Algorithmic Foundations COMP108

rithmic Foundations COMP108

Algorithmic Foundation COMP108

COMP108 Algorithmic Foundations

Algorithm efficiency

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

Learning outcomes

> Able to carry out simple asymptotic analysis of algorithms

(Efficiency)

Algorithmic Foundations COMP108

Time Complexity Analysis

How fast is the algorithm?

Code the algorithm and run the program, then measure the running time

- 1. Depend on the speed of the computer
- 2. Waste time coding and testing if the algorithm is slow

Identify some important operations/steps and count how many times these operations/steps needed to be executed

Time Complexity Analysis

How to measure efficiency?

Number of operations usually expressed in terms of input size

> If we doubled/trebled the input size, how much longer would the algorithm take?

(Efficiency)

(Efficiency)

Why efficiency matters?

- > speed of computation by hardware has been improved
- > efficiency still matters
- > ambition for computer applications grow with computer power
- > demand a great increase in speed of computation

Amount of data handled matches speed increase?

When computation speed vastly increased, can we handle much more data?

Suppose

- an algorithm takes n^2 comparisons to sort n numbers
- we need 1 sec to sort 5 numbers (25 comparisons)
- computing speed increases by factor of 100

Using 1 sec, we can now perform 100x25 comparisons, i.e., to sort 50 numbers

With 100 times speedup, only sort 10 times more numbers!

Algorithmic Foundations COMP108

Time/Space Complexity Analysis

Important operation of summation: addition

How many additions this algorithm requires?

sum = 0, i = 1while i<=n do begin sum = sum + ii = i + 1end output sum

We need n additions (depend on the input size n)

We need 3 variables n, sum, & i \Rightarrow needs 3 memory space

> In other cases, space complexity may depend on the input size n

Look for improvement

Mathematical formula gives us an alternative way to find the sum of first n integers:

1 + 2 + ... + n = n(n+1)/2

sum = n*(n+1)/2output sum

We only need 3 operations:

1 addition, 1 multiplication, and 1 division (no matter what the input size n is)

(Efficiency)

Improve Searching

We've learnt sequential search and it takes n comparisons in the worst case.

If the numbers are pre-sorted, then we can improve the time complexity of searching by binary search.

(Efficiency) ithmic Foundations COMP108 Binary Search (2) To find 24 41 55 ← 10 nos 3 7 11 12 **15** 19 24 33 24 - x 19 24 33 41 55 **19** 24 24 24 24 found!

Binary Search (3) 3 7 11 12 15 19 2

Binary Search

Idea of algorithm:

middle number)

of numbers is pre-sorted

in ascending order and a number X

> compare X with number in the middle

To find 30
33 41 55 ← 10 nos
← x

more efficient way of searching when the sequence

Input: a sequence of n sorted numbers a_1 , a_2 , ..., a_n

> then focus on only the first half or the second half (depend on whether X is smaller or greater than the

> reduce the amount of numbers to be searched by half

30 19 24 30 24 30 not found!

(Efficiency)

(Efficiency)

Algorithmic Foundations COMP108

Algorithmic Foundations COMP108

Binary Search - Pseudo Code

(Efficiency)

(Efficiency)

Algorithmic Foundations COMP108

rithmic Foundation

Binary Search - Pseudo Code

```
first = 1, last = n, found = false
while (first <= last && found == false) do
begin
    mid = \[ (first+last)/2 \]
    if (X == a[mid])
        found = true
    else
        if (X < a[mid])
            last = mid-1
        else first = mid+1
end
if (found == true)
    report "Found!"
else report "Not Found!"</pre>
```

Algorithmic Foundations COMP108

Number of Comparisons

```
first=1, last=n
Best case:
                                       found=false
X is the number in the middle
                                       while (first <= last &&
                                         found == false) do
\Rightarrow 1 comparison
                                       begin
                                         mid = [(first+last)/2]
Worst case:
                                         if (X == a[mid])
at most | log<sub>2</sub>n |+1 comparisons
                                            found = true
                                         else
Why?
                                           if (X < a[mid])
                                              last = mid-1
Every comparison reduces the
                                            else
amount of numbers by at least half
                                              first = mid+1
                                       end
E.g., 16 \Rightarrow 8 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1
                                       if (found == true)
                                         report "Found"
                                       else report "Not Found!"
```

Time complexity
- Big O notation ...

Note on Logarithm

Logarithm is the inverse of the power function

$$log_2 2^x = x$$

For example,

$$\log_2 1 = \log_2 2^0 = 0$$

$$\log_2 2 = \log_2 2^1 = 1$$

$$\log_2 4 = \log_2 2^2 = 2$$

$$\log_2 1 - \log_2 2 - 2 \log_2 16 = \log_2 2^4 = 4$$

$$\log_2 256 = \log_2 2^8 = 8$$

$$\log_2 1024 = \log_2 2^{10} = 10$$

$$\log_2 x^* y = \log_2 x + \log_2 y$$

$$\log_2 4 * 8 = \log_2 4 + \log_2 8 = 2 + 3 = 5$$

$$\log_2 16 * 16 = \log_2 16 + \log_2 16 = 8$$

(Efficiency)

Algorithmic Foundation COMP108

(Efficiency)

Algorithmic Foundations COMP108

Growth of functions

n	$\log n$	\sqrt{n}	n	$n \log n$	n^2	n^3	2^n
2	1	1.4	2	2	4	8	4
4	2	2	4	8	16	64	16
8	3	2.8	8	24	64	512	256
16	4	4	16	64	256	4096	65536
32	5	5.7	32	160	1024	32768	4294967296
64	6	8	64	384	4096	262144	1.84×10^{19}
128	7	11.3	128	896	16384	2097152	3.40×10^{38}
256	8	16	256	2048	65536	16777216	1.16×10^{77}
512	9	22.6	512	4608	262144	134217728	1.34×10^{154}
1024	10	32	1024	10240	1048576	1073741824	

Hierarchy of functions

> We can define a hierarchy of functions each having a greater order of growth than its predecessor:

> We can further refine the hierarchy by inserting n log n between n and n², n^2 log n between n^2 and n^3 , and so on.

Which algorithm is the fastest?

Consider a problem that can be solved by 5 algorithms A_1 , A_2 , A_3 , A_4 , A_5 using different number of operations (time complexity).

$$f_1(n) = 50n + 20$$
 $f_2(n) = 10 \text{ n } \log_2 n + 100$
 $f_3(n) = n^2 - 3n + 6$ $f_4(n) = 2n^2$
 $f_5(n) = 2^n/8 - n/4 + 2$

n	1	2	4	8	16	32	64	128	256	512	1024	2048
$f_1(n) = 50n + 20$	70	120	220	420	820	1620	3220	6420	12820	25620	51220	102420
$f_2(n) = 10 \text{ n } \log_2 n + 100$	100	120	180	340	740	1700	3940	9060	20580	46180	102500	225380
$f_3(n) = n^2 - 3n + 6$	4	4	10	46	214	934	3910	16006	64774	3E+05	1E+06	4E+06
$f_4(n) = 2n^2$	2	8	32	128	512	2048	8192	32768	131072	5E+05	2E+06	8E+06
$f_S(n) = 2^n/8 - n/4 + 2$	2	2	3	32	8190	5E+08	2E+18					

 $f_5(n)$ $f_3(n)$ Depends on the size of the input!

(Efficiency)

Algorithmic Foundations COMP108

 $f_1(n)$

What do we observe?

- > There is huge difference between
 - > functions involving powers of n (e.g., n, n², called polynomial functions) and
 - > functions involving powering by n (e.g., 2n, 3n, called exponential functions)
- > Among polynomial functions, those with same order of power are more comparable

> e.g.,
$$f_3(n) = n^2 - 3n + 6$$
 and $f_4(n) = 2n^2$

(Efficiency)

Algorithmic Foundations COMP108

Relative growth rate

Algorithmic Foundations

Hierarchy of functions (2)

Note: as we move from left to right, successive functions have greater order of growth than the previous ones.

As n increases, the values of the later functions increase more rapidly than the earlier ones.

⇒ Relative growth rates increase

Hierarchy of functions (3)

 $(\log n)^3$

What about log3 n & n? Which is higher in hierarchy?

Remember: $n = 2^{\log n}$ So we are comparing (log n)3 & 2 log n .. log³ n is lower than n in the hierarchy

Similarly, log^k n is lower than n in the hierarchy, for any constant k

(Efficiency)

Algorithmic Foundations COMP108

Big-O notation

f(n) = O(q(n)) [read as f(n) is of order g(n)]

- > Roughly speaking, this means f(n) is at most a constant times g(n) for all large n
- > Examples
 - $> 2n^3 = O(n^3)$
 - $> 3n^2 = O(n^2)$
 - > 2n log n = O(n log n)
 - $> n^3 + n^2 = O(n^3)$

(Efficiency)

Algorithmic Foundations COMP108

More Exercise

Are the followings correct?

1. $n^2 \log n + n^3 + 3n^2 + 3$

2. n + 1000

3. $6n^{20} + 2^n$

4. $n^3 + 5n^2 \log n + n$

O(n²log n)?

O(n)?

O(n²⁰)?

 $O(n^2 \log n)$?

Time complexity of this?

for i = 1 to 2n do for j = 1 to n do 0(?) x = x + 1

The outer loop iterates for 2n times. The inner loop iterates for n times for each i. Total: $2n * n = 2n^2$.

Hierarchy of functions (4)

- > Now, when we have a function, we can classify the function to some function in the hierarchy:
 - > For example, $f(n) = 2n^3 + 5n^2 + 4n + 7$ The term with the highest power is 2n³. The growth rate of f(n) is dominated by n^3 .
- > This concept is captured by Big-O notation

(Efficiency)

Algorithmic Foundations COMP108

Exercise

Determine the order of growth of the following functions.

- $1. n^3 + 3n^2 + 3$
- 2. $4n^2 \log n + n^3 + 5n^2 + n$
- 3. $2n^2 + n^2 \log n$
- $4.6n^2 + 2^n$

Look for the term highest in the hierarchy

(Efficiency)

Algorithmic Foundations COMP108

Some algorithms we learnt

What about this?

i = 1count = 0 while i < n O(?)begin count = count + 1end output count

suppose n=8	,	Algorithmic Foun COMP108
(@ end of) iteration	i	count
	1	0
1	2	1
2	4	2
3	8	3

uppose n=32			
(@ end of)	i	count	
iteration			
	1	0	
1	2	1	
2	4	2	
3	8	3	
4	16	4	
5	32	5	

Big-O notation - formal definition

f(n) = O(q(n))

> There exists a constant c and n such that $f(n) \le c g(n)$ for all $n > n_0$

 $> \exists c \exists n_0 \forall n > n_0 \text{ then } f(n) \leq c g(n)$

thmic Foundations COMP108

(Efficiency)

Which one is the fastest?

Usually we are only interested in the asymptotic time complexity

> i.e., when n is large

 $O(\log n) < O(\log^2 n) < O(\sqrt{n}) < O(n) < O(n \log n) < O(n^2) < O(2^n)$

(Efficiency)

lgorithmic Foundations COMP108

Proof of order of growth (2)

> Prove that $n^3 + 3n^2 + 3$ is $O(n^3)$ \checkmark Since $n^2 \le n^3$ and $1 \le n^3 \forall n ≥ 1$. we have $n^3 + 3n^2 + 3 \le n^3 + 3n^3 + 3n^3$ $= 7n^3$ ∀n≥1. √ Therefore, by definition, n³ + 3n² + 3 is O(n³).

> > Alternatively, ✓ Since $3n^2 \le n^3 \forall n \ge 3$, and $3 \le n^3 \forall n \ge 2$ we have $n^3 + 3n^2 + 3 \le 3n^3$ ✓ Therefore, by definition, $n^3 + 3n^2 + 3$ is $O(n^3)$

Algorithmic Foundations COMP108

Example: n+60 is O(n)

Algorithmic Foundations COMP108

Proof of order of growth

> Prove that $2n^2 + 4n$ is $O(n^2)$ Note: plotting a graph is NOT a proof ✓ Since $n \le n^2 \forall n \ge 1$, we have $2n^2 + 4n$ \leq 2n² + 4n² 6n² $\forall n \geq 1$. √ Therefore, by definition, 2n² + 4n is O(n²).

Algorithmic Foundations COMP108

Challenges

Prove the order of growth

1. $2n^3 + n^2 + 4n + 4 is O(n^3)$

a) $2n^3 = 2n^3$ ∀n

b) $n^2 \le ??$ ∀n≥?

4n ≤ ?? ∀n≥?

∀n≥?

 \Rightarrow 2n³ + n² + 4n + 4 ≤ ?? \forall n≥?

2. $2n^2 + 2^n$ is $O(2^n)$

 $2n^2 \le ??$ ∀n≥?

 $2^{n} = 2^{n}$ ∀n

 \Rightarrow 2n² + 2n \leq ?? ∀n≥?