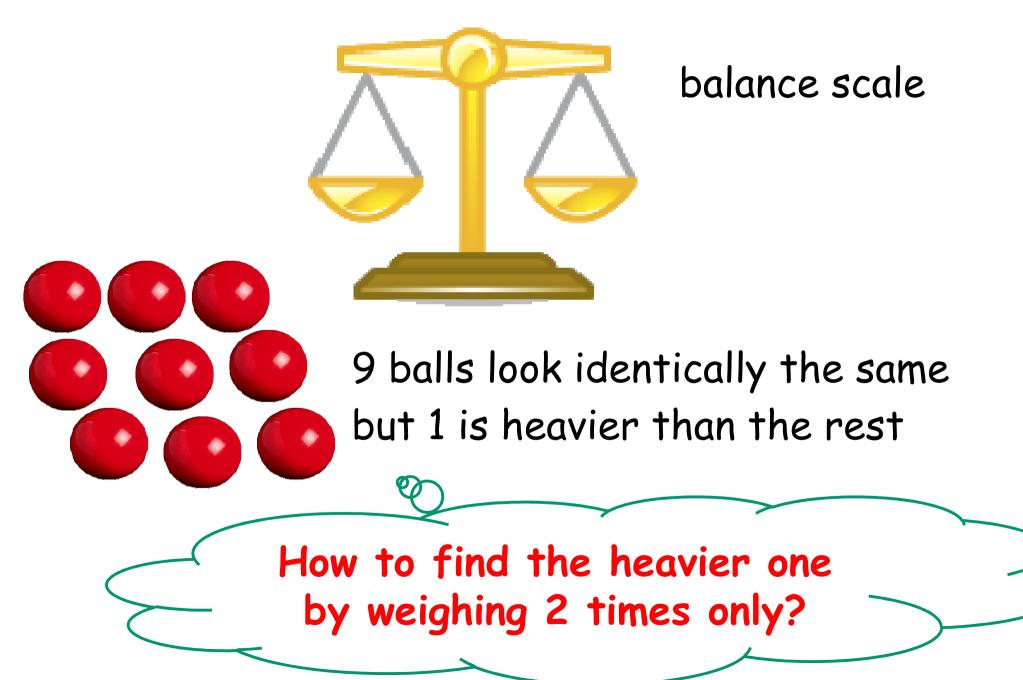
COMP108 Algorithmic Foundations

Mathematical Induction

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

Which Ball is Heavier?



Learning outcomes

- > Understand the concept of Induction
- > Able to prove by Induction

Analysis of Algorithms

After designing an algorithm, we analyze it.

- Proof of correctness: show that the algorithm gives the desired result
- Time complexity analysis: find out how fast the algorithm runs
- Space complexity analysis: find out how much memory space the algorithm requires
- Look for improvement: can we improve the algorithm to run faster or use less memory? is it best possible?

A typical analysis technique Induction

- > technique to prove that a property holds for all natural numbers (or for all members of an infinite sequence)
- E.g., To prove $1+2+...+n = n(n+1)/2 \forall +ve$ integers n

n	LHS	RHS	LHS = RHS?
1	1	1*2/2 = 1	•
2	1+2 = 3	2*3/2 = 3	•
3	1+2+3 = 6	3*4/2 = 6	•

- However, this isn't a proof and we cannot enumerate over all possible numbers.
- \Rightarrow Induction

Intuition – Long Row of Dominoes

- > How can we be sure each domino will fall?
- > Enough to ensure the 1^{st} domino will fall?

> No. Two dominoes somewhere may not be spaced properly

> Enough to ensure all are spaced properly?

> No. We need the 1^{s+} to fall

Both conditions required:

- > $1^{s^{\dagger}}$ will fall; & after the kth fall, k+1st will also fall
- > then even infinitely long, all will fall

Induction

To prove that a property holds for every positive integer n

Two steps

- Base case: Prove that the property holds for n = 1
- Induction step: Prove that if the property holds for n = k (for some positive integer k), then the property holds for n = k + 1
- Conclusion: The property holds for every positive integer n

Example

To prove: $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$ $\forall +ve \text{ integers } n$

- Base case: When n=1 (LHS=1, RHS= ^{1×2}/₂ = 1. So, the property holds for n=1.
- > Induction hypothesis:

Assume that the property holds when n=k for some integer $k\ge 1$.

• i.e., assume that $1 + 2 + 3 + ... + k = \frac{k(k+1)}{2}$

> Induction step: When n=k+1, LHS becomes 1 + 2 + 3 + ... + k + (k+1)RHS becomes $\frac{(k+1)((k+1)+1)}{2}$

 \therefore we want to prove

$$1 + 2 + 3 + \dots + k + (k + 1) = \frac{(k + 1)(k + 2)}{2}$$

Induction hypothesis $1+2+...+k = \frac{k(k+1)}{2}$

Target: to prove
$$1+2+...+k+(k+1) = \frac{(k+1)(k+2)}{2}$$

Induction Step: When n=k+1

> LHS =
$$\frac{1+2+...+k+(k+1)}{2}$$

= $\frac{k(k+1)}{2} + (k+1)$
 $(k+1)(\frac{k}{2}+1)$
= $\frac{(k+1)(k+2)}{2}$
= RHS

> So, property also holds for n=k+1

> Conclusion: property holds for all +ve integers n

Conclusion

We have proved

- 1. property holds for n=1
- 2. if property holds for n=k, then also holds for n=k+1

In other words,

- > holds for n=1 implies holds for n=2 (induction step)
- > holds for n=2 implies holds for n=3 (induction step)
- > holds for n=3 implies holds for n=4 (induction step)

> and so on

By principle of induction: holds for all +ve integers n

Example 2

To prove n^3+2n is divisible by 3 \forall integers $n \ge 1$

n	n ³ +2n	divisible by 3?
1	1+2 = 3	<u>.</u>
2	8+4 = 12	٢
3	27+6 = 33	٢
4	64+8 = 72	٢

Prove it by induction...

11

(Induction)

Example 2

To prove n^3+2n is divisible by 3 \forall integers $n \ge 1$

- Base case: When n=1, n³+2n=1+2=3, divisible by 3. So property holds for n=1.
- Induction hypothesis: Assume property holds for n=k, for some +ve int k, i.e., assume k³+2k is divisible by 3
- Induction step: When n=k+1, LHS becomes (k+1)³ + 2(k+1)

Target: to prove (k+1)³+2(k+1) is divisible by 3

Induction hypothesis k³+2k is divisible by 3

>Induction step: When n=k+1,

>
$$(k+1)^3+2(k+1) = (k^2+2k+1)(k+1) + (2k+2)$$

$$= (k^{3}+3k^{2}+3k+1) + (2k+2)$$

= (k^{3}+2k) + 3(k^{2}+k+1)

sum is divisible by 3

by hypothesis, divisible by 3 divisible by 3

>Property holds for n=k+1

> By principle of induction: property holds \forall integers n ≥ 1

13

Example 3 Factorial: $n! = n(n-1)(n-2) \dots *2*1$

To prove $2^n < n! \forall$ +ve integers $n \ge 4$.

n	2 ⁿ	n!	LHS < RHS?
1	2	1	%
2	4	2	۶
3	8	6	%
4	16	24	٢
5	32	120	٢
6	64	720	٢

Prove it by induction...

14

Algorithmic Foundations

Example 3 $n! = n(n-1)(n-2) \dots *2*1$ To prove $2^n < n! \forall +ve integers n \ge 4$.

- Base case: When n=4, LHS = 2⁴ = 16, RHS = 4! = 4*3*2*1 = 24, LHS < RHS So, property holds for n=4
- > Induction hypothesis: Assume property holds for n=k for some integer k ≥ 4, i.e., assume 2^k < k!</p>
- Induction step: When n=k+1, LHS becomes 2^{k+1}, RHS becomes (k+1)!

Induction hypothesis 2^k < k!

Target: to prove $2^{k+1} < (k+1)!$

> Induction step: When n=k+1,
> LHS = 2^{k+1} = 2^{*}2^k < 2^{*}k! ← by hypothesis, 2^k < k!
> RHS = (k+1)! = (k+1)*k! > 2^{*}k! > LHS ← because k+1>2
> So, property holds for n=k+1
> By principle of induction: property holds ∀ +ve integers n≥4

Example 3

Why base case is n=4? When n=1, $2^{1}=2$, 1!=1 2²=4, 2!=2 When n=2, When n=3, $2^{3}=8$, 3!=6 Property does not hold for n=1, 2, 3

Challenges ...

Exercise

To prove $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6} \forall$ +ve int n ≥ 1.

n	LHS	RHS	LHS = RHS?
1	1	1*2*3/6 = 1	<u>.</u>
2	1+4 = 5	2*3*5/6 = 5	٢
3	1+4+9 = 14	3*4*7/6 = 14	٢
4	1+4+9+16 = 30	4*5*9/6 =30	<u>.</u>
5	1+4+9+16+25 = 55	5*6*11/6 = 55	<u>.</u>

Prove it by induction...

19

Exercise

- To prove $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$ > Base case: when n=1, LHS = $1^2 = 1$, RHS = $\frac{1 \times 2 \times 3}{6} = 1$ =LHS
- > Induction hypothesis: Assume property holds for n=k
 - > i.e., assume that $1^2 + 2^2 + 3^2 + ... + k^2 = \frac{k(k+1)(2k+1)}{6}$
- > Induction step: When n=k+1,
 - LHS becomes $1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2$ RHS becomes $\frac{(k+1)(k+2)(2k+3)}{6}$
 - Target is to prove

 $1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$

work on LHS & work on RHS and show that they reach the same expression

Induction hypothesis: $1^2 + 2^2 + 3^2 + ... + k^2 = \frac{k(k+1)(2k+1)}{6}$ Target: to prove $1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6}$ Induction Step: When n = k+1

LHS = $1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2$ \leftarrow by hypothesis

Exercise 2

Prove that $1+3+5+...+(2n-1) = n^2 \forall +ve integers \ge 1$

(sum of the *first n odd integers* equals to n^2)

n	LHS	RHS	LHS = RHS?
1	1	1 ² = 1	٢
2	1+3 = 4	2 ² = 4	٢
3	1+3+5 = 9	3 ² = 9	٢
4	1+3+5+7 = 16	4 ² =16	٢
5	1+3+5+7+9 = 25	5 ² = 25	٢

Prove it by induction...

22

Exercise 2

Prove that $1+3+5+...+(2n-1) = n^2 \forall +ve integers \ge 1$

- Base case: When n=1, LHS=2*1-1=1, RHS=1²=1
- Induction hypothesis: Assume property holds for some integer k, i.e., assume 1+3+5+...+(2k-1)=k²
- Induction step: When n=k+1, LHS becomes 1+3+5+...+(2(k+1)-1) RHS becomes (k+1)²

Target: to prove 1+3+5+...+(2k-1)+(2(k+1)-1))=(k+1)²

Induction hypothesis: $1+3+5+...+(2k-1) = k^2$

Target: to prove $1+3+5+...+(2k-1)+(2(k+1)-1))=(k+1)^2$

Induction step: When n=k+1, LHS = 1+3+5+...+(2k-1)+(2(k+1)-1)

RHS = $(k+1)^2 = k^2+2k+1 = LHS$

Therefore, property holds for n=k+1

By principle of induction, property holds for all +ve integers

24

More advanced ...

Note

- The <u>induction step</u> means that if property holds for some integer k, then it also holds for k+1.
- It does <u>NOT</u> mean that the property must hold for k nor for k+1.
- Therefore, we <u>MUST</u> prove that property holds for some starting integer n_0 , which is the <u>base</u> <u>case</u>.

Missing the base case will make the proof fail.

What's wrong with this?

Claim: For all n, n=n+1

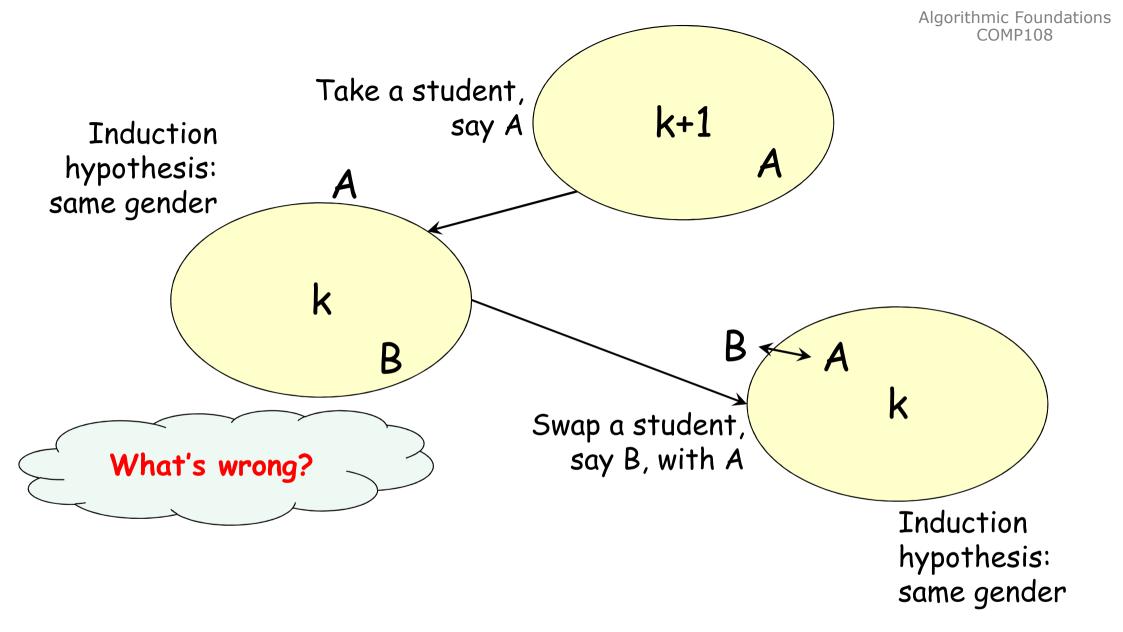
- > Assume the property holds for n=k, i.e., assume k = k+1
- > Induction Step:
 - > Add 1 to both sides of the induction hypothesis
 - > We get: k+1 = (k+1)+1, i.e., k+1 = k+2
- > The property holds for n=k+1

BUT, we know this isn't true, what's wrong?

What about this?

Claim: All comp108 students are of the same gender

- Base case: Consider any group of ONE comp108 student. Same gender, of course.
- Induction hypothesis: Assume that any group of k comp108 students are of same gender
- Induction step: Consider any group of k+1 comp108 students...



So, A, B & other (k-1) students are of the same gender

29

(Induction)

Recall: Finding minimum

Consider at the end of the statement **

```
Base case: When i=1, M is min(a[1])
```

Induction hypothesis: Assume the property holds when i=k for some k≥1.

```
Induction step: When i=k+1,
```

- If a[k+1] < min(a[1],...,a[k]), M is set to a[k+1], i.e., min(a[1],...,a[k+1]),
- Else, a[k+1] is not min,
 M is unchanged & M equals min(a[1],...,a[k+1])

Property: After each iteration of statement **,
 the value of M is min(a[1], ..., a[i])