an be assigned to any anestorof the spei�ed mahine in the tree. The list model is a speial ase where mahinesare nodes of a list. Eah job spei�es a mahine, and the algorithm an assign thejob to any mahine in the list between the list head and the spei�ed mahine. A5-ompetitive algorithm for the list model has been known [10℄. For the tree model,the best known algorithm is the O(pn)-ompetitive algorithm inherited from arbitraryassignment restrition [7℄.We de�ne the interval model as an extension of the list model. Eah job spei�es twomahines, and the algorithm may hoose any mahine in the list between these two ma-hines to serve the job. In this setion we show that this extension raises the ompetitiveratio to �(logn). The lower bound result holds even if we add the assumptions thatthe jobs never depart, all jobs have the same load, and randomization may be used. Wealso show that all algorithms in the tree model are 
(pn)-ompetitive, even if all jobshave the same load and randomization is allowed. A similar result is obtained when wefurther extend the interval model to allow two intervals per request. All the randomizedlower bounds hold even when the adversary is oblivious [18℄, i.e. the adversary does notinspet the random hoies made by the algorithm.2.1 The interval modelWe �rst show an O(logn)-ompetitive algorithm Interval for the interval model. Thenwe present an 
(logn) lower bound on the ompetitive ratio of algorithms under thismodel. To ease our disussion, we assume n is a power of two, and de�ne a number ofaligned intervals I(i; j), where i = 1; 2; : : : ; logn and j = 1; 2; : : : ; 2i�1. I(1; 1) is theinterval [1; n℄. Eah interval I(i; j), where i < logn, is partitioned into two equal size4



4depth 1 IL(1; 1) IR(1; 1)2 IL(2; 1) IR(2; 1) IR(2; 2)IL(2; 2)3 IR(3; 1) IL(3; 2) IR(3; 2) IL(3; 3) IR(3; 3) IL(3; 4) IR(3; 4)IL(3; 1)Figure 1: Left and right halves of aligned intervals when n = 16. Arrows represent theorientation of the opies of Linear running on them.intervals I(i+ 1; 2j � 1) and I(i+ 1; 2j). For example, I(1; 1) is partitioned into I(2; 1)and I(2; 2), de�ned as [1; n=2℄ and [n=2 + 1; n℄ respetively. There are n � 1 alignedintervals of sizes ranging from 21 to 2log n. An aligned interval I(i; j) is said to havedepth i. Note that the size of a depth i interval is n=2i�1.Let Linear denote the 5-ompetitive algorithm shown in [10℄ for the list model.Interval works by running multiple opies of Linear on di�erent subsets of mahines,and eah interval request gets translated into a list request for one of these opies. Morepreisely, Interval runs two opies of Linear for eah aligned interval I(i; j), one onthe left half IL(i; j) of I(i; j) and one on the right half IR(i; j). Both opies of Lineartreat the element losest to the middle of I(i; j) as the list head. Figure 1 shows anexample. Note that eah of the n mahines an be assigned a job by logn opies ofLinear. Two mahines of IL(i; j) and IR(i; j) are said to be mirror-image of eah otherif they have the same distane from their list heads.Suppose an interval request [l; r℄ arrives. Interval �nds the deepest aligned inter-val I(i; j) whih ontains the interval [l; r℄. Sine I(1; 1) ontains all mahines, suh analigned interval always exists. Let L = IL(i; j)\ [l; r℄ and R = IR(i; j)\ [l; r℄. Note that,sine I(i; j) is the deepest aligned interval, the heads of IL(i; j) and IR(i; j) are alwaysinluded in L and R respetively. (In the boundary ase when i = logn, one of L and Rmay be empty.) Interval translates the interval request [l; r℄ into the list request L forthe opy of Linear on IL(i; j) if jLj � jRj, and into the list request R for the opy ofLinear on IR(i; j) otherwise. Interval then assigns the job to the mahine assignedby Linear.To analyse Interval, onsider a sequene of interval requests for whih the optimalo�-line algorithm generates a load of OPT . Reall that Interval translates these inter-val requests into list requests. Lemma 1 shows that the list requests for any partiularopy of Linear are not demanding, i.e. admit a good o�-line assignment and hene agood assignment under Linear. Then we derive the ompetitive ratio of Interval inTheorem 2.Lemma 1. For the list requests for any opy of Linear, there exists an o�-line as-signment S whih generates at most 2OPT load on any mahine on whih this opy ofLinear runs.Proof. Consider the opy of Linear running on IL(i; j) (the ase for IR(i; j) is sym-metri). A list request in this interval is translated from an interval request [l; r℄.Note that, by the way Interval hooses between the left and the right intervals,5



j[l; r℄ \ IL(i; j)j � j[l; r℄ \ IR(i; j)j. In other words, if a mahine is in [l; r℄ \ IR(i; j),its mirror image is in [l; r℄ \ IL(i; j).Let A denote the optimal o�-line algorithm for Interval. S assigns the list requestsfor IL(i; j) as follows. For eah list request, S �nds the mahine M to whih A assignsthe orresponding interval request [l; r℄. If M 2 IL(i; j), S assigns the list request to M .Otherwise, S assigns it to the mirror image of M , whih is allowed sine that mirrorimage must be in [l; r℄ \ IL(i; j). Note that any mahine in I(i; j) only reeives jobswhih A assigns to either the same mahine or its mirror image. Sine A generates atmost OPT load on any mahine, S generates at most 2OPT load on any mahine.Theorem 2. Interval is (10 logn)-ompetitive.Proof. By Lemma 1, for the list requests translated by Interval for a opy of Linear,there exists an o�-line assignment whih generates at most 2OPT load on any mahine.Sine Linear is 5-ompetitive, the load of a mahine in that opy of Linear is atmost 10OPT . Eah mahine an reeive requests from logn opies of Linear, so themaximum load of any mahine is (10 logn)OPT .Now we turn to the lower bound, whih shows Interval is asymptotially optimal.Theorem 3. No on-line algorithm for the interval model is better than (logn=2)-om-petitive. This holds even if (1) jobs never depart, (2) all jobs have the same load, and(3) randomization is allowed.Proof. We establish the randomized lower bound using an oblivious adversary. Thedeterministi bound then follows. Given any randomized on-line algorithm, we onstruta sequene of jobs, exeuting in logn phases, suh that at the end of the p-th phase,there exists an aligned interval Ip of depth p whih has an expeted average load of atleast p. Therefore, after logn phases, Ilog n has an expeted average load of at least logn,so that one mahine has an expeted load of at least logn.In the �rst phase, n jobs are released, requesting the interval I1 = I(1; 1). At theend of this phase, the average load of this interval is 1. Indutively, for 1 � p < logn,suppose Ip = I(p; j). That is, I(p; j) has an expeted average load of at least p afterphase p. Sine I(p; j) is partitioned into I(p + 1; 2j � 1) and I(p + 1; 2j), one of themhas an expeted average load of at least p. Let this interval be Ip+1. In the (p + 1)-stphase, n=2p jobs are released, requesting Ip+1. The expeted average load of Ip+1 afterthe (p+ 1)-st phase is thus at least p+ 1.Note that the optimal o�-line algorithm assigns all requests of phase p evenly toIp � Ip+1, so that eah mahine gets a load of at most 2. Therefore, the ompetitiveratio against the oblivious adversary is at least logn=2.2.2 The tree modelWe show that the O(pn)-ompetitive algorithm Robin-Hood introdued in [7℄ isasymptotially optimal for the tree model. Note that if jobs never depart, O(1) om-petitive ratio an be ahieved [10℄.Lemma 4. No on-line algorithm for the tree model (where jobs may depart) is (pn�1)-ompetitive. This is true even if all jobs have the same load.6



r2 leaf nodes
r non-leaf nodes

Figure 2: A worst ase senario for the tree model.Proof. The proof is adapted from the lower bound proof for arbitrary assignment re-strition presented in [17℄. Consider the tree in Figure 2 ontaining r2 + r nodes, withr non-leaf nodes forming a list, and r2 leaf nodes being hildren of the tail of this list.The following job sequene ensures that any on-line algorithm assigns at least r jobsto one of the nodes. The job sequene onsists of r2 phases. In the p-th phase, r jobsare released, requesting an anestor of the p-th leaf. If the on-line algorithm assigns allthese jobs to the leaf, we are done. Otherwise, we retain a job assigned to a non-leafnode, and let all other jobs depart. After r2 phases, the non-leaf nodes must be servingat least r2 jobs, so one of them must be serving at least r jobs.In an o�-line assignment, only non-departing jobs are assigned to leaf nodes. Themaximum load generated is 1. So the on-line algorithm is no better than r-ompetitive.Sine r > pn� 1, the lemma follows.In the following variant, we show that the ompetitive ratio annot be signi�antlyimproved even if we allow randomization.Lemma 5. No randomized on-line algorithm for the tree model (where jobs may depart)is (pn� 1)=2-ompetitive. This is true even if all jobs have the same load.Proof. Again we establish this with an oblivious adversary. Consider the tree onstrutedin the proof of Lemma 4. The following job sequene ensures that any on-line algorithmhas a node with an expeted load of r=2. The job sequene onsists of r2 phases. In thep-th phase, r jobs are released, requesting an anestor of the p-th leaf. If the expetedload of the p-th leaf is r=2, we are done. Otherwise, the expeted number of jobs assignedto a non-leaf node is at least r=2, so a job randomly seleted from those released in thisphase has a probability at least 1=2 to be assigned to a non-leaf node. The adversaryrandomly selets a job to retain, and lets all other jobs depart. The expeted total loadof the non-leaf nodes inreases by at least 1=2. After r2 phases, the expeted total loadof the non-leaf nodes is at least r2=2, so one non-leaf node must have expeted load ofat least r=2.In an o�-line assignment, only non-departing jobs are assigned to leaf nodes. Themaximum load generated is 1. So the on-line algorithm is no better than r=2-ompetitive.Sine r > pn� 1, the lemma follows.In the above arguments, if we number the non-leaf nodes from 1 to r, and theleaf nodes from r + 1 to r2 + r, all the jobs have assignment restrition in the form7



f1; 2; � � � ; r; jg. Therefore, if we extend the interval model so that eah job an speifytwo intervals, the same lower bounds hold.Corollary 6. For the two-interval model (where jobs may depart), no deterministi on-line algorithm is (pn � 1)-ompetitive, and no randomized on-line algorithm is (pn �1)=2-ompetitive. They are true even if all jobs have the same load.3 Cluster-based assignment restritionIn reality, assignment restrition is usually used to model the requirement of jobs forsome disrete apabilities possessed only by some mahines. The number of the distintsets of apabilities possessed by the mahines is usually muh smaller than the numberof mahines. This motivates us to study luster-based assignment restrition models,an extension in whih eah mahine belongs to one of k lusters. Eah job spei�essome lusters, so that only mahines in these lusters an serve the job. We de�nethe list, interval, two-interval, tree and arbitrary restrition models analogous to themahine-based models we studied in Setion 2.Here are some simple observations. In the extreme ase in whih eah luster ontainsonly one mahine, the luster-based models redue to the mahine-based models. As aresult, all the lower bounds in Setion 2 still apply, replaing n by k in the respetivebounds. As mentioned earlier, k may be muh smaller than n and thus it is moreinteresting to see whether we an provide better upper bounds in terms of k.For the list model, the algorithm by Bar-Noy et al. [10℄ is O(1)-ompetitive, in-dependent of n and k. For the interval model, the algorithm in Setion 2.1 an beextended to produe an O(log k)-ompetitive algorithm, mathing the lower bound. Forthe tree model and the arbitrary restrition model, a trivial algorithm whih alwaysassigns a job to the most-lightly-loaded mahine in the largest luster spei�ed by thejob is (k + 1)-ompetitive. However, it is not lear how we an provide better upperbounds.In this setion we show that the algorithm of Azar et al. [7℄ an be generalized to theluster-based arbitrary assignment restrition model, produing an O(pK)-ompetitivealgorithm, where K = n=smin and smin is the size of the smallest luster. Thus, inthe ase when all lusters are of similar sizes, it is O(pk)-ompetitive. Without theassumption of size, we also derive an O(pk)-ompetitive algorithm that works in thespeial ase where the lusters are organized as a two-level tree.In the rest of this paper, we assume that an on-line algorithm for mahine loadbalaning or virtual iruit routing is given in advane the value of OPT , the maximumload generated by the optimal o�-line algorithm for the oming inputs. The followinglemma states that this algorithm an be onverted into one that does not know OPTin advane (instead, it approximates OPT dynamially). This onversion employs thedoubling tehnique [2℄ and degrades the ompetitive ratio by only a multipliative fatorof four. Readers an refer to [12℄ for details.Lemma 7. [2, 12℄ Suppose we have an on-line algorithm for the load balaning problem(or virtual iruit routing problem) that is given OPT in advane and is -ompetitive.Then we an onstrut an on-line algorithm A that does not know OPT in advane andis 4-ompetitive. 8



3.1 Arbitrary assignment restrition modelIn this setion we study the luster-based arbitrary assignment restrition model in whiheah mahine belongs to one of k lusters and eah job an request an arbitrary subsetof lusters. Denote si as the size of the i-th luster and smin as the size of the smallestluster. Let K = n=smin. The lower bound result given in [5℄ implies an 
(pK) lowerbound for the luster model. We extend the algorithm Robin-Hood to work in theluster model, resulting in an O(pK)-ompetitive algorithm, alled Cluster below.By Lemma 7, we assume that Cluster is given OPT in advane. At any time,a luster is said to be overloaded if its average load is greater than pK OPT underCluster. For any overloaded luster, de�ne its windfall time to be the last moment itbeame overloaded.When a job arrives, Cluster assigns the job to a luster that is not overloaded ifpossible. Otherwise, Cluster assigns it to the luster with the greatest windfall time.Whenever a job is assigned to a luster, it is assigned to the mahine with the smallestload in that luster.Now we analyse the ompetitive ratio of Cluster. The analysis is based on the har-ateristis of Cluster that the average load of any luster does not inrease drastiallyafter its windfall time.Lemma 8. The inrease of average load on a luster after its windfall time is at mostpK OPT .Proof. Suppose C is a luster that is overloaded. Let t be its windfall time and let Obe the set omprising C and other overloaded lusters at t. At t, the total load of jobsassigned to lusters in O is at least Pi2O sipK OPT . All these jobs must be aom-modated by the optimal o�-line algorithm and thus the total load is at most nOPT =K OPT smin. Therefore, we have Pi2O sipK OPT � K OPT smin whih implies thatPi2O si � pK smin.Let J be the set of jobs that are urrently assigned to C by Cluster and have arrivaltime after t. Consider a job in J . Sine Cluster assigns the job to an overloadedluster, all feasible lusters, inluding the luster assigned by the o�-line algorithm,must be overloaded at t. This implies that the total load of jobs in J is not greaterthan the total load of jobs assigned to O by the optimal o�-line algorithm, whih is atmost Pi2O siOPT � pK OPT smin. The inrease in the average load of C after t is atmost pK OPT sine the size of C is at least smin.Theorem 9. With Cluster, the load of any mahine at any time is at most (2pK +2)OPT . Thus, Cluster is (2pK + 2)-ompetitive.Proof. Consider the moment just after some job is assigned to a mahineM by Cluster.Suppose C is the luster ontaining M . Sine Cluster assigns the job to the mahinewith the smallest load in C, it su�es to show that the average load of C is at most(2pK + 1)OPT . This is immediate when C is not overloaded.Consider the ase when C is overloaded. Before its windfall time, C has an averageload of at most pK OPT . The inrease of load due to the job making it overloaded isat most OPT . By Lemma 8, the inrease in average load after its windfall time is atmost pK OPT and the theorem follows. 9



3.2 Two-level treesIn this setion we present an O(pk)-ompetitive algorithm for the model in whih thelusters form a tree onsisting of two levels. More preisely, the set of mahines ispartitioned into k � 1 leaf lusters Si (1 � i � k � 1) and a root luster S0. Eahjob spei�es one of Si ontaining mahines whih an be used to serve the job, but thealgorithm may instead use a mahine in S0. The lower bound results in Setion 2.2an be adapted to this model, giving an 
(pk) lower bound on the ompetitive ratio.Here, we prove that a simple algorithm alled TwoLevel an ahieve a mathing upperbound.By Lemma 7, we assume that TwoLevel is given OPT in advane. If a job ar-rives whih requests a leaf luster ontaining a mahine with a load less than pkOPT ,TwoLevel assigns the job to that mahine. Otherwise, TwoLevel assigns it to amahine in S0 with the smallest urrent load.Theorem 10. TwoLevel is (pk + 2)-ompetitive.Proof. Sine no job reates a load of more than OPT , eah mahine in a leaf lusterhas a load of at most (pk + 1)OPT . The remainder of the proof establishes that nomahine of the root luster gets a load of more than (pk + 2)OPT .Let si denote the number of mahines in Si. Consider any partiular time t. Denoteni(t) and fi(t) as the total load of mahines in S0 at t due to jobs requesting Si underTwoLevel and the optimal o�-line algorithm respetively.Note that, at the last time when ni(t) inreases, all mahines in Si must have load atleast pkOPT . The o�-line algorithm must aommodate all the load of these mahines.That is, sipkOPT + ni(t) � (s0 + si)OPT for 1 � i � k � 1:On the other hand, the o�-line algorithm assigns a load of at least ni(t) to mahines inS0 or Si. ni(t) � siOPT + fi(t) for 1 � i � k � 1:Eliminating si, summing over all i and adding the equality n0(t) = f0(t), we havepk k�1Xi=0 ni(t) � s0(k � 1)OPT + (pk � 1) k�1Xi=0 fi(t):Note that Pk�1i=0 fi(t) � s0OPT . As a result, pk Pk�1i=0 ni(t) � (k + pk � 2)s0OPT ;thus,Pk�1i=0 ni(t) � (pk+1)s0OPT . Sine TwoLevel always assigns a job to a mahinewith the smallest load when using S0, the load of any mahine in S0 at t is less than(pk + 2)OPT .4 Virtual Ciruit RoutingIn this setion we study the virtual iruit routing problem. We are given a diretedgraph with a set E of m edges. Eah edge e is assoiated with a apaity e. Requests10



arrive and terminate at unpreditable time, eah requesting a route from a soure toa destination. We need to �nd a path from the soure to the destination, therebyinreasing the load of eah edge e in the path by w=e, where w is the weight spei�edby the request. Our objetive is to minimize, over all time, the maximum load on anyedge.In [2℄, Aspnes et al. studied the problem with the assumption that requests neverterminate. With this assumption, they gave an O(logm)-ompetitive on-line algorithmand proved that no on-line algorithm an have ompetitive ratio better than O(logm).We present an on-line algorithm alled VC-Routing for the more general ase whererequests may terminate at unpreditable time. It is O(W 2=3)-ompetitive, where W =Pe2E e=min and min is the minimum apaity of the edges. When all edges haveidential apaity, the ompetitive ratio is equivalent to O(m2=3). We also prove thatany on-line algorithm for the problem is 
(pm)-ompetitive, even if all the edges haveidential apaity and randomization is allowed. Again, the randomized lower boundholds even when the adversary is oblivious.4.1 The algorithmVC-Routing is a novel adaptation of Robin-Hood, the algorithm whih ahieves opti-mal ompetitive ratio for the mahine load balaning problem with arbitrary assignmentrestrition. The main hallenge in the virtual iruit routing problem is that the lengthof the path hosen by the o�-line algorithm may be di�erent from that of the path ho-sen by the on-line algorithm. As a result, the aggregate load generated by the on-linealgorithm an be very di�erent from that generated by the optimal o�-line algorithm. Inorder to ontrol the di�erene of the aggregate load, VC-Routing takes into aountthe length of paths when assigning a request. Roughly speaking, it prefers relativelyshort paths, and applies a strategy similar to Robin-Hood only to those short paths.The details are as follows.By Lemma 7, we assume that VC-Routing is given OPT in advane. At anypartiular time, we say an edge is overloaded if its urrent load is greater thanW 2=3OPT .An overloaded path is a path whih ontains an overloaded edge. For an overloadededge, we de�ne its windfall time as the last moment it beame overloaded. The windfalltime of an overloaded path is the minimum windfall time of the overloaded edges onthe path. We lassify the paths into three ategories, namely Short, Medium, and Long,depending on whether their length is in the ranges [1;W 1=3℄, (W 1=3;W 2=3℄, and (W 2=3;W ℄respetively. For every request j with weight w(j), we say a path is eligible if every edgeon it satis�es w(j)=e � OPT . Sine the maximum load generated by the optimalo�-line algorithm is at most OPT , an eligible path always exists.When a new request arrives, VC-Routing selets a path among the eligible pathsin the order of Short, Medium, Long. Ties among paths in Short are broken as follows.VC-Routing selets one that is not overloaded if it exists; otherwise, it selets one withmaximum windfall time. For the other two ategories, ties are broken arbitrarily.We now analyse the ompetitive ratio of VC-Routing, by bounding the load on anyedge. For edges whih are not overloaded, this is trivially bounded by W 2=3OPT . Tobound the load on an overloaded edge eo, we partition the requests urrently assignedto eo into three sets, depending on the arrival time of the requests and on how the11



o�-line algorithm assigns the requests. Let J1(eo) be the partition ontaining requestswhih are assigned to eo at or before the windfall time of eo, let J2(eo) be the partitionontaining those remaining requests whih the o�-line algorithm assigns to paths ineither Medium or Long, and let J3(eo) be the partition ontaining the other requests.Lemmas 11 and 14 bound the total weight of requests in J2(eo) and J3(eo) respetively,allowing us to onlude the ompetitive ratio of VC-Routing in Theorem 15. To easethe disussion, we denote, at any partiular time, w(e) and w�(e) as the total weight ofrequests assigned to an edge e 2 E by VC-Routing and the optimal o�-line algorithm,respetively.Lemma 11. The total weight of requests in J2(eo) is at most W 2=3OPT min.Proof. For eah edge e 2 E, the weight of requests assigned by the optimal o�-linealgorithm is at most eOPT . Therefore, Pe2E w�(e) � Pe2E eOPT = W OPT min.Sine the length of paths in Medium or Long is greater than W 1=3, the total weight ofrequests assigned to paths in Medium or Long by the optimal o�-line algorithm is atmost W 2=3OPT min. The lemma follows sine J2(eo) is a subset of these requests.Lemma 12. Every request is assigned by VC-Routing to a path of length no morethan W 1=3 times of the length of the path assigned by the optimal o�-line algorithm.Proof. Suppose the optimal o�-line algorithm assigns a request to a path in ategoryShort (Medium or Long respetively). The path must be eligible, so VC-Routing on-sidered the path during the assignment of the request. Due to the priority of pathassignment, VC-Routing selets a path in ategory with priority not less than Short(Medium or Long respetively). The lemma follows from that the ratio of the length ofthe longest path to that of the shortest path in any ategory is at most W 1=3.Corollary 13. At any time t, for any E 0 � E, Pe2E w�(e) �Pe2E0 w(e)=W 1=3.Proof. Let X be the set of all the requests existing at time t. For any suh request j,let p(j) and p�(j) be the paths to whih j is assigned by VC-Routing and the opti-mal o�-line algorithm respetively. Note that Pe2E w�(e) = Pj2X w(j)jp�(j)j, wherejp�(j)j denotes the number of edges in p�(j). By Lemma 12, we havePj2X w(j)jp�(j)j �Pj2X w(j)jp(j)j=W 1=3. The latter is equal toPe2E w(e)=W 1=3. Therefore,Pe2E w�(e) �Pe2E w(e)=W 1=3, whih is at least Pe2E0 w(e)=W 1=3 as E 0 is a subset of E.Lemma 14. The total weight of requests in J3(eo) is at most W 2=3OPT min.Proof. Let t be the windfall time of eo. Denote O as the set omprising eo and otheroverloaded edges at t. Denote J as the set of requests that are assigned to some edgesin O by the optimal o�-line algorithm at t. To prove Lemma 14, we �rst show thatthe total weight of J is at most W 2=3OPT min, and then argue that J3(eo) has a totalweight no greater than that of J .The requests assigned by the optimal o�-line algorithm to any edge e have a totalweight at most eOPT . Thus, the total weight of J is at mostPe2O eOPT . The latterquantity is bounded as follows. By Corollary 13,Pe2E w�(e) �Pe2O w(e)=W 1=3. Sineall edges in O are overloaded, Pe2O w(e) >Pe2O eW 2=3OPT . Thus, we haveXe2O eOPT < W� 13Xe2E w�(e):12



PSfrag replaements e1e2ers1s2sr
t1t2trFigure 3: A bad senario for virtual iruit routing.On the other hand, Pe2E w�(e) � Pe2E eOPT = W OPT min. Combining withthe previous inequality, we have Pe2O eOPT � W 2=3OPT min. Therefore, the to-tal weight of J is at most W 2=3OPT min.Aording to the priority of path assignment, VC-Routing assigns requests in J3(eo)to overloaded paths in Short with maximum windfall time. Therefore, the o�-line algo-rithm must assign requests in J3(eo) to paths whih are overloaded at t (as de�ned inVC-Routing); otherwise, VC-Routing would assign the requests to those paths in-stead of the assigned overloaded paths that ontain eo. As a result, the total weight of re-quests in J3(eo) is no greater than the total weight of J , whih is at mostW 2=3OPT min.The lemma follows.Theorem 15. With VC-Routing, the load of any edge at any time is at most (3W 2=3+1)OPT . Thus VC-Routing is (3W 2=3 + 1)-ompetitive.Proof. The theorem holds for those edges that are not overloaded. Consider any over-loaded edge eo. The total weight of requests assigned to eo before its windfall timeis at most W 2=3eoOPT . The weight of the request making it overloaded is no morethan eoOPT . Thus the total weight of requests in J1(eo) is at most (W 2=3+1)eoOPT .Together with Lemmas 11 and 14, the total weight of requests assigned to eo is boundedby (W 2=3 + 1)OPT eo + 2W 2=3OPT min. Sine eo � min, the load of eo is at most(3W 2=3 + 1)OPT and the theorem follows.4.2 Lower boundWe show an 
(pm) lower bound on the ompetitive ratio of any on-line algorithm forthe virtual iruit routing problem.Lemma 16. No on-line algorithm for the virtual iruit routing problem is (pm=3�1)-ompetitive. This is true even if all edges have the same apaity and all requests havethe same weight.Proof. Consider the graph in Figure 3, whih has 4r nodes and 3r2 + r edges withidential apaity. The set of soure nodes and the set of destination nodes form a13



omplete bipartite graph. Eah of the two sets form a bipartite graph with a distint setof r intermediate nodes. The two sets of intermediate nodes form a bipartite mathing.Let E 0 be the set of edges onneting the intermediate nodes.We onstrut a sequene of requests with r2 phases so that any on-line algorithmassigns at least r requests to one of the edges. In eah phase, r requests of unit weightare released with a distint pair of soure and destination. If the on-line algorithmassigns all these requests to the edge onneting the soure and the destination, we aredone. Otherwise, at least one of these requests is assigned to a path ontaining an edgein E 0. At the end of this phase, all requests exept this one terminate. After r2 phases,r2 requests remain, eah inreases the load of one of the edges in E 0. Sine there are redges sharing the load, at least one of them has a load of r.On the other hand, in an o�-line assignment, a request is assigned to the edgeonneting the soure and the destination involved only if it never terminates. Themaximum load is 1 at all time. So the on-line algorithm is no better than r-ompetitive.Sine r >pm=3� 1, the lemma follows.Using the same argument in Lemma 5, the adversary in Lemma 16 an be onvertedto an oblivious adversary for any randomized algorithm and we have the following orol-lary.Corollary 17. No randomized on-line algorithm for the virtual iruit routing problemis (pm=12� 1=2)-ompetitive. This is true even if all edges have the same apaity andall requests have the same weight.5 Open problemsThis paper leaves several open problems. In Setion 3, we give an O(pK)-ompetitivealgorithm for the luster-based load balaning problem where K is the total normalizednumber of mahines. Note that K an be muh larger than k, the total number oflusters. Thus, it is desirable to design algorithm whose ompetitive ratio depends onlyon k. As a �rst step, we give an O(pk)-ompetitive algorithm for the problem whenthe lusters form a tree of two levels. We onjeture that O(pk)-ompetitive algorithmexists for general trees. In Setion 4, we give an O(W 2=3)-ompetitive algorithm for thevirtual iruit routing problem where W is the total normalized edge apaity. Also, wederive an 
(pm) lower bound on the ompetitive ratio where m is the total number ofedges. Note that an 
(pW ) lower bound follows immediately. An open problem is tolose the gap between the O(W 2=3) upper bound and the 
(pW ) lower bound.Due to pratial motivation, we think it is interesting to investigate the variants ofthe load balaning problem in whih the exeution of jobs an be delayed. On the otherhand, measuring on-line algorithms with respet to their maximum load might not beaurate enough in some ases. It might be desirable to also measure, say, the amountof time when the load of the mahines are lose to their maximum.
14



Referenes[1℄ M. Andrews, M. X. Goemans, and L. Zhang. Improved bounds for on-line load balan-ing. In Proeedings of the Seond Annual International Computing and CombinatorisConferene, pages 1�10, 1996.[2℄ J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual ir-uits with appliations to load balaning and mahine sheduling. Journal of the ACM,44(3):486�504, 1997.[3℄ B. Awerbuh, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtual iruitswith unknown duration. In Proeedings of the Fifth Annual ACM-SIAM Symposium onDisrete Algorithms, pages 321�327, 1994.[4℄ Y. Azar. On-line load balaning. In A. Fiat and G. J. Woeginger, editors, Online Algo-rithms: The State of the Art, LNCS 1442, Springer, pages 178�195, 1998.[5℄ Y. Azar, A. Z. Broder, and A. R. Karlin. On-line load balaning. In Proeedings of the33rd Annual Symposium on Foundations of Computer Siene, pages 218�225, 1992.[6℄ Y. Azar and L. Epstein. On-line load balaning of temporary tasks on idential mahines.In 5th Israeli Symposium on Theory of Computing and Systems, pages 119�125, 1997.[7℄ Y. Azar, B. Kalyanasundaram, S. Plotkin, K. R. Pruhs, and O. Waarts. On-line loadbalaning of temporary tasks. Journal of Algorithms, 22:93�110, 1997.[8℄ Y. Azar, J. S. Naor, and R. Rom. Competitiveness of on-line assignments. Journal ofAlgorithms, 18:221�237, 1995.[9℄ Y. Azar and O. Regev. O�-line temporary tasks assignment. In Proeedings of the SeventhAnnual European Symposium on Algorithm, pages 161�171, 1999.[10℄ A. Bar-Noy, A. Freund, and J. Naor. Online load balaning in a hierarhial server topol-ogy. In Proeedings of the Seventh Annual European Symposium on Algorithm, pages77�88, 1999.[11℄ P. Berman, M. Charikar, and M. Karpinski. On-line load balaning for related mahines.In Workshop on Algorithms and Data Strutures, pages 116�125, 1997.[12℄ A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. CambridgeUniversity Press, 1998.[13℄ Y. Cho and S. Sahni. Bounds for list shedules on uniform proessors. SIAM Journal onComputing, 9(1):91�103, 1980.[14℄ G. Galambos and B. J. Woeginger. An on-line sheduling heuristi with better worst aseratio than Graham's list sheduling. SIAM Journal on Computing, 22(2):349�355, 1993.[15℄ R. L. Graham. Bounds for ertain multiproessing anomalies. Bell System TehnialJournal, 45:1563�1581, 1966.[16℄ S. Irani and A. R. Karlin. Online omputation. In D. Hohbaum, editor, ApproximationAlgorithms for NP-hard problems, PWS Publishing Company, hapter 13.6, pages 550�555,1997.[17℄ Y. Ma and S. Plotkin. An improved lower bound for load balaning of tasks with unknownduration. Information Proessing Letters, 62(6):301�303, 1997.[18℄ R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.[19℄ S. Phillips and J. Westbrook. Online load balaning and network �ow. In Proeedings ofthe Twenty-Fifth Annual Symposium on Theory of Computing, pages 402�411, 1993.15


