
Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Searching

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617



Algorithmic Foundations
COMP108

Searching
�Input: n numbers a1, a2, …, an; and a number X

�Output: determine if X is in the sequence or not

�Algorithm (Sequential search):

1. From i=1, compare X with ai one by one as long as i <= n.

2. Stop and report "Found!" when X = ai .

3. Repeat and report "Not Found!" when i > n.

2

(Searching)



Algorithmic Foundations
COMP108

Sequential Search

� 12 34 2 9 7 5 six numbers
7 number X

� 12 34 2 9 7 5
7

� 12 34 2 9 7 5
7

� 12 34 2 9 7 5
7

� 12 34 2 9 7 5
7 found!

To find 7

3

(Searching)



Algorithmic Foundations
COMP108

Sequential Search (2)
� 12 34 2 9 7 5

10

� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10

� 12 34 2 9 7 5
10 not found!

To find 10

4

(Searching)



Algorithmic Foundations
COMP108

Pseudo Code - Ideas
i = ?

found = ?

while i <= ? && found == ? do

begin 

/* check whether the i-th entry of 

the array equals X and set found 

accordingly */

i = i+1

end

if found==true then

report "Found!"

else report "Not Found!"
5

(Searching)

variable i to step through the array
boolean found to indicate whether X is found



Algorithmic Foundations
COMP108

Pseudo Code
i = 1

found = false

while i <= n && found == false do

begin 

if X == a[i] then

found = true

else

i = i+1

end

if found==true then

report "Found!"

else report "Not Found!"
6

(Searching)



Algorithmic Foundations
COMP108

Number of comparisons?
i = 1

found = false

while i<=n && found==false do

begin

if X == a[i] then

found = true

else

i = i+1

end

Best case: X is 1st no. 
⇒ 1 comparison

Worst case: X is last 
OR X is not found 
⇒ n comparisons

7

(Searching)

How many comparisons 
this algorithm requires?



Algorithmic Foundations
COMP108

Finding maximum / 
minimum...

2nd max / min…



Algorithmic Foundations
COMP108

9

(Searching)

Finding max from n +ve numbers
input: a[1], a[2], ..., a[n]

i = 1

M = 0

while (i <= n) do

begin

if a[i] > M then

M = a[i]

i = i + 1

end

output M

What about minimum?

Skeleton is the same as before:
i = 1

while (i <= n) do

begin

i = i + 1

end



Algorithmic Foundations
COMP108

10

(Searching)

Finding min from n +ve numbers
input: a[1], a[2], ..., a[n]

i = 1

M = a[1]

while (i <= n) do

begin

if a[i] < M then

M = a[i]

i = i + 1

end

output M

How many comparisons?



Algorithmic Foundations
COMP108

11

(Searching)

Finding location of minimum
input: a[1], a[2], ..., a[n]

loc = 1 // location of the min number

i = 2

while (i <= n) do

begin

if (a[i] < a[loc]) then

loc = i

i = i + 1

end

output a[loc]

(@ end of) 

Iteration
loc a[loc] i

1

2

3

4

Example

a[1..5]={50,30,40,20,10}

50

30

30

20

10

1

2

2

4

5

2

3

4

5

6



Algorithmic Foundations
COMP108

12

(Searching)

Finding 1st and 2nd min
input: a[1], a[2], ..., a[n]

M1 = min(a[1], a[2])

M2 = max(a[1], a[2])

i = 3

while (i <= n) do

begin

// how to update M1 & M2?

i = i + 1

end

output M1, M2

Two variables: M1, M2

for simplicity, assume 
function min() and max()

M1 M2

a[i]3 cases:



Algorithmic Foundations
COMP108

13

(Searching)

Finding 1st and 2nd min
input: a[1], a[2], ..., a[n]

M1 = min(a[1], a[2])

M2 = max(a[1], a[2])

i = 3

while (i <= n) do

begin

if (a[i] < M1) then

M2 = M1, M1 = a[i]

else if (a[i] < M2) then

M2 = a[i]

i = i + 1

end

output M1, M2

for simplicity, assume 
function min() and max()

M1 M2

a[i]


