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Learning outcomes

� Able to carry out simple asymptotic analysis of 
algorithms
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Time Complexity Analysis

How fast is the algorithm?

Code the algorithm and run the program, 
then measure the running time

1. Depend on the speed of the computer

2. Waste time coding and testing if the 
algorithm is slow

Identify some important operations/steps 
and count how many times these 
operations/steps needed to be executed
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Time Complexity Analysis

How to measure efficiency?

� If we doubled/trebled the input size, how much 
longer would the algorithm take?

Number of operations usually expressed in 
terms of input size
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Why efficiency matters?

� speed of computation by hardware has been 
improved

� efficiency still matters

� ambition for computer applications grow with 
computer power

� demand a great increase in speed of computation
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When computation speed vastly increased, 
can we handle much more data?

Suppose
• an algorithm takes n2 comparisons to sort n numbers

• we need 1 sec to sort 5 numbers (25 comparisons)

• computing speed increases by factor of 100

Using 1 sec, we can now perform 100x25
comparisons, i.e., to sort 50 numbers

With 100 times speedup, only sort 10 times more numbers!
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Time/Space Complexity Analysis
sum = 0, i = 1
while i<=n do
begin

sum = sum + i
i = i + 1

end
output sum

Important operation of 
summation: addition

How many additions this 
algorithm requires?

We need n additions
(depend on the input size n)

We need 3 variables n, sum, & i
⇒ needs 3 memory space

In other cases, space complexity may 
depend on the input size n
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Look for improvement

sum = n*(n+1)/2
output sum

Mathematical formula gives us an 
alternative way to find the sum of 
first n integers:

1 + 2 + ... + n = n(n+1)/2

We only need 3 operations:

1 addition, 1 multiplication, and 1 division

(no matter what the input size n is)
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Improve Searching

We've learnt sequential search and it 
takes n comparisons in the worst case.

If the numbers are pre-sorted, then we 
can improve the time complexity of 
searching by binary search.
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Binary Search

more efficient way of searching when the sequence 
of numbers is pre-sorted

Input: a sequence of n sorted numbers a1, a2, …, an

in ascending order and a number X

Idea of algorithm:

� compare X with number in the middle

� then focus on only the first half or the second half 
(depend on whether X is smaller or greater than the 
middle number)

� reduce the amount of numbers to be searched by half
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Binary Search (2)

3 7 11 12 15 19 24 33 41 55 10 nos

24 X

19 24 33 41 55
24

19 24
24

24
24 found!

To find 24
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Binary Search (3)

3 7 11 12 15 19 24 33 41 55 10 nos

30 X

19 24 33 41 55
30

19 24
30

24
30 not found!

To find 30
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Binary Search – Pseudo Code
first = 1

last = n

found = false

while (first <= last && found == false) do

begin

// check with no. in middle

end

if (found == true)

report "Found!"

else report "Not Found!"

  is the floor function,
truncates the decimal part
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Binary Search – Pseudo Code
first = 1, last = n, found = false

while (first <= last && found == false) do

begin

mid = (first+last)/2
if (X == a[mid])

found = true

else

if (X < a[mid])

last = mid-1

else first = mid+1

end

if (found == true)

report "Found!"

else report "Not Found!"
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Number of Comparisons
Best case:

X is the number in the middle
⇒ 1 comparison

Worst case:

at most log2n+1 comparisons

Why? 

Every comparison reduces the 
amount of numbers by at least half

E.g., 16 ⇒ 8 ⇒ 4 ⇒ 2 ⇒ 1

first=1, last=n

found=false

while (first <= last &&

found == false) do

begin

mid = (first+last)/2
if (X == a[mid])

found = true

else

if (X < a[mid])

last = mid-1

else

first = mid+1

end

if (found == true)

report "Found"

else report "Not Found!"
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Logarithm is the inverse of the power function

log2 2x = x

For example,

log2 1 = log2 20 = 0

log2 2 = log2 21 = 1

log2 4 = log2 22 = 2

log2 16 = log2 24 = 4

log2 256 = log2 28 = 8

log2 1024 = log2 210 = 10

Note on Logarithm
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log2 x*y = log2 x + log2 y

log2 4*8 = log2 4 + log2 8 = 2+3 = 5

log2 16*16 = log2 16 + log2 16 = 8

log2 x/y = log2 x - log2 y

log2 32/8 = log2 32 - log2 8 = 5-3 = 2

log2 1/4 = log2 1 - log2 4 = 0-2 = -2
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Which algorithm is the fastest?
Consider a problem that can be solved by 5 algorithms 
A1, A2, A3, A4, A5 using different number of operations 
(time complexity).

f1(n) = 50n + 20 f2(n) = 10 n log2 n + 100

f3(n) = n2 - 3n + 6 f4(n) = 2n2

f5(n) f3(n) f1(n)

Depends on the size of the input!

n 1 2 4 8 16 32 64 128 256 512 1024 2048

f1(n) = 50n + 20 70 120 220 420 820 1620 3220 6420 12820 25620 51220 102420

f2(n) = 10 n log2n + 100 100 120 180 340 740 1700 3940 9060 20580 46180 102500 225380

f3(n) = n2 - 3n + 6 4 4 10 46 214 934 3910 16006 64774 3E+05 1E+06 4E+06

f4(n) = 2n2 2 8 32 128 512 2048 8192 32768 131072 5E+05 2E+06 8E+06

f5(n) = 2n/8 - n/4 + 2 2 2 3 32 8190 5E+08 2E+18

f5(n) = 2n/8 - n/4 + 2

Quickest:
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f1(n) = 50n + 20

f2(n) = 10 n log2n + 100

f3(n) = n2 - 3n + 6

f4(n) = 2n2

f5(n) = 2n/8 - n/4 + 2

f1(n) = 50n + 20

f2(n) = 10 n log2n + 100

f3(n) = n2 - 3n + 6

f4(n) = 2n2

f5(n) = 2n/8 - n/4 + 2
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What do we observe?

� There is huge difference between

� functions involving powers of n (e.g., n, n2, called 
polynomial functions) and

� functions involving powering by n (e.g., 2n, 3n, 
called exponential functions)

� Among polynomial functions, those with same 
order of power are more comparable

� e.g., f3(n) = n2 - 3n + 6 and f4(n) = 2n2
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Growth of functions
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Relative growth rate

n2

n

2n

n

log n

c



Algorithmic Foundations
COMP108

23

(Efficiency)

Hierarchy of functions

� We can define a hierarchy of functions each 
having a greater order of growth than its 
predecessor:

1 log n n  n2 n3 ... nk ... 2n

constant logarithmic polynomial exponential

� We can further refine the hierarchy by inserting 
n log n between n and n2,
n2 log n between n2 and n3, and so on.
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Hierarchy of functions (2)

Note: as we move from left to right, successive 
functions have greater order of growth than 
the previous ones.

As n increases, the values of the later functions 
increase more rapidly than the earlier ones.

⇒ Relative growth rates increase

1 log n n  n2 n3 ... nk ... 2n

constant logarithmic polynomial exponential
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What about log3 n & n?
Which is higher in hierarchy?

(log n)3

Remember: n = 2log n

So we are comparing (log n)3 & 2log n

∴ log3 n is lower than n in the hierarchy

Similarly, logk n is lower than n in the hierarchy, 
for any constant k
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Hierarchy of functions (4)

� Now, when we have a function, we can classify the 
function to some function in the hierarchy:

� For example, f(n) = 2n3 + 5n2 + 4n + 7
The term with the highest power is 2n3.
The growth rate of f(n) is dominated by n3.

� This concept is captured by Big-O notation

1 log n n  n2 n3 ... nk ... 2n

constant logarithmic polynomial exponential
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Big-O notation
f(n) = O(g(n)) [read as f(n) is of order g(n)]

� Roughly speaking, this means f(n) is at most a 
constant times g(n) for all large n

� Examples

� 2n3 = O(n3)

� 3n2 = O(n2)

� 2n log n = O(n log n)

� n3 + n2 = O(n3)
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Determine the order of growth of the 
following functions.

1. n3 + 3n2 + 3

2. 4n2 log n + n3 + 5n2 + n

3. 2n2 + n2 log n

4. 6n2 + 2n

Exercise

Look for the term 
highest in the hierarchy
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More Exercise

Are the followings correct?

1. n2log n + n3 + 3n2 + 3 O(n2log n)?

2. n + 1000 O(n)?

3. 6n20 + 2n O(n20)?

4. n3 + 5n2 log n + n O(n2 log n) ?
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Some algorithms we learnt

Sum of 1st n integers input n, sum = 0
while i <= n do
begin

sum = sum + i
i = i + 1

end
output sum

O(?)

input n
sum = n*(n+1)/2
output sum

O(?)

loc = 1, i = 2
while i <= n do
begin

if (a[i] < a[loc]) then
loc = i

i = i + 1
end
output a[loc]

Min value among n numbers

O(?)
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for i = 1 to 2n do
for j = 1 to n do
x = x + 1

The outer loop iterates for 2n times.
The inner loop iterates for n times for each i.

Total: 2n * n = 2n2.

O(?)
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i = 1
count = 0
while i < n
begin
i = 2 * i
count = count + 1

end
output count

O(?)

(@ end of ) 

iteration
i count

1 0

1 2 1

2 4 2

3 8 3

suppose n=8

(@ end of ) 

iteration
i count

1 0

1 2 1

2 4 2

3 8 3

4 16 4

5 32 5

suppose n=32
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Big-O notation - formal definition
f(n) = O(g(n))

� There exists a constant c and no such that 
f(n) ≤ c g(n) for all n > no

�  ∃c ∃no ∀n>no then f(n) ≤ c g(n)
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n0

c g(n)

f(n)

Graphical 
Illustration
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Which one is the fastest?

Usually we are only interested in the 
asymptotic time complexity
� i.e., when n is large

O(log n) < O(log2 n) < O(√n) < O(n) < O(n log n) < O(n2) < O(2n)
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Proof of order of growth
� Prove that 2n2 + 4n is O(n2)

� Since n ≤ n2 ∀n≥1,

we have 
2n2 + 4n ≤ 2n2 + 4n2

= 6n2  ∀n≥1.

� Therefore, by definition, 2n2 + 4n is O(n2).

Note: plotting a graph 
is NOT a proof

� Alternatively,

� Since 4n ≤ n2 ∀n≥4,

we have 
2n2 + 4n ≤ 2n2 + n2

= 3n2 ∀n≥4.

� Therefore, by definition, 2n2 + 4n is O(n2).
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Proof of order of growth (2)
� Prove that n3 + 3n2 + 3 is O(n3)

� Since n2 ≤ n3 and 1 ≤ n3 ∀n≥1,

we have 
n3 + 3n2 + 3 ≤ n3 + 3n3 + 3n3

= 7n3  ∀n≥1.

� Therefore, by definition, n3 + 3n2 + 3 is O(n3).

� Alternatively,

� Since 3n2 ≤ n3 ∀n≥3, and 3 ≤ n3 ∀n≥2

we have 
n3 + 3n2 + 3 ≤ 3n3 ∀n≥3.

� Therefore, by definition, n3 + 3n2 + 3 is O(n3).
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Challenges
Prove the order of growth
1. 2n3 + n2 + 4n + 4 is O(n3)

a) 2n3 = 2n3 ∀n

b) n2 ≤ ?? ∀n≥?

c) 4n ≤ ?? ∀n≥?

d) 4 ≤ ?? ∀n≥?

⇒ 2n3 + n2 + 4n + 4 ≤ ?? ∀n≥?

2. 2n2 + 2n is O(2n)

a) 2n2 ≤ ?? ∀n≥?

b) 2n = 2n ∀n

⇒ 2n2 + 2n ≤ ?? ∀n≥?
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