## COMP108 Algorithmic Foundations

 Searching
## Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

## Searching

> Input: $n$ numbers $a_{1}, a_{2}, \ldots, a_{n}$; and a number $X$
$>$ Output: determine if $X$ is in the sequence or not
> Algorithm (Sequential search):

1. From $i=1$, compare $X$ with $a_{i}$ one by one as long as $i<=n$.
2. Stop and report "Found!" when $X=a_{i}$.
3. Repeat and report "Not Found!" when $i>n$.

## Sequential Search



$$
\begin{array}{lllllll}
> & \begin{array}{lllll}
12 & 34 & 2 & 9 & 7
\end{array} & 5 \longleftarrow \text { six numbers } \\
& & & & \text { number } X
\end{array}
$$

$$
\begin{array}{lllllll}
>12 & 34 & 2 & 9 & 7 & 5 \\
& 7 & & & & & \\
>12 & 34 & 2 & 9 & 7 & 5 & \\
& & 7 & & & & \\
>12 & 34 & 2 & 9 & 7 & 5 & \\
& & & 7 & & & \\
>12 & 34 & 2 & 9 & 7 & 5 & \text { found! }
\end{array}
$$

## Sequential Search (2)

$$
\begin{array}{llllll}
> & 12 \\
10 & 34 & 2 & 9 & 7 & 5
\end{array}
$$

$\begin{array}{ll}>12 & 34 \\ & 10\end{array}$

$$
\begin{array}{llllll}
>12 & 34 & 2 & 9 & 7 & 5 \\
\hline
\end{array}
$$

$$
\begin{array}{llllll}
>12 & 34 & 2 & 9 & 7 & 5 \\
10 & &
\end{array}
$$

$$
\begin{array}{llllll}
>12 & 34 & 2 & 9 & 7 & 5
\end{array}
$$

$$
\begin{array}{llllll} 
& & & & 10 & \\
>12 & 34 & 2 & 9 & 7 & 5
\end{array}
$$

## Pseudo Code - Ideas

```
i = ? boolean found to indicate whether }X\mathrm{ is found
found = ?
while i <= ? && found == ? do
begin
    /* check whether the i-th entry of
    the array equals X and set found
    accordingly */
    i = i+1
end
if found==true then
    report "Found!"
else report "Not Found!"
```


## Pseudo Code

```
i = 1
found = false
while i <= n && found == false do
begin
    if X == a[i] then
    found = true
    else
    i = i+1
end
if found==true then
    report "Found!"
else report "Not Found!"
```


## Number of comparisons?

$i=1$
found = false
while i<=n \&\& found==false do
begin

$$
\begin{aligned}
& \text { if } X==a[i] \text { then } \\
& \text { found = true } \\
& \text { else } \\
& \quad i=i+1
\end{aligned}
$$

end

How many comparisons this algorithm requires?

Best case: $X$ is $1 s \dagger$ no. $\Rightarrow 1$ comparison

Wors $\dagger$ case: $X$ is las $\dagger$
OR $X$ is not found $\Rightarrow$ n comparisons

# Finding maximum / minimum... 

$2^{\text {nd }} \max / \min$...

## Finding max from $\mathrm{n}+\mathrm{ve}$ numbers

input: $a[1], a[2], \ldots, a[n]$
i $=1$
$\mathrm{M}=0$
while (i <= n) do begin

$$
\text { if } a[i]>M \text { then }
$$

$$
M=a[i]
$$

$$
i=i+1
$$

end
output M


## Skeleton is the same as before:

i $=1$
while (i <= n) do begin

$$
i=i+1
$$

end

## Finding min from $\mathrm{n}+\mathrm{ve}$ numbers

input: $a[1], a[2], \ldots, a[n]$
$i=1$
$M=a[1]$
while (i <= n) do
begin
if $a[i]<M$ then
$\mathrm{M}=\mathrm{a}[\mathrm{i}]$
$i=i+1$
end
output M


## Finding location of minimum

input: $a[1], a[2], \ldots, a[n]$
loc $=1$ // location of the min number
i $=2$
while ( $i<=n$ ) do Example begin

$$
\begin{aligned}
& \qquad \text { if (a[i] <a[loc]) then } \\
& \qquad \quad \text { loc }=i \\
& \text { i }=i+1 \\
& \text { end } \\
& \text { output } a[l o c]
\end{aligned}
$$

end

$$
a[1 . .5]=\{50,30,40,20,10\}
$$

| (@ end of) <br> Iteration | loc | $a[l o c]$ | $i$ |
| :---: | :---: | :---: | :---: |
|  | 1 | 50 | 2 |
| 1 | 2 | 30 | 3 |
| 2 | 2 | 30 | 4 |
| 3 | 4 | 20 | 5 |
| 4 | 5 | 10 | 6 |
| (Searching) |  |  |  |

## Finding $1^{\text {st }}$ and $2^{\text {nd }}$ min <br> for simplicity, assume function $\min ()$ and $\max ()$ <br> input: a[1], a[2], ..., $a[n]$

$\mathrm{M} 1=\min (\mathrm{a}[1], \mathrm{a}[2])$
ML $=\max (a[1], a[2])$
$i=3$
while (i $<=$ n) do begin

Two variables: M1, M2
// how to update M1 \& M2?

$$
i=i+1
$$

end output M1, M2


## Finding $1^{\text {st }}$ and $2^{\text {nd }} \min$ for simplicity, assume function $\min ()$ and $\max ()$

 input: a[1], a[2], ..., $a[n]$```
M1 = min(a[1], a[2])
M2 = max(a[1], a[2])
```

i $=3$
while (i <= n) do
begin
if (a[i] < M1) then
M2 = M1, M1 = a[i]
else if (a[i] < M2) then
M2 = a[i]
$i=i+1$
end
output M1, M2


