
Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Algorithm efficiency

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

Algorithmic Foundations
COMP108

2

(Efficiency)

Learning outcomes

� Able to carry out simple asymptotic analysis of
algorithms

Algorithmic Foundations
COMP108

3

(Efficiency)

Time Complexity Analysis

How fast is the algorithm?

Code the algorithm and run the program,
then measure the running time

1. Depend on the speed of the computer

2. Waste time coding and testing if the
algorithm is slow

Identify some important operations/steps
and count how many times these
operations/steps needed to be executed

Algorithmic Foundations
COMP108

4

(Efficiency)

Time Complexity Analysis

How to measure efficiency?

� If we doubled/trebled the input size, how much
longer would the algorithm take?

Number of operations usually expressed in
terms of input size

Algorithmic Foundations
COMP108

5

(Efficiency)

Why efficiency matters?

� speed of computation by hardware has been
improved

� efficiency still matters

� ambition for computer applications grow with
computer power

� demand a great increase in speed of computation

Algorithmic Foundations
COMP108

Amount of data handled matches
speed increase?

6

(Efficiency)

When computation speed vastly increased,
can we handle much more data?

Suppose
• an algorithm takes n2 comparisons to sort n numbers

• we need 1 sec to sort 5 numbers (25 comparisons)

• computing speed increases by factor of 100

Using 1 sec, we can now perform 100x25
comparisons, i.e., to sort 50 numbers

With 100 times speedup, only sort 10 times more numbers!

Algorithmic Foundations
COMP108

7

(Efficiency)

Time/Space Complexity Analysis
sum = 0, i = 1
while i<=n do
begin

sum = sum + i
i = i + 1

end
output sum

Important operation of
summation: addition

How many additions this
algorithm requires?

We need n additions
(depend on the input size n)

We need 3 variables n, sum, & i
⇒ needs 3 memory space

In other cases, space complexity may
depend on the input size n

Algorithmic Foundations
COMP108

8

(Efficiency)

Look for improvement

sum = n*(n+1)/2
output sum

Mathematical formula gives us an
alternative way to find the sum of
first n integers:

1 + 2 + ... + n = n(n+1)/2

We only need 3 operations:

1 addition, 1 multiplication, and 1 division

(no matter what the input size n is)

Algorithmic Foundations
COMP108

9

(Efficiency)

Improve Searching

We've learnt sequential search and it
takes n comparisons in the worst case.

If the numbers are pre-sorted, then we
can improve the time complexity of
searching by binary search.

Algorithmic Foundations
COMP108

10

(Efficiency)

Binary Search

more efficient way of searching when the sequence
of numbers is pre-sorted

Input: a sequence of n sorted numbers a1, a2, …, an

in ascending order and a number X

Idea of algorithm:

� compare X with number in the middle

� then focus on only the first half or the second half
(depend on whether X is smaller or greater than the
middle number)

� reduce the amount of numbers to be searched by half

Algorithmic Foundations
COMP108

11

(Efficiency)

Binary Search (2)

3 7 11 12 15 19 24 33 41 55 10 nos

24 X

19 24 33 41 55
24

19 24
24

24
24 found!

To find 24

Algorithmic Foundations
COMP108

12

(Efficiency)

Binary Search (3)

3 7 11 12 15 19 24 33 41 55 10 nos

30 X

19 24 33 41 55
30

19 24
30

24
30 not found!

To find 30

Algorithmic Foundations
COMP108

13

(Efficiency)

Binary Search – Pseudo Code
first = 1

last = n

found = false

while (first <= last && found == false) do

begin

// check with no. in middle

end

if (found == true)

report "Found!"

else report "Not Found!"

  is the floor function,
truncates the decimal part

Algorithmic Foundations
COMP108

14

(Efficiency)

Binary Search – Pseudo Code
first = 1, last = n, found = false

while (first <= last && found == false) do

begin

mid = (first+last)/2
if (X == a[mid])

found = true

else

if (X < a[mid])

last = mid-1

else first = mid+1

end

if (found == true)

report "Found!"

else report "Not Found!"

Algorithmic Foundations
COMP108

15

(Efficiency)

Number of Comparisons
Best case:

X is the number in the middle
⇒ 1 comparison

Worst case:

at most log2n+1 comparisons

Why?

Every comparison reduces the
amount of numbers by at least half

E.g., 16 ⇒ 8 ⇒ 4 ⇒ 2 ⇒ 1

first=1, last=n

found=false

while (first <= last &&

found == false) do

begin

mid = (first+last)/2
if (X == a[mid])

found = true

else

if (X < a[mid])

last = mid-1

else

first = mid+1

end

if (found == true)

report "Found"

else report "Not Found!"

Algorithmic Foundations
COMP108

Time complexity
- Big O notation …

Algorithmic Foundations
COMP108

Logarithm is the inverse of the power function

log2 2x = x

For example,

log2 1 = log2 20 = 0

log2 2 = log2 21 = 1

log2 4 = log2 22 = 2

log2 16 = log2 24 = 4

log2 256 = log2 28 = 8

log2 1024 = log2 210 = 10

Note on Logarithm

17

(Efficiency)

log2 x*y = log2 x + log2 y

log2 4*8 = log2 4 + log2 8 = 2+3 = 5

log2 16*16 = log2 16 + log2 16 = 8

log2 x/y = log2 x - log2 y

log2 32/8 = log2 32 - log2 8 = 5-3 = 2

log2 1/4 = log2 1 - log2 4 = 0-2 = -2

Algorithmic Foundations
COMP108

18

(Efficiency)

Which algorithm is the fastest?
Consider a problem that can be solved by 5 algorithms
A1, A2, A3, A4, A5 using different number of operations
(time complexity).

f1(n) = 50n + 20 f2(n) = 10 n log2 n + 100

f3(n) = n2 - 3n + 6 f4(n) = 2n2

f5(n) f3(n) f1(n)

Depends on the size of the input!

n 1 2 4 8 16 32 64 128 256 512 1024 2048

f1(n) = 50n + 20 70 120 220 420 820 1620 3220 6420 12820 25620 51220 102420

f2(n) = 10 n log2n + 100 100 120 180 340 740 1700 3940 9060 20580 46180 102500 225380

f3(n) = n2 - 3n + 6 4 4 10 46 214 934 3910 16006 64774 3E+05 1E+06 4E+06

f4(n) = 2n2 2 8 32 128 512 2048 8192 32768 131072 5E+05 2E+06 8E+06

f5(n) = 2n/8 - n/4 + 2 2 2 3 32 8190 5E+08 2E+18

f5(n) = 2n/8 - n/4 + 2

Quickest:

Algorithmic Foundations
COMP108

19

(Efficiency)

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

n

T
im

e

f1(n) = 50n + 20

f2(n) = 10 n log2n + 100

f3(n) = n2 - 3n + 6

f4(n) = 2n2

f5(n) = 2n/8 - n/4 + 2

f1(n) = 50n + 20

f2(n) = 10 n log2n + 100

f3(n) = n2 - 3n + 6

f4(n) = 2n2

f5(n) = 2n/8 - n/4 + 2

Algorithmic Foundations
COMP108

20

(Efficiency)

What do we observe?

� There is huge difference between

� functions involving powers of n (e.g., n, n2, called
polynomial functions) and

� functions involving powering by n (e.g., 2n, 3n,
called exponential functions)

� Among polynomial functions, those with same
order of power are more comparable

� e.g., f3(n) = n2 - 3n + 6 and f4(n) = 2n2

Algorithmic Foundations
COMP108

21

(Efficiency)

Growth of functions

Algorithmic Foundations
COMP108

22

(Efficiency)

Relative growth rate

n2

n

2n

n

log n

c

Algorithmic Foundations
COMP108

23

(Efficiency)

Hierarchy of functions

� We can define a hierarchy of functions each
having a greater order of growth than its
predecessor:

1 log n n n2 n3 ... nk ... 2n

constant logarithmic polynomial exponential

� We can further refine the hierarchy by inserting
n log n between n and n2,
n2 log n between n2 and n3, and so on.

Algorithmic Foundations
COMP108

24

(Efficiency)

Hierarchy of functions (2)

Note: as we move from left to right, successive
functions have greater order of growth than
the previous ones.

As n increases, the values of the later functions
increase more rapidly than the earlier ones.

⇒ Relative growth rates increase

1 log n n n2 n3 ... nk ... 2n

constant logarithmic polynomial exponential

Algorithmic Foundations
COMP108

Hierarchy of functions (3)

25

(Efficiency)

What about log3 n & n?
Which is higher in hierarchy?

(log n)3

Remember: n = 2log n

So we are comparing (log n)3 & 2log n

∴ log3 n is lower than n in the hierarchy

Similarly, logk n is lower than n in the hierarchy,
for any constant k

Algorithmic Foundations
COMP108

26

(Efficiency)

Hierarchy of functions (4)

� Now, when we have a function, we can classify the
function to some function in the hierarchy:

� For example, f(n) = 2n3 + 5n2 + 4n + 7
The term with the highest power is 2n3.
The growth rate of f(n) is dominated by n3.

� This concept is captured by Big-O notation

1 log n n n2 n3 ... nk ... 2n

constant logarithmic polynomial exponential

Algorithmic Foundations
COMP108

27

(Efficiency)

Big-O notation
f(n) = O(g(n)) [read as f(n) is of order g(n)]

� Roughly speaking, this means f(n) is at most a
constant times g(n) for all large n

� Examples

� 2n3 = O(n3)

� 3n2 = O(n2)

� 2n log n = O(n log n)

� n3 + n2 = O(n3)

Algorithmic Foundations
COMP108

28

(Efficiency)

Determine the order of growth of the
following functions.

1. n3 + 3n2 + 3

2. 4n2 log n + n3 + 5n2 + n

3. 2n2 + n2 log n

4. 6n2 + 2n

Exercise

Look for the term
highest in the hierarchy

Algorithmic Foundations
COMP108

29

(Efficiency)

More Exercise

Are the followings correct?

1. n2log n + n3 + 3n2 + 3 O(n2log n)?

2. n + 1000 O(n)?

3. 6n20 + 2n O(n20)?

4. n3 + 5n2 log n + n O(n2 log n) ?

Algorithmic Foundations
COMP108

30

(Efficiency)

Some algorithms we learnt

Sum of 1st n integers input n, sum = 0
while i <= n do
begin

sum = sum + i
i = i + 1

end
output sum

O(?)

input n
sum = n*(n+1)/2
output sum

O(?)

loc = 1, i = 2
while i <= n do
begin

if (a[i] < a[loc]) then
loc = i

i = i + 1
end
output a[loc]

Min value among n numbers

O(?)

Algorithmic Foundations
COMP108

Time complexity of this?

31

(Efficiency)

for i = 1 to 2n do
for j = 1 to n do
x = x + 1

The outer loop iterates for 2n times.
The inner loop iterates for n times for each i.

Total: 2n * n = 2n2.

O(?)

Algorithmic Foundations
COMP108

What about this?

32

(Efficiency)

i = 1
count = 0
while i < n
begin
i = 2 * i
count = count + 1

end
output count

O(?)

(@ end of)

iteration
i count

1 0

1 2 1

2 4 2

3 8 3

suppose n=8

(@ end of)

iteration
i count

1 0

1 2 1

2 4 2

3 8 3

4 16 4

5 32 5

suppose n=32

Algorithmic Foundations
COMP108

33

(Efficiency)

Big-O notation - formal definition
f(n) = O(g(n))

� There exists a constant c and no such that
f(n) ≤ c g(n) for all n > no

� ∃c ∃no ∀n>no then f(n) ≤ c g(n)

0

1000

2000

3000

4000

5000

6000

7000

100 300 500 700 900 1100

input size (n)

T
im

e

n0

c g(n)

f(n)

Graphical
Illustration

Algorithmic Foundations
COMP108

Example: n+60 is O(n)

34

(Efficiency)

0

50

100

150

200

250

300

350

400

10 30 50 70 90 110 130 150 170 190

input size (n)

T
im

e

2n

n + 60

c=2, n0=60

n

∃constants c & no such
that ∀n>no, f(n) ≤ c g(n)

n0

Algorithmic Foundations
COMP108

35

(Efficiency)

Which one is the fastest?

Usually we are only interested in the
asymptotic time complexity
� i.e., when n is large

O(log n) < O(log2 n) < O(√n) < O(n) < O(n log n) < O(n2) < O(2n)

Algorithmic Foundations
COMP108

36

(Efficiency)

Proof of order of growth
� Prove that 2n2 + 4n is O(n2)

� Since n ≤ n2 ∀n≥1,

we have
2n2 + 4n ≤ 2n2 + 4n2

= 6n2 ∀n≥1.

� Therefore, by definition, 2n2 + 4n is O(n2).

Note: plotting a graph
is NOT a proof

� Alternatively,

� Since 4n ≤ n2 ∀n≥4,

we have
2n2 + 4n ≤ 2n2 + n2

= 3n2 ∀n≥4.

� Therefore, by definition, 2n2 + 4n is O(n2).

Algorithmic Foundations
COMP108

37

(Efficiency)

Proof of order of growth (2)
� Prove that n3 + 3n2 + 3 is O(n3)

� Since n2 ≤ n3 and 1 ≤ n3 ∀n≥1,

we have
n3 + 3n2 + 3 ≤ n3 + 3n3 + 3n3

= 7n3 ∀n≥1.

� Therefore, by definition, n3 + 3n2 + 3 is O(n3).

� Alternatively,

� Since 3n2 ≤ n3 ∀n≥3, and 3 ≤ n3 ∀n≥2

we have
n3 + 3n2 + 3 ≤ 3n3 ∀n≥3.

� Therefore, by definition, n3 + 3n2 + 3 is O(n3).

Algorithmic Foundations
COMP108

38

(Efficiency)

Challenges
Prove the order of growth
1. 2n3 + n2 + 4n + 4 is O(n3)

a) 2n3 = 2n3 ∀n

b) n2 ≤ ?? ∀n≥?

c) 4n ≤ ?? ∀n≥?

d) 4 ≤ ?? ∀n≥?

⇒ 2n3 + n2 + 4n + 4 ≤ ?? ∀n≥?

2. 2n2 + 2n is O(2n)

a) 2n2 ≤ ?? ∀n≥?

b) 2n = 2n ∀n

⇒ 2n2 + 2n ≤ ?? ∀n≥?

Algorithmic Foundations
COMP108

39

(Efficiency)

