COMP108 Algorithmic Foundations — Background Survey

Nam	e:
1.	Are you interested in solving puzzles like the one given at the beginning of the lecture? Very interested / A little bit interested / Not interested
2.	Do you remember what the function \sqrt{n} means? YES / NO
	Do you remember what the function $\log_2 n$ means? YES / NO
	\sqrt{n} is the inverse of square: if $y=x^2$, then $x=\sqrt{y}$; e.g., $5=\sqrt{25}$ because $25=5^2$. $\log_2 n$ is the inverse of power of 2: if $a=2^b$, then $b=\log_2 a$; e.g., $5=\log_2 32$ because $32=2^5$.
3.	What is the value of $\sqrt{64}$? $\log_2 64$?
4.	Do you remember how to expand a polynomial, e.g., $(x+1)(x+2)$? YES / NO
	Do you know how to factorize a polynomial, e.g., $x^2 + 3x + 2$? YES / NO
	Expanding a polynomial in x , say $(ax+b)(cx+d)$, is to express it in an expanded form without brackets, $(ax+b)(cx+d) = acx^2 + adx + bcx + bd = acx + (ad+bc)x + bd$. For example, expanding $(x+1)(x+2)$ gives $x^2 + 2x + x + 2 = x^2 + 3x + 2$.
	Factorizing is the reverse process of expansion, factorizing $acx^2 + (ad + bc)x + bd$ gives $(ax + b)(cx + d)$. For example, factorizing $x^2 + 3x + 2$ gives $(x + 1)(x + 2)$.
5.	Try to expand the expression $(x+2)(x+3)$:
	Try to factorize the polynomial $x^2 + 5x + 6$:
6.	Have you learned Mathematical Induction (or Induction simply) before? $\bf YES$ / $\bf NO$
7.	Have you heard of the term \mathbf{pseudo} \mathbf{code} before this lecture? \mathbf{YES} / \mathbf{NO}
8.	Try to complete the following while-loop to print the value of $2*i$ in each iteration up to 20. In other words, your code should output 2, 4, 6, 8, 10, 12, 14, 16, 18, 20.
	$i = \underline{\hspace{1cm}}$
	while () do
	begin
	print
	$i = \underline{\hspace{1cm}}$
	end