On-line Load Balancing of Temporary Tasks
Revisited

Tak-Wah Lam Hing-Fung Ting Kar-Keung To Wai-Ha Wong

Department of Computer Science and Information Systems
The University of Hong Kong
Email: {twlam,hfting,kkto,whwong}@csis.hku.hk

Abstract. We study load balancing problems of temporary jobs (i.e., jobs
that arrive and depart at unpredictable time) in two different contexts, namely,
machines and network paths. Such problems are known as machine load balancing
and virtual circuit routing in the literature. We present new on-line algorithms
and improved lower bounds.

1 Introduction

In this paper we study on-line algorithms for load balancing of temporary jobs (i.e.,
jobs that arrive and depart at unpredictable time) in two different contexts, namely,
machines and network paths. Such problems are referred to as machine load balancing
and virtual circuit routing in the literature (see [4,12,16] for a survey). As for the
former, we investigate a number of settings, namely, the list model, the interval model
and the tree model. Our results show that these settings, though similar, cause the
complexity of the load balancing problem to vary drastically, with competitive ratio
jumping from ©(1) to O(logn) and to ©(y/n), where n is the number of machines.
We further extend the study of these settings to the more general cluster-based model.
Regarding the virtual circuit routing problem, for networks comprising edges with same
capacity, we give the first algorithm with a sub-linear competitive ratio of O(m?/?), where
m is the number of edges; for networks with arbitrary edge capacities, our algorithm is
O(W2/3)—Competitive, where W is the total edge capacity normalized to the minimum
edge capacity. We also improve the lower bound from Q(m!/*) [3,17] to Q(m*/?), which
is valid even when randomization is allowed.

The remainder of this paper is organized as follows. In the rest of this section
we give the background and state our results on machine load balancing and virtual
circuit routing. In Section 2 we study the various settings of the machine load balancing
problem. In Section 3 we extend our studies to a cluster-based model. In Section 4 we
examine the virtual circuit routing problem. Finally, we discuss some open problems in
Section 5.

1.1 On-line machine load balancing

We study the following on-line problem. There are n machines with identical speed. Jobs
arrive and depart at unpredictable time. Each job comes with a positive load. When a
job arrives, it must be assigned immediately to one of the machines for execution in a
non-preemptive fashion. At any time, the load of a machine is defined to be the total
load of jobs that are currently assigned to that machine and have not yet departed.
The objective is to minimize the maximum load of any single machine over all time.
As with previous work, we measure the performance of an on-line algorithm in terms of
competitive ratio (see [12] for a survey), which is the worst-case ratio of the maximum
load generated by the on-line algorithm to the maximum load generated by the optimal
off-line algorithm.

The above on-line load balancing problem has been studied extensively in the liter-
ature (see e.g., |[4-7,17]). Existing results are distinguished by the presence of restric-
tions on machine assignment. In the simplest case, every job can be assigned to any
machine. It has been known for long that Graham’s greedy algorithm is (2 — o(1))-
competitive [5,15]. A matching lower bound was obtained recently by Azar and Ep-
stein [6]. In the model with assignment restriction, each job specifies an arbitrary
subset of the machines for possible assignment. For this model, Azar, Broder, and Kar-
lin [5] proved that the competitive ratio of any on-line algorithm is Q(y/n), and Ma and
Plotkin [17| further simplified the proof. Recently, an algorithm with a matching upper
bound was derived by Azar et al. [7]. This algorithm is referred to as ROBIN-HOOD.

Notably, the allowance of arbitrary assignment restriction makes the problem signif-
icantly harder. It is interesting to investigate the complexities of the settings where the
assignment restriction is allowed in a more controllable manner. In particular, Bar-Noy
et al. |10] initiated the study of the following hierarchical model. The machines are
related in the form of a tree. Each job specifies a machine M, so that the algorithm is
restricted to choose a machine among the ancestors of M. Bar-Noy et al. [10] showed
that when the hierarchy is linear (i.e., the list model), O(1) competitive ratio can be
achieved. The complexity of the general tree model was left open. In this paper we
adapt the result in [17] to show that the tree model actually admits an Q(y/n) lower
bound. In other words, the tree model, though more controllable, is not easier to handle
than arbitrary assignment restriction in the worst case.

Intuitively, the list model orders the machines according to their capability, and a
job specifies the least capable machine that can serve the job. A natural extension
of the list model is that a job specifies both the least and the most capable machines
(as in many applications, more capable machines would charge more). We call this
model the interval model. The previous O(1)-competitive algorithm fails to work here.
We find that there is an Q(logn) lower bound, and we obtain an O(logn)-competitive
algorithm. On the other hand, if a job is allowed to request two or more intervals, we
show that every on-line algorithm is Q(y/n)-competitive. The lower bounds hold even
when randomization is allowed.

This paper also initiates the study of cluster-based assignment restriction, which is
a practical extension of machine-based assignment restriction. A cluster is a collection
of machines with the same functionality. More formally, the cluster model states that
each machine belongs to one of k clusters, and each job requests some clusters in which

Two intervals, Tree,
Arbitrary restriction

n machines | ©(1) O(logn) O(/n)
k clusters | ©(1) ©(logk) O(VK)

Model List Interval

Table 1: Competitive ratios in different settings of assignment restriction.

any machine can be used to serve the job. Similar to machine-based models, we study
clusters related in the form of lists, intervals and trees. The machine-based algorithms
can be easily adapted to these settings, giving O(1), O(logn) and O(y/n) upper bounds
respectively. However, it is more desirable to derive algorithms with competitive ratios
depending on k instead of n since in reality, k£ is much smaller than n. For the list
model and the interval model, we observe that the competitive ratios are ©(1) and
O(log k), respectively. For the tree model, we obtain an algorithm with competitive ratio
O(VK) where K = n/spi, and spy, is the number of machines in the smallest cluster.
Intuitively, K is the total normalized number of machines. Note that £k < K < n. If
the clusters are of roughly the same size, then K is O(k). This algorithm is actually a
generalization of the algorithm ROBIN-HOOD |7| and works even when a job can request
any clusters arbitrarily. Table 1 shows a summary of these results. We conjecture that
the competitive ratio for the tree model can be improved to O(vE). To support this
conjecture, we prove that, for trees consisting of two levels, a simple algorithm suffices
to be O(vk)-competitive.

Related Work: Other variants of the machine load balancing problem have also been
studied extensively in the literature. They include models in which jobs never depart
or have predetermined departure time, and in which jobs can be reassigned [1,2,8, 11,
13,14,19]. For details, readers can refer to the surveys of Azar [4] and Borodin and
El-Yaniv [12].

1.2 On-line virtual circuit routing

The virtual circuit routing problem is a generalization of the machine load balancing
problem to the context of high speed networks [2, 3|. The virtual circuit routing problem
is defined as follows. We are given a directed graph with m edges. Every edge e is
associated with a capacity c.. A request, which asks for a route from a source to a
destination, can arrive at any time and last for an unpredictable period. Each request
carries a weight, denoted by w. When a request arrives, an on-line algorithm assigns
the request to a path connecting the source to the destination, thereby increasing the
load of every edge e along that path by w/c, until the request terminates. The objective
is to minimize the maximum load generated on any single edge over all time. The
performance is again measured in terms of competitive ratio.

It is widely known that the ©(y/n) lower bound on the competitive ratio of machine
load balancing with assignment restriction [5] can lead to an Q(m!/*) lower bound on
the competitive ratio of the virtual circuit routing problem [3,17]. This lower bound
holds even when all edges have the same capacity. An interesting open problem in the

literature is to determine the competitive ratio of the virtual circuit routing problem
(see e.g., [4]). Prior to our work, the only related result is the work of Awerbuch et
al. |3|, who sidestepped the lower bound using limited re-routing, producing an O(logm)-
competitive algorithm.

In this paper we study the original virtual circuit routing problem and present the
first algorithm which is O(m?/3)-competitive when all edges have the same capacity.
The virtual circuit routing problem is more difficult than the machine load balancing
problem in the sense that an inappropriate assignment may increase the total load of
the network drastically. Our new algorithm is a novel extension of ROBIN-HOOD via
a careful trade-off between the load and the length of the paths. We also observe that
the previous (m!/*) lower bound [3,17] can be improved to Q(y/m), which holds
even when randomization is allowed. For networks with arbitrary edge capacities, the
competitive ratio of our algorithm becomes O(W?%/?), where W is the total edge capacity
normalized to the minimum edge capacity (i.e., Y. ¢¢/Cmin, Where ¢y, is the minimum
edge capacity).

2 Machine-based assignment restriction

In this section we study the competitiveness of the on-line load balancing problem in
different models of assignment restriction. In the tree model, machines are nodes of a
rooted tree. Each job specifies a machine, and the job can be assigned to any ancestor
of the specified machine in the tree. The list model is a special case where machines
are nodes of a list. Each job specifies a machine, and the algorithm can assign the
job to any machine in the list between the list head and the specified machine. A
5-competitive algorithm for the list model has been known [10]. For the tree model,
the best known algorithm is the O(y/n)-competitive algorithm inherited from arbitrary
assignment restriction [7].

We define the interval model as an extension of the list model. Each job specifies two
machines, and the algorithm may choose any machine in the list between these two ma-
chines to serve the job. In this section we show that this extension raises the competitive
ratio to O(logn). The lower bound result holds even if we add the assumptions that
the jobs never depart, all jobs have the same load, and randomization may be used. We
also show that all algorithms in the tree model are {2(y/n)-competitive, even if all jobs
have the same load and randomization is allowed. A similar result is obtained when we
further extend the interval model to allow two intervals per request. All the randomized
lower bounds hold even when the adversary is oblivious [18], i.e. the adversary does not
inspect the random choices made by the algorithm.

2.1 The interval model

We first show an O(logn)-competitive algorithm INTERVAL for the interval model. Then
we present an (2(logn) lower bound on the competitive ratio of algorithms under this
model. To ease our discussion, we assume n is a power of two, and define a number of
aligned intervals 1(i,7), where i = 1,2,...,logn and j = 1,2,...,2°°, I(1,1) is the
interval [1,n]|. Each interval I(i,j), where ¢ < logn, is partitioned into two equal size

1| Ip(1,1) Ip(1,1) -
e (2,1 [n(2, 1) ———e{e————— 1,(2,2) [n(2,2) ———|
3@ 1.(3,1) In(3,1)l@ I1,(3,2) In(3,2) e 1.(3,3) [n(3,3) el I.(3,4) In(3,4)]
e

Figure 1: Left and right halves of aligned intervals when n = 16. Arrows represent the
orientation of the copies of LINEAR running on them.

depth

intervals 1(i+1,2j — 1) and I(i + 1,2j). For example, I(1,1) is partitioned into I(2, 1)
and 1(2,2), defined as [1,n/2] and [n/2 + 1,n] respectively. There are n — 1 aligned
intervals of sizes ranging from 2! to 2'°¢™. An aligned interval I(i,j) is said to have
depth i. Note that the size of a depth ¢ interval is n/2"L.

Let LINEAR denote the 5-competitive algorithm shown in [10] for the list model.
INTERVAL works by running multiple copies of LINEAR on different subsets of machines,
and each interval request gets translated into a list request for one of these copies. More
precisely, INTERVAL runs two copies of LINEAR for each aligned interval I(z, j), one on
the left half 7, (i,) of I(i,j) and one on the right half (i, j). Both copies of LINEAR
treat the element closest to the middle of I(7,j) as the list head. Figure 1 shows an
example. Note that each of the n machines can be assigned a job by logn copies of
LINEAR. Two machines of I, (i, j) and I;(7, j) are said to be mirror-image of each other
if they have the same distance from their list heads.

Suppose an interval request [[,r] arrives. INTERVAL finds the deepest aligned inter-
val (4, j) which contains the interval [/,]. Since I(1, 1) contains all machines, such an
aligned interval always exists. Let L = I, (i,7)N|[l,r] and R = I,(i,7) N[l,r]. Note that,
since I(i,7) is the deepest aligned interval, the heads of I,(7,j) and I(i,) are always
included in L and R respectively. (In the boundary case when i = logn, one of L and R
may be empty.) INTERVAL translates the interval request [/, r] into the list request L for
the copy of LINEAR on I,(i,7) if |L| > |R|, and into the list request R for the copy of
LINEAR on I,(i,7) otherwise. INTERVAL then assigns the job to the machine assigned
by LINEAR.

To analyse INTERVAL, consider a sequence of interval requests for which the optimal
off-line algorithm generates a load of OPT. Recall that INTERVAL translates these inter-
val requests into list requests. Lemma 1 shows that the list requests for any particular
copy of LINEAR are not demanding, i.e. admit a good off-line assignment and hence a
good assignment under LINEAR. Then we derive the competitive ratio of INTERVAL in
Theorem 2.

Lemma 1. For the list requests for any copy of LINEAR, there exists an off-line as-
signment § which generates at most 2 OPT load on any machine on which this copy of
LINEAR runs.

Proof. Consider the copy of LINEAR running on I,(i,7) (the case for I,(i,7) is sym-
metric). A list request in this interval is translated from an interval request [[,r].
Note that, by the way INTERVAL chooses between the left and the right intervals,

l[l,r) N 1.(2,7)] > |[l,7] N Ix(4,7)].- In other words, if a machine is in [I,r] N Ix(4, j),
its mirror image is in [I, 7] N I,(4, 7).

Let A denote the optimal off-line algorithm for INTERVAL. S assigns the list requests
for I,(i,j) as follows. For each list request, S finds the machine M to which A assigns
the corresponding interval request [, r]. If M € I,(i,7), S assigns the list request to M.
Otherwise, § assigns it to the mirror image of M, which is allowed since that mirror
image must be in [I,r] N I,(i,7j). Note that any machine in I(4,j) only receives jobs
which A assigns to either the same machine or its mirror image. Since A generates at
most OPT load on any machine, § generates at most 2 OPT load on any machine. [J

Theorem 2. INTERVAL is (10 logn)-competitive.

Proof. By Lemma 1, for the list requests translated by INTERVAL for a copy of LINEAR,
there exists an off-line assignment which generates at most 2 OPT load on any machine.
Since LINEAR is 5-competitive, the load of a machine in that copy of LINEAR is at
most 100PT. Each machine can receive requests from logn copies of LINEAR, so the
maximum load of any machine is (10logn)OPT. O

Now we turn to the lower bound, which shows INTERVAL is asymptotically optimal.

Theorem 3. No on-line algorithm for the interval model is better than (logn/2)-com-
petitive. This holds even if (1) jobs never depart, (2) all jobs have the same load, and
(3) randomization is allowed.

Proof. We establish the randomized lower bound using an oblivious adversary. The
deterministic bound then follows. Given any randomized on-line algorithm, we construct
a sequence of jobs, executing in logn phases, such that at the end of the p-th phase,
there exists an aligned interval Z, of depth p which has an expected average load of at
least p. Therefore, after logn phases, Z,,,, has an expected average load of at least logn,
so that one machine has an expected load of at least logn.

In the first phase, n jobs are released, requesting the interval Z; = I(1,1). At the
end of this phase, the average load of this interval is 1. Inductively, for 1 < p < logn,
suppose Z,, = I(p, 7). That is, I(p,j) has an expected average load of at least p after
phase p. Since I(p,j) is partitioned into I(p +1,2j — 1) and I(p + 1,2j), one of them
has an expected average load of at least p. Let this interval be Z,,,. In the (p + 1)-st
phase, n/2P jobs are released, requesting Z,,;. The expected average load of Z,, after
the (p + 1)-st phase is thus at least p + 1.

Note that the optimal off-line algorithm assigns all requests of phase p evenly to
1, — I,41, so that each machine gets a load of at most 2. Therefore, the competitive
ratio against the oblivious adversary is at least logn/2. O

2.2 The tree model

We show that the O(y/n)-competitive algorithm ROBIN-HOOD introduced in [7] is
asymptotically optimal for the tree model. Note that if jobs never depart, O(1) com-
petitive ratio can be achieved [10].

Lemma 4. No on-line algorithm for the tree model (where jobs may depart) is (/n—1)-
competitive. This is true even if all jobs have the same load.

6

}r non-leaf nodes
'

r? leaf nodes

Figure 2: A worst case scenario for the tree model.

Proof. The proof is adapted from the lower bound proof for arbitrary assignment re-
striction presented in [17]. Consider the tree in Figure 2 containing r? + r nodes, with
r non-leaf nodes forming a list, and r? leaf nodes being children of the tail of this list.
The following job sequence ensures that any on-line algorithm assigns at least r jobs
to one of the nodes. The job sequence consists of 72 phases. In the p-th phase, r jobs
are released, requesting an ancestor of the p-th leaf. If the on-line algorithm assigns all
these jobs to the leaf, we are done. Otherwise, we retain a job assigned to a non-leaf
node, and let all other jobs depart. After r? phases, the non-leaf nodes must be serving
at least 72 jobs, so one of them must be serving at least r jobs.

In an off-line assignment, only non-departing jobs are assigned to leaf nodes. The
maximum load generated is 1. So the on-line algorithm is no better than r-competitive.
Since r > y/n — 1, the lemma follows. O

In the following variant, we show that the competitive ratio cannot be significantly
improved even if we allow randomization.

Lemma 5. No randomized on-line algorithm for the tree model (where jobs may depart)
is (v/n — 1)/2-competitive. This is true even if all jobs have the same load.

Proof. Again we establish this with an oblivious adversary. Consider the tree constructed
in the proof of Lemma 4. The following job sequence ensures that any on-line algorithm
has a node with an expected load of r/2. The job sequence consists of 72 phases. In the
p-th phase, r jobs are released, requesting an ancestor of the p-th leaf. If the expected
load of the p-th leaf is r /2, we are done. Otherwise, the expected number of jobs assigned
to a non-leaf node is at least r/2, so a job randomly selected from those released in this
phase has a probability at least 1/2 to be assigned to a non-leaf node. The adversary
randomly selects a job to retain, and lets all other jobs depart. The expected total load
of the non-leaf nodes increases by at least 1/2. After r* phases, the expected total load
of the non-leaf nodes is at least 7%/2, so one non-leaf node must have expected load of
at least r/2.

In an off-line assignment, only non-departing jobs are assigned to leaf nodes. The
maximum load generated is 1. So the on-line algorithm is no better than r/2-competitive.
Since r > y/n — 1, the lemma follows. O

In the above arguments, if we number the non-leaf nodes from 1 to r, and the
leaf nodes from 7 + 1 to r? + r, all the jobs have assignment restriction in the form

{1,2,---,r,7}. Therefore, if we extend the interval model so that each job can specify
two intervals, the same lower bounds hold.

Corollary 6. For the two-interval model (where jobs may depart), no deterministic on-
line algorithm is (\/n — 1)-competitive, and no randomized on-line algorithm is (\/n —
1)/2-competitive. They are true even if all jobs have the same load.

3 Cluster-based assignment restriction

In reality, assignment restriction is usually used to model the requirement of jobs for
some discrete capabilities possessed only by some machines. The number of the distinct
sets of capabilities possessed by the machines is usually much smaller than the number
of machines. This motivates us to study cluster-based assignment restriction models,
an extension in which each machine belongs to one of k clusters. Each job specifies
some clusters, so that only machines in these clusters can serve the job. We define
the list, interval, two-interval, tree and arbitrary restriction models analogous to the
machine-based models we studied in Section 2.

Here are some simple observations. In the extreme case in which each cluster contains
only one machine, the cluster-based models reduce to the machine-based models. As a
result, all the lower bounds in Section 2 still apply, replacing n by k in the respective
bounds. As mentioned earlier, ¥ may be much smaller than n and thus it is more
interesting to see whether we can provide better upper bounds in terms of k.

For the list model, the algorithm by Bar-Noy et al. [10] is O(1)-competitive, in-
dependent of n and k. For the interval model, the algorithm in Section 2.1 can be
extended to produce an O(logk)-competitive algorithm, matching the lower bound. For
the tree model and the arbitrary restriction model, a trivial algorithm which always
assigns a job to the most-lightly-loaded machine in the largest cluster specified by the
job is (k + 1)-competitive. However, it is not clear how we can provide better upper
bounds.

In this section we show that the algorithm of Azar et al. |7] can be generalized to the
cluster-based arbitrary assignment restriction model, producing an O(v/K)-competitive
algorithm, where K = n/spi, and sy, is the size of the smallest cluster. Thus, in
the case when all clusters are of similar sizes, it is O(vk)-competitive. Without the
assumption of size, we also derive an O(ﬂ)—competitive algorithm that works in the
special case where the clusters are organized as a two-level tree.

In the rest of this paper, we assume that an on-line algorithm for machine load
balancing or virtual circuit routing is given in advance the value of OPT', the maximum
load generated by the optimal off-line algorithm for the coming inputs. The following
lemma states that this algorithm can be converted into one that does not know OPT
in advance (instead, it approximates OPT dynamically). This conversion employs the
doubling technique [2] and degrades the competitive ratio by only a multiplicative factor
of four. Readers can refer to [12] for details.

Lemma 7. [2,12| Suppose we have an on-line algorithm for the load balancing problem
(or virtual circuit routing problem) that is given OPT in advance and is c-competitive.
Then we can construct an on-line algorithm A that does not know OPT in advance and
18 de-competitive.

3.1 Arbitrary assignment restriction model

In this section we study the cluster-based arbitrary assignment restriction model in which
each machine belongs to one of k clusters and each job can request an arbitrary subset
of clusters. Denote s; as the size of the i-th cluster and s, as the size of the smallest
cluster. Let K = n/spin. The lower bound result given in [5] implies an Q(v/K) lower
bound for the cluster model. We extend the algorithm ROBIN-HOOD to work in the
cluster model, resulting in an O(v/K)-competitive algorithm, called CLUSTER below.

By Lemma 7, we assume that CLUSTER is given OPT in advance. At any time,
a cluster is said to be overloaded if its average load is greater than v/K OPT under
CLUSTER. For any overloaded cluster, define its windfall time to be the last moment it
became overloaded.

When a job arrives, CLUSTER assigns the job to a cluster that is not overloaded if
possible. Otherwise, CLUSTER assigns it to the cluster with the greatest windfall time.
Whenever a job is assigned to a cluster, it is assigned to the machine with the smallest
load in that cluster.

Now we analyse the competitive ratio of CLUSTER. The analysis is based on the char-
acteristics of CLUSTER that the average load of any cluster does not increase drastically
after its windfall time.

Lemma 8. The increase of average load on a cluster after its windfall time is at most

VK OPT.

Proof. Suppose C'is a cluster that is overloaded. Let t be its windfall time and let O
be the set comprising C' and other overloaded clusters at t. At t, the total load of jobs
assigned to clusters in O is at least Y. ., s; VK OPT. All these jobs must be accom-
modated by the optimal off-line algorithm and thus the total load is at most n OPT =
K OPT $yin. Therefore, we have Y, , 5; VK OPT < K OPT sy, which implies that
Yico 5i < VK Smin-

Let J be the set of jobs that are currently assigned to C by CLUSTER and have arrival
time after ¢t. Consider a job in J. Since CLUSTER assigns the job to an overloaded
cluster, all feasible clusters, including the cluster assigned by the off-line algorithm,
must be overloaded at ¢. This implies that the total load of jobs in J is not greater
than the total load of jobs assigned to O by the optimal off-line algorithm, which is at
most Zieo $; OPT < /K OPT $min. The increase in the average load of C after ¢ is at

most VK OPT since the size of C is at least Smip. O

Theorem 9. With CLUSTER, the load of any machine at any time is at most (2v K +
2)OPT. Thus, CLUSTER is (2K + 2)-competitive.

Proof. Consider the moment just after some job is assigned to a machine M by CLUSTER.
Suppose C'is the cluster containing M. Since CLUSTER assigns the job to the machine
with the smallest load in C', it suffices to show that the average load of C' is at most
(2v/K 4 1)OPT. This is immediate when C is not overloaded.

Consider the case when C' is overloaded. Before its windfall time, C' has an average
load of at most v/ OPT. The increase of load due to the job making it overloaded is
at most OPT. By Lemma 8, the increase in average load after its windfall time is at
most /K OPT and the theorem follows. O

3.2 Two-level trees

In this section we present an O(v/k)-competitive algorithm for the model in which the
clusters form a tree consisting of two levels. More precisely, the set of machines is
partitioned into k — 1 leaf clusters S; (1 < ¢ < k — 1) and a root cluster Sy. Each
job specifies one of S; containing machines which can be used to serve the job, but the
algorithm may instead use a machine in Sy. The lower bound results in Section 2.2
can be adapted to this model, giving an Q(v/k) lower bound on the competitive ratio.
Here, we prove that a simple algorithm called TWOLEVEL can achieve a matching upper
bound.

By Lemma 7, we assume that TWOLEVEL is given OPT' in advance. If a job ar-
rives which requests a leaf cluster containing a machine with a load less than vk OPT,
TWOLEVEL assigns the job to that machine. Otherwise, TWOLEVEL assigns it to a
machine in Sy with the smallest current load.

Theorem 10. TWOLEVEL is (Vk + 2)-competitive.

Proof. Since no job creates a load of more than OPT, each machine in a leaf cluster
has a load of at most (vk + 1)OPT. The remainder of the proof establishes that no
machine of the root cluster gets a load of more than (v/k +2) OPT.

Let s; denote the number of machines in S;. Consider any particular time ¢. Denote
n;(t) and f;(t) as the total load of machines in Sy at ¢ due to jobs requesting S; under
TWOLEVEL and the optimal off-line algorithm respectively.

Note that, at the last time when n,(t) increases, all machines in S; must have load at
least vk OPT. The off-line algorithm must accommodate all the load of these machines.
That is,

Si\/EOPT+ni(t)§(80+8i)OPT forlgigk—l.

On the other hand, the off-line algorithm assigns a load of at least n;(¢) to machines in
S() or Sl

n;(t) < s;OPT + f;(t) for1 <i<k-—1.

Eliminating s;, summing over all 7 and adding the equality ny(t) = fo(t), we have

Note that S50 f;(t) < soOPT. As a result, Vk S0 ni(t) < (k +Vk — 2)soOPT;
thus, Zf:_ol ni(t) < (VEk+1)soOPT. Since TWOLEVEL always assigns a job to a machine

with the smallest load when using Sy, the load of any machine in Sy at ¢ is less than
(Vk +2)OPT. O

4 Virtual Circuit Routing

In this section we study the virtual circuit routing problem. We are given a directed
graph with a set E of m edges. Each edge e is associated with a capacity c.. Requests

10

arrive and terminate at unpredictable time, each requesting a route from a source to
a destination. We need to find a path from the source to the destination, thereby
increasing the load of each edge e in the path by w/c., where w is the weight specified
by the request. Our objective is to minimize, over all time, the maximum load on any
edge.

In [2]|, Aspnes et al. studied the problem with the assumption that requests never
terminate. With this assumption, they gave an O(logm)-competitive on-line algorithm
and proved that no on-line algorithm can have competitive ratio better than O(logm).
We present an on-line algorithm called VC-ROUTING for the more general case where
requests may terminate at unpredictable time. It is O(WZ/ 3)-competitive, where W =
Y ec Ce/Cmin and cmin is the minimum capacity of the edges. When all edges have
identical capacity, the competitive ratio is equivalent to O(m??). We also prove that
any on-line algorithm for the problem is Q(y/m)-competitive, even if all the edges have
identical capacity and randomization is allowed. Again, the randomized lower bound
holds even when the adversary is oblivious.

4.1 The algorithm

VC-ROUTING is a novel adaptation of ROBIN-HOOD, the algorithm which achieves opti-
mal competitive ratio for the machine load balancing problem with arbitrary assignment
restriction. The main challenge in the virtual circuit routing problem is that the length
of the path chosen by the off-line algorithm may be different from that of the path cho-
sen by the on-line algorithm. As a result, the aggregate load generated by the on-line
algorithm can be very different from that generated by the optimal off-line algorithm. In
order to control the difference of the aggregate load, VC-ROUTING takes into account
the length of paths when assigning a request. Roughly speaking, it prefers relatively
short paths, and applies a strategy similar to ROBIN-HOOD only to those short paths.
The details are as follows.

By Lemma 7, we assume that VC-ROUTING is given OPT in advance. At any
particular time, we say an edge is overloaded if its current load is greater than W?2/3 OPT.
An overloaded path is a path which contains an overloaded edge. For an overloaded
edge, we define its windfall time as the last moment it became overloaded. The windfall
time of an overloaded path is the minimum windfall time of the overloaded edges on
the path. We classify the paths into three categories, namely Short, Medium, and Long,
depending on whether their length is in the ranges [1, W/3], (W'/3, W?/3], and (W?/3 W]
respectively. For every request j with weight w(j), we say a path is eligible if every edge
on it satisfies w(j)/ce < OPT. Since the maximum load generated by the optimal
off-line algorithm is at most OPT, an eligible path always exists.

When a new request arrives, VC-ROUTING selects a path among the eligible paths
in the order of Short, Medium, Long. Ties among paths in Short are broken as follows.
VC-ROUTING selects one that is not overloaded if it exists; otherwise, it selects one with
maximum windfall time. For the other two categories, ties are broken arbitrarily.

We now analyse the competitive ratio of VC-ROUTING, by bounding the load on any
edge. For edges which are not overloaded, this is trivially bounded by W2/30OPT. To
bound the load on an overloaded edge e,, we partition the requests currently assigned
to e, into three sets, depending on the arrival time of the requests and on how the

11

off-line algorithm assigns the requests. Let [Ji(e,) be the partition containing requests
which are assigned to e, at or before the windfall time of e,, let J2(e,) be the partition
containing those remaining requests which the off-line algorithm assigns to paths in
either Medium or Long, and let J3(e,) be the partition containing the other requests.
Lemmas 11 and 14 bound the total weight of requests in J(e,) and J3(e,) respectively,
allowing us to conclude the competitive ratio of VC-ROUTING in Theorem 15. To ease
the discussion, we denote, at any particular time, w(e) and w*(e) as the total weight of
requests assigned to an edge e € F by VC-ROUTING and the optimal off-line algorithm,
respectively.

Lemma 11. The total weight of requests in Jo(e,) is at most W23 OPT cpy.

Proof. For each edge e € E, the weight of requests assigned by the optimal off-line
algorithm is at most ¢, OPT. Therefore, Y o w*(e) < > pccOPT = W OPT cpin.
Since the length of paths in Medium or Long is greater than W3, the total weight of
requests assigned to paths in Medium or Long by the optimal off-line algorithm is at
most W23 OPT cpiy. The lemma follows since J(e,) is a subset of these requests. [

Lemma 12. Fvery request is assigned by VC-ROUTING to a path of length no more
than W3 times of the length of the path assigned by the optimal off-line algorithm.

Proof. Suppose the optimal off-line algorithm assigns a request to a path in category
Short (Medium or Long respectively). The path must be eligible, so VC-ROUTING con-
sidered the path during the assignment of the request. Due to the priority of path
assignment, VC-ROUTING selects a path in category with priority not less than Short
(Medium or Long respectively). The lemma follows from that the ratio of the length of
the longest path to that of the shortest path in any category is at most W1/3, O

Corollary 13. At any time t, for any E' C E, Y, pw*(e) > >, w(e) /W3,

Proof. Let X be the set of all the requests existing at time ¢. For any such request j,
let p(j) and p*(j) be the paths to which j is assigned by VC-ROUTING and the opti-
mal off-line algorithm respectively. Note that > ., w*(e) = >,y w(j)[p*(j)], where
[p*(j)| denotes the number of edges in p*(j). By Lemma 12, we have >, w(7)[p*(j)| >
> iex w(i)|p(i)]/W'3. The latter is equal to ., w(e) /W3, Therefore, 3., w*(e) >
> ecrw(e)/WH3, which is at least Y, w(e)/W'/? as E' is a subset of E. O

Lemma 14. The total weight of requests in Js(e,) is at most W3 OPT cppyy.

Proof. Let t be the windfall time of e,. Denote O as the set comprising e, and other
overloaded edges at t. Denote J as the set of requests that are assigned to some edges
in O by the optimal off-line algorithm at ¢. To prove Lemma 14, we first show that
the total weight of J is at most W2/3OPT ¢y, and then argue that J3(e,) has a total
weight no greater than that of J.

The requests assigned by the optimal off-line algorithm to any edge e have a total
weight at most c, OPT'. Thus, the total weight of .J is at most > ., c. OPT. The latter
quantity is bounded as follows. By Corollary 13, >, w*(e) > >, w(e)/W/3. Since
all edges in O are overloaded, > ., w(e) > >, ¢ W*? OPT. Thus, we have

Zce OPT <W = Zw*(e).

ecO eck

12

Figure 3: A bad scenario for virtual circuit routing.

On the other hand,) _pw*(e) < > . cpccOPT = W OPT cpy,. Combining with
the previous inequality, we have Y _,c, OPT < W?3 OPT c¢,y,. Therefore, the to-
tal weight of J is at most W23 OPT cpin.

According to the priority of path assignment, VC-ROUTING assigns requests in J3(e,)
to overloaded paths in Short with maximum windfall time. Therefore, the off-line algo-
rithm must assign requests in J3(e,) to paths which are overloaded at ¢ (as defined in
VC-ROUTING); otherwise, VC-ROUTING would assign the requests to those paths in-
stead of the assigned overloaded paths that contain e,. As a result, the total weight of re-
quests in J3(e,) is no greater than the total weight of .JJ, which is at most W?2/3 OPT cpin.
The lemma follows. O

Theorem 15. With VC-ROUTING, the load of any edge at any time is at most (3W?2/3+
1)OPT. Thus VC-ROUTING is (3W?2/3 + 1)-competitive.

Proof. The theorem holds for those edges that are not overloaded. Consider any over-
loaded edge e,. The total weight of requests assigned to e, before its windfall time
is at most W3¢, OPT. The weight of the request making it overloaded is no more
than c,, OPT. Thus the total weight of requests in J,(e,) is at most (W?2/3 +1)c., OPT.
Together with Lemmas 11 and 14, the total weight of requests assigned to e, is bounded
by (W23 4+ 1)OPT co, + 2W?/3OPT cpin. Since ¢, > Cmin, the load of e, is at most
(3W?23 +1)OPT and the theorem follows. 0O

4.2 Lower bound

We show an Q(y/m) lower bound on the competitive ratio of any on-line algorithm for
the virtual circuit routing problem.

Lemma 16. No on-line algorithm for the virtual circuit routing problem is (/m/3—1)-
competitive. This is true even if all edges have the same capacity and all requests have
the same weight.

Proof. Consider the graph in Figure 3, which has 47 nodes and 3r%2 + r edges with
identical capacity. The set of source nodes and the set of destination nodes form a

13

complete bipartite graph. Each of the two sets form a bipartite graph with a distinct set
of r intermediate nodes. The two sets of intermediate nodes form a bipartite matching.
Let E’ be the set of edges connecting the intermediate nodes.

We construct a sequence of requests with 72 phases so that any on-line algorithm
assigns at least r requests to one of the edges. In each phase, r requests of unit weight
are released with a distinct pair of source and destination. If the on-line algorithm
assigns all these requests to the edge connecting the source and the destination, we are
done. Otherwise, at least one of these requests is assigned to a path containing an edge
in E'. At the end of this phase, all requests except this one terminate. After 72 phases,
r? requests remain, each increases the load of one of the edges in E’. Since there are r
edges sharing the load, at least one of them has a load of r.

On the other hand, in an off-line assignment, a request is assigned to the edge
connecting the source and the destination involved only if it never terminates. The

maximum load is 1 at all time. So the on-line algorithm is no better than r-competitive.
Since r > y/m/3 — 1, the lemma follows. O

Using the same argument in Lemma 5, the adversary in Lemma 16 can be converted
to an oblivious adversary for any randomized algorithm and we have the following corol-
lary.

Corollary 17. No randomized on-line algorithm for the virtual circuit routing problem
is (v/m/12 —1/2)-competitive. This is true even if all edges have the same capacity and
all requests have the same weight.

5 Open problems

This paper leaves several open problems. In Section 3, we give an O(\/f)-competitive
algorithm for the cluster-based load balancing problem where K is the total normalized
number of machines. Note that K can be much larger than £, the total number of
clusters. Thus, it is desirable to design algorithm whose competitive ratio depends only
on k. As a first step, we give an O(v/k)-competitive algorithm for the problem when
the clusters form a tree of two levels. We conjecture that O(v/k)-competitive algorithm
exists for general trees. In Section 4, we give an O(W?/3)-competitive algorithm for the
virtual circuit routing problem where W is the total normalized edge capacity. Also, we
derive an Q(y/m) lower bound on the competitive ratio where m is the total number of
edges. Note that an Q(v/W) lower bound follows immediately. An open problem is to
close the gap between the O(W?/3) upper bound and the Q(v/W) lower bound.

Due to practical motivation, we think it is interesting to investigate the variants of
the load balancing problem in which the execution of jobs can be delayed. On the other
hand, measuring on-line algorithms with respect to their maximum load might not be
accurate enough in some cases. It might be desirable to also measure, say, the amount
of time when the load of the machines are close to their maximum.

14

References

1]

2]

3]

4]
15]
(6]
7]
18]
19]

[10]

11
12)
13]
14
[15)

[16]

[17]

[18]
[19]

M. Andrews, M. X. Goemans, and L. Zhang. Improved bounds for on-line load balanc-
ing. In Proceedings of the Second Annual International Computing and Combinatorics
Conference, pages 1-10, 1996.

J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual cir-
cuits with applications to load balancing and machine scheduling. Journal of the ACM,
44(3):486-504, 1997.

B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtual circuits
with unknown duration. In Proceedings of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 321-327, 1994.

Y. Azar. On-line load balancing. In A. Fiat and G. J. Woeginger, editors, Online Algo-
rithms: The State of the Art, LNCS 1442, Springer, pages 178-195, 1998.

Y. Azar, A. Z. Broder, and A. R. Karlin. On-line load balancing. In Proceedings of the
33rd Annual Symposium on Foundations of Computer Science, pages 218-225, 1992.

Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical machines.
In 5th Israeli Symposium on Theory of Computing and Systems, pages 119-125, 1997.

Y. Azar, B. Kalyanasundaram, S. Plotkin, K. R. Pruhs, and O. Waarts. On-line load
balancing of temporary tasks. Journal of Algorithms, 22:93-110, 1997.

Y. Azar, J. S. Naor, and R. Rom. Competitiveness of on-line assignments. Journal of
Algorithms, 18:221-237, 1995.

Y. Azar and O. Regev. Off-line temporary tasks assignment. In Proceedings of the Seventh
Annual European Symposium on Algorithm, pages 161-171, 1999.

A. Bar-Noy, A. Freund, and J. Naor. Online load balancing in a hierarchical server topol-
ogy. In Proceedings of the Seventh Annual European Symposium on Algorithm, pages
77-88, 1999.

P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines.
In Workshop on Algorithms and Data Structures, pages 116-125, 1997.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on
Computing, 9(1):91-103, 1980.

G. Galambos and B. J. Woeginger. An on-line scheduling heuristic with better worst case
ratio than Graham’s list scheduling. SIAM Journal on Computing, 22(2):349-355, 1993.

R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45:1563-1581, 1966.

S. Irani and A. R. Karlin. Online computation. In D. Hochbaum, editor, Approzimation
Algorithms for NP-hard problems, PWS Publishing Company, chapter 13.6, pages 550-555,
1997.

Y. Ma and S. Plotkin. An improved lower bound for load balancing of tasks with unknown
duration. Information Processing Letters, 62(6):301-303, 1997.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

S. Phillips and J. Westbrook. Online load balancing and network flow. In Proceedings of
the Twenty-Fifth Annual Symposium on Theory of Computing, pages 402—411, 1993.

15

