COMP108 Algorithmic Foundations

 Polynomial \& Exponential Algorithms
Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

Learning outcomes

> See some examples of polynomial time and exponential time algorithms
> Able to apply searching/sorting algorithms and derive their time complexities

Sequential search: Time complexity

```
i = 1, found = false
while (i <= n && found == false) do
begin
    if x == a[i] then
    found = true
else
    i = i+1
end
```

Best case: X is $1 s \dagger$ no., 1 comparison, $O(1)$

Worst case: X is last OR X is not found, n comparisons, $O(n)$
if found==true then
report "Found!"
else report "Not Found!"

Binary search: Time complexity

Best case:

X is the number in the middle $\Rightarrow 1$ comparison, O(1)-time
Worst case:
at most $\left\lceil\log _{2} n\right\rceil+1$ comparisons, $O(\log n)$-time
first=1, last=n, found=false while (first <= last
\&\& found == false) do begin
mid $=\lfloor($ first+last) $/ 2\rfloor$
if (X == a[mid])
found $=$ true
else

$$
\text { if }(X<a[m i d])
$$

$$
\text { last }=\text { mid-1 }
$$

else first = mid+1
end
if found==true then
report "Found!"
else report "Not Found!"

Binary search vs Sequential search

Time complexity of sequential search is $O(n)$
Time complexity of binary search is $O(\log n)$
Therefore, binary search is more efficient than sequential search

Search for a pattern

We've seen how to search a number over a sequence of numbers
What about searching a pattern of characters over some text?

Example text: $A \subset G G A A T A A C T G G A A C G$ pattern: AA C
substring: ACGGAATAXCTGGXACG

String Matching

Given a string of n characters called the text and a string of x characters $(x \leq n)$ called the pattern.
We want to determine if the text contains a substring matching the pattern.

Example text: $A \subset G G A A T A A C T G G A A C G$ pattern: A A C
substring: A CG GA A TA A CT G GA AC G

Example

$$
\begin{aligned}
& \text { P[]: A } \not \subset C \\
& \text { A C } \\
& \text { A A C } \\
& \text { AC } \\
& \begin{array}{ll}
\text { A A } \\
\text { A } \\
\text { A } & \\
\hline
\end{array} \\
& \text { A A C } \\
& \text { A A C } \\
& \text { bonded: match } \\
& \text { crossed: not match } \\
& \text { un-bolded: not considered }
\end{aligned}
$$

The algorithm

The algorithm scans over the text position by position.
For each position i, it checks whether the pattern P[1..x] appears in T[i..(i+x-1)]
If the pattern exists, then report found
Else continue with the next position i+1
If repeating until the end without success, report not found

Match pattern with T[i..(i+x-1)]

$$
j=1
$$

while (j<=x \&\& P[j]==T[i+j-1]) do
$j=j+1$
if (j==x+1) then
found $=$ true

2 cases when exit loop:
> j becomes $x+1$ \checkmark all matches
OR
> $P[j] \neq T[i+j-1]$
X unmatched

Match for each position

i $=1$, found $=$ false
while (i <= n-x+1 \&\& found == false) do begin
// check if P[1..x] match with T[i..(i+x-1)]

$$
i=i+1
$$

end
if found == true
report "Found!"
else report "Not found!"

Algorithm

$i=1$, found $=$ false
while (i <= n-x+1 \&\& found == false) do begin
$j=1$
while (j<=x \&\& $P[j]==T[i+j-1])$ do

$$
j=j+1
$$

if (j==x+1) then
found $=$ true

$$
i=i+1
$$

end
if found $==$ true report "Found!"
else report "Not found!"

Time Complexity

How many comparisons this algorithm requires?

Best case:
pattern appears at the beginning of the text, $O(x)$-time

Worst case:

pattern appears at the end of the text OR pattern does not exist, O(nx)-time
i $=1$
while (i $<=n-x+1$ \&\& found $==$ false) do begin

$$
j=1
$$

$$
\text { while }(j<=x ~ \& \& ~ P[j]==T[i+j-1]) \text { do }
$$

$$
j=j+1
$$

$$
\text { if }(j==x+1) \text { then }
$$

$$
\text { found }=\text { true }
$$

$$
i=i+1
$$

end

More polynomial time algorithms - sorting ...

Sorting

Input: a sequence of n numbers $a_{1}, a_{2}, \ldots, a_{n}$
Output: arrange the n numbers into ascending order, i.e., from smallest to largest

Example: If the input contains 5 numbers 132 , $56,43,200,10$, then the output should be 10, 43, 56, 132, 200

There are many sorting algorithms: bubble sort, insertion sort, merge sort, quick sort, selection sort

Bubble Sort

starting from the first element, swap adjacent items if they are not in ascending order when last item is reached, the last item is the largest
repeat the above steps for the remaining
items to find the second largest item, and so on

Bubble Sort - Example

$\left(\begin{array}{llllll}34 & 10 & 64 & 51 & 32 & 21\end{array}\right)$
round

	34	10	64	51	32	21
1	10	34	64	51	32	$21 \leftarrow$ don't need to swap
	10	34	64	51	32	21
	10	34	51	64	32	21
	10	34	51	32	64	21
	10	34	51	32	21	$64 \leftarrow$ don't need to swap
2	10	34	51	32	21	$64 \leftarrow$ don't need to swap
	10	34	51	32	21	64
	10	34	32	51	21	64
	10	34	32	21	51	64

underlined: being considered italic: sorted

Bubble Sort - Example (2)

 round$$
\begin{array}{llllllll}
& 10 & 34 & 32 & 21 & 51 & 64 & \text { \&-don't need to swap } \\
3 & 10 & \frac{34}{} & 32 & 21 & 51 & 64 & \\
& 10 & 32 & 34 & 21 & 51 & 64 & \\
& 10 & 32 & 21 & 34 & 51 & 64 & \text { \&don't need to swap } \\
4 & 10 & \frac{32}{21} & 21 & 34 & 51 & 64 & \\
& 10 & 21 & 32 & 34 & 51 & 64 & \text { \&don't need to swap } \\
5 & 10 & 21 & 32 & 34 & 51 & 64 &
\end{array}
$$

underlined: being considered italic: sorted

Bubble Sort Algorithm

for $\mathrm{i}=\mathrm{n}$ downto 2 do
// move the largest number in a[1]...a[i] // to a[i] by swapping neighbouring // numbers if they are not in correct order
for $j=1$ to i-1 do
// compare a[j] and a[j+1]
// swap them if incorrect order

$$
\text { if }(a[j]>a[j+1])
$$ swap $a[j] \& a[j+1]$

How to swap two variables?

Bubble Sort Algorithm

for $\mathrm{i}=\mathrm{n}$ downto 2 do
the largest will be moved to ali]
for $j=1$ to i-1 do

$$
\begin{aligned}
& \text { if }(a[j]>a[j+1]) \\
& \text { swap } a[j] \& a[j+1]
\end{aligned}
$$

start from a[1],
check up to a[i-1]

$$
\begin{aligned}
& \begin{array}{llllll}
34 & 10 & 64 & 51 & 32 & 21
\end{array} \\
& i=6 \\
& j=1 \\
& \underbrace{r} j=2 \\
& j=3 \underbrace{}_{j=5}=4 \\
& i=5 \\
& \underbrace{}_{j=1} \\
& j=3
\end{aligned}
$$

Algorithm Analysis

The algorithm consists of a nested for-loop.

$$
\begin{aligned}
& \text { for } i=n \text { downto } 2 \text { do } \\
& \text { for } j=1 \text { to } i-1 \text { do } \\
& \text { if }(a[j]>a[j+1]) \\
& \\
& \text { swap } a[j] \& a[j+1]
\end{aligned}
$$

Total number of comparisons
$=(n-1)+(n-2)+\ldots+1$
$=n(n-1) / 2$
O(??)-time

i	$\#$ of comparisons in inner loop
n	$n-1$
$n-1$	$n-2$
\cdots	\ldots
2	1

Selection Sort

> find minimum key from the input sequence
> delete it from input sequence
> append it to resulting sequence
> repeat until nothing left in input sequence

Selection Sort - Example

$>\operatorname{sort}(34,10,64,51,32,21)$ in ascending order

Sorted part	Unsorted part 341064513221	To swap 10, 34
10	3464513221	21, 34
1021	64513234	32,64
102132	516434	51,34
10213234	6451	51,64
1021323451	64	--
1021323451		

Selection Sort Algorithm

for $i=1$ to $n-1$ do begin
// find the index 'loc' of the minimum number // in the range $a[i]$ to $a[n]$

```
    swap a[i] and a[loc]
end
```


Selection Sort Algorithm

```
for \(i=1\) to \(n-1\) do
begin // find index 'loc' in range a[i] to a[n]
    loc = i
    for \(j=i+1\) to \(n\) do
        if a[j] < a[loc] then
        loc = j
    swap a[i] and a[loc]
end
```


Algorithm Analysis

The algorithm consists of a nested for-loop.
For each iteration of the outer i-loop, there is an inner j -loop.

```
for i = 1 to n-1 do
begin
    lOC = i
    for j = i+1 to n do
        if a[j] < a[lOC] then
        lOC = j
    swap a[i] and a[loc]
end
```

Total number of comparisons
$=(n-1)+(n-2)+\ldots+1$ $=n(n-1) / 2$

i	$\#$ of comparisons in inner loop
1	$n-1$
2	$n-2$
\cdots	\ldots
$n-1$	1

Insertion Sort (self-study)

look at elements one by one
build up sorted list by inserting the element at the correct location

Example

> sort (34, 8, 64, 51, 32, 21) in ascending order
$\begin{array}{ll}\text { Sorted part } & \begin{array}{l}\text { Unsorted part } \\ \\ 34864513221\end{array}\end{array}$

34	864513221	-		
834	64513221	34		
8	3464	513221	-	
8	345164		3221	64
832345164			21	$34,51,64$
8	2132345164			

Insertion Sort Algorithm

for $i=2$ to n do
begin
key $=a[i]$
loc = 1
using sequential search to find the correct position for key
while (a[loc] < key) \&\& (loc < i) do loc = loc + 1 shift a[loc], ..., a[i-1] to the right a[loc] = key
end
finally, place key (the original a[i]) in a[loc]

Algorithm Analysis

Worst case input
> input is sorted in descending order
Then, for $a[i]$
> finding the position

$$
\begin{aligned}
& \text { for } i=2 \text { to } n \text { do } \\
& \text { begin } \\
& \text { key }=a[i] \\
& \text { loc }=1 \\
& \text { while }(a[l o c]<\text { key }) \& \&(l o c<i) \text { do } \\
& \quad \text { loc }=\operatorname{loc}+1 \\
& \text { shift } a[l o c], \ldots, a[i-1] \text { to the right } \\
& a[l o c]=\text { key } \\
& \text { end }
\end{aligned}
$$

i	\# of comparisons in the while loop
2	1
3	2
\ldots	\ldots
n	$n-1$

Bubble, Selection, Insertion Sort

All three algorithms have time complexity $O\left(n^{2}\right)$ in the worst case.

Are there any more efficient sorting algorithms? YES, we will learn them later.
What is the time complexity of the fastest comparison-based sorting algorithm? $O(n \log n)$

Some exponential time algorithms - Traveling Salesman Problem, Knapsack Problem ...

Traveling Salesman Problem

Input: There are n cities.
Output: Find the shortest tour from a particular city that visit each city exactly once before returning to the city where it started.

This is known as
Hamiltonian circuit

Example

Tour

$$
\begin{array}{ll}
a \rightarrow b \rightarrow c \rightarrow d \rightarrow a & 2+8+1+7=18 \\
a \rightarrow b \rightarrow d \rightarrow c \rightarrow a & 2+3+1+5=11 \\
a \rightarrow c \rightarrow b \rightarrow d \rightarrow a & 5+8+3+7=23 \\
a \rightarrow c \rightarrow d \rightarrow b \rightarrow a & 5+1+3+2=11 \\
a \rightarrow d \rightarrow b \rightarrow c \rightarrow a & 7+3+8+5=23 \\
a \rightarrow d \rightarrow c \rightarrow b \rightarrow a & 7+1+8+2=18
\end{array}
$$

Length

 circuit from a to a
Idea and Analysis

A Hamiltonian circuit can be represented by a sequence of $n+1$ cities $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$, where the first and the last are the same, and all the others are distinct.

Exhaustive search approach: Find all tours in this form, compute the tour length and find the shortest among them.

How many possible tours to consider?

$$
(n-1)!=(n-1)(n-2) \ldots 1
$$

N.B.: (n-1)! grows faster than exponential in terms of n [refer to notes on induction]

Knapsack Problem

What to take? so that 1. Not too heavy 2. Most valuable

塊

Knapsack Problem

Input: Given n items with weights $w_{1}, w_{2}, \ldots, w_{n}$ and values $v_{1}, v_{2}, \ldots, v_{n}$, and a knapsack with capacity W.

Output: Find the most valuable subset of items that can fit into the knapsack.
Application: A transport plane is to deliver the most valuable set of items to a remote location without exceeding its capacity.

Example

| $\{1,4\}$ | 12 | N / A | $\{1,2,3,4\}$ | 19 |
| :--- | :--- | :--- | :--- | :--- | $\mathrm{~N} / \mathrm{A}$

Idea and Analysis

Exhaustive search approach:

> Try every subset of the set of n given items
> compute total weight of each subset and
> compute total value of those subsets that do NOT exceed knapsack's capacity.

How many subsets to consider?

Exercises (1)

Suppose you have forgotten a password with 5 characters. You only remember:
$>$ the 5 characters are all distinct
$>$ the 5 characters are B, D, M, P, Y
If you want to try all possible combinations, how many of them in total?

What if the 5 characters can be any of the 26 upper case letters?

Exercises (2)

Suppose the password still has 5 characters
> the characters may NOT be distinct
> each character can be any of the 26 upper case letter

How many combinations are there?

Exercises (3)

What if the password is in the form adaaada?
> a means letter, d means digit
> all characters are all distinct
> the 5 letters are B, D, M, P, Y
> the digit is either 0 or 1
How many combinations are there?

