COMP108 Algorithmic Foundations - Background Survey

Name: \qquad

1. Are you interested in solving puzzles like the one given at the beginning of the lecture?

Very interested / A little bit interested / Not interested
2. Do you remember what the function \sqrt{n} means? YES / NO

Do you remember what the function $\log _{2} \boldsymbol{n}$ means? YES / NO
\sqrt{n} is the inverse of square: if $y=x^{2}$, then $x=\sqrt{y}$; e.g., $5=\sqrt{25}$ because $25=5^{2}$.
$\log _{2} n$ is the inverse of power of 2: if $a=2^{b}$, then $b=\log _{2} a$; e.g., $5=\log _{2} 32$ because $32=2^{5}$.
3. What is the value of $\sqrt{64}$? \qquad $\log _{2} 64 ?$ \qquad
4. Do you remember how to expand a polynomial, e.g., $(x+1)(x+2)$? YES / NO

Do you know how to factorize a polynomial, e.g., $x^{2}+3 x+2$? YES / NO
Expanding a polynomial in x, say $(a x+b)(c x+d)$, is to express it in an expanded form without brackets, $(a x+b)(c x+d)=a c x^{2}+a d x+b c x+b d=a c x+(a d+b c) x+b d$. For example, expanding $(x+1)(x+2)$ gives $x^{2}+2 x+x+2=x^{2}+3 x+2$.
Factorizing is the reverse process of expansion, factorizing $a c x^{2}+(a d+b c) x+b d$ gives $(a x+$ $b)(c x+d)$. For example, factorizing $x^{2}+3 x+2$ gives $(x+1)(x+2)$.
5. Try to expand the expression $(x+2)(x+3)$: \qquad

Try to factorize the polynomial $x^{2}+5 x+6$: \qquad
6. Have you learned Mathematical Induction (or Induction simply) before? YES / NO
7. Have you heard of the term pseudo code before this lecture? YES / NO
8. Try to complete the following while-loop to print the value of $2 * i$ in each iteration up to 20 . In other words, your code should output $2,4,6,8,10,12,14,16,18,20$.

```
i=
```

\qquad

```
while
``` \(\qquad\)
``` ) do
begin
print
```

\qquad

```
\[
i=
\]
```

\qquad

```
end
```

