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Pancake Sorting
Input: Stack of pancakes, each of different sizes

Output: Arrange in order of size (smallest on top)

Action: Slip a flipper under one of the pancakes and 
flip over the whole stack above the flipper

finish

4
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2

4

1

3
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start
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Triomino Puzzle
Input: 2n-by-2n chessboard with one missing square &

many L-shaped tiles of 3 adjacent squares
Question: Cover the chessboard with L-shaped tiles 

without overlapping

Is it do-able?

2n

2n
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Divide and Conquer …
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(Divide & Conquer)

Learning outcomes

� Understand how divide and conquer works and 
able to analyse complexity of divide and conquer 
methods by solving recurrence

� See examples of divide and conquer methods
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(Divide & Conquer)

Divide and Conquer
One of the best-known algorithm design 

techniques

Idea:

� A problem instance is divided into several smaller
instances of the same problem, ideally of about 
same size

� The smaller instances are solved, typically 
recursively

� The solutions for the smaller instances are 
combined to get a solution to the large instance
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Merge Sort …
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(Divide & Conquer)

Merge sort

� using divide and conquer technique

� divide the sequence of n numbers into two halves

� recursively sort the two halves

� merge the two sorted halves into a single sorted 
sequence
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(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

we want to sort these 8 numbers,
divide them into two halves
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(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

divide these 4 
numbers into 

halves

similarly for 
these 4
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(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

further divide each shorter sequence …
until we get sequence with only 1 number
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(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

merge pairs of 
single number into 

a sequence of 2 
sorted numbers



Algorithmic Foundations
COMP108

13

(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

then merge again into sequences of 
4 sorted numbers
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(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

10, 13, 51, 64 5, 21, 32, 34

one more merge give the final sorted sequence
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(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

5, 10, 13, 21, 32, 34, 51, 64

10, 13, 51, 64 5, 21, 32, 34
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(Divide & Conquer)

Summary

Divide

� dividing a sequence of n numbers into two
smaller sequences is straightforward

Conquer

� merging two sorted sequences of total length 
n can also be done easily, at most n-1
comparisons
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(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

To merge two sorted sequences,
we keep two pointers, one to each sequence

Result:

Compare the two numbers pointed,
copy the smaller one to the result

and advance the corresponding pointer
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(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

Then compare again the two numbers
pointed to by the pointer;

copy the smaller one to the result
and advance that pointer

5, Result:
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(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

Repeat the same process …

5, 10,  Result:
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(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

Again …

5, 10, 13Result:
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(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

and again …

5, 10, 13, 21Result:
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(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

…

5, 10, 13, 21, 32Result:
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(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

When we reach the end of one sequence,
simply copy the remaining numbers in the other 

sequence to the result 

5, 10, 13, 21, 32, 34Result:
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(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

Then we obtain the final sorted sequence

5, 10, 13, 21, 32, 34, 51, 64Result:
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(Divide & Conquer)

Pseudo code
Algorithm Mergesort(A[1..n])Algorithm Mergesort(A[1..n])

if n > 1 then begin

copy A[1..n/2] to B[1..n/2]

copy A[n/2+1..n] to C[1..n/2]

Mergesort(B[1..n/2])

Mergesort(C[1..n/2])

Merge(B, C, A)

end
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(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

5, 10, 13, 21, 32, 34, 51, 64

10, 13, 51, 64 5, 21, 32, 34

MS( )

MS(

MS(

MS(

MS( )

) MS( ) MS( ) MS( )

)MS( ) MS( ) MS( ) MS( )MS( ) MS( )MS( )

M( ), M( ),

M( , )

)
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(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

5, 10, 13, 21, 32, 34, 51, 64

10, 13, 51, 64 5, 21, 32, 34

MS( )

MS(

MS(

MS(

MS( )

) MS( ) MS( ) MS( )

)MS( ) MS( ) MS( ) MS( )MS( ) MS( )MS( )

M( ), M( ),

M( , )

1

2

3 4

5

6

7 8

9

10

11

12

13 14

15

16

17 18

19

20

21

order of execution



Algorithmic Foundations
COMP108

28

(Divide & Conquer)

Pseudo code
Algorithm Merge(B[1..p], C[1..q], A[1..p+q])

set i=1, j=1, k=1

while i<=p and j<=q do

begin

if B[i]≤C[j] then

set A[k] = B[i] and i = i+1

else set A[k] = C[j] and j = j+1

k = k+1

end

if i==p+1 then copy C[j..q] to A[k..(p+q)]

else copy B[i..p] to A[k..(p+q)]



Algorithmic Foundations
COMP108

29

(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34B: C:

p=4 q=4

i j k A[ ]

Before loop 1 1 1 empty

End of 1st iteration 1 2 2 5

End of 2nd iteration 2 2 3 5, 10

End of 3rd 3 2 4 5, 10, 13

End of 4th 3 3 5 5, 10, 13, 21

End of 5th 3 4 6 5, 10, 13, 21, 32

End of 6th 3 5 7 5, 10, 13, 21, 32, 34

5, 10, 13, 21, 32, 34, 51, 64
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(Divide & Conquer)

Time complexity
Let T(n) denote the time complexity of Let T(n) denote the time complexity of 
running merge sort on n numbers.

T(n) =

We call this formula a recurrence.

A recurrence is an equation or inequality that 
describes a function in terms of its value on 
smaller inputs.

To solve a recurrence is to derive asymptotic 
bounds on the solution

1 if n=1
2×T(

�

�
) + n otherwise
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(Divide & Conquer)

Time complexity
Prove that is O(n log n)

Make a guess: T(n) ≤ 2 n log n (We prove by MI)

For the base case when n=2,For the base case when n=2,
L.H.S = T(2) = 2×T(1) + 2 = 4,
R.H.S = 2 × 2 log 2 = 4
L.H.S ≤ R.H.S

T(n) =

Substitution method

1 if n=1
2×T(

�

�
) + n otherwise
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(Divide & Conquer)

Time complexity
Prove that is O(n log n)

Make a guess: T(n) ≤ 2 n log n (We prove by MI)

Assume true for all n'<n  [assume T(
�

�
) ≤ 2 x (

�

�
) x log(

�

�
)]

T(n) = 2×T(
�

�
)+n

≤ 2 × (2×(
�

�
)xlog(

�

�
)) + n

= 2 n (log n - 1) + n

= 2 n log n - 2n + n

≤ 2 n log n

i.e., T(n) ≤ 2 n log n

1 if n=1
2×T(

�

�
) + n otherwise

T(n) =

by hypothesis
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(Divide & Conquer)

Example

Guess: T(n) ≤ 2 log n

T(n) =

For the base case when n=2,

L.H.S = T(2) = T(1) + 1 = 2

R.H.S = 2 log 2 = 2

L.H.S ≤ R.H.S

1 if n=1
T(

�

�
) + 1 otherwise
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(Divide & Conquer)

Example
T(n) =

i.e., T(n) ≤ 2 log n

1 if n=1
T(

�

�
) + 1 otherwise
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(Divide & Conquer)

More example
Prove that is O(n)

Guess: T(n) ≤ 2n – 1

For the base case when n=1,
L.H.S = T(1) = 1
R.H.S = 2×1 - 1 = 1 
L.H.S ≤ R.H.S

T(n) =
1 if n=1
2 x T(

�

�
) + 1 otherwise
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(Divide & Conquer)

More example
Prove that is O(n)

Guess: T(n) ≤ 2n – 1

Assume true for all n' < n [assume T(
�

�
) ≤ 2x(

�

�
)-1]

T(n) = 2×T(
�

�
)+1

≤ 2 × (2×(
�

�
)-1) + 1 ← by hypothesis

= 2n – 2 + 1

= 2n - 1 i.e., T(n) ≤ 2n-1

1 if n=1
2×T(

�

�
) + 1 otherwise

T(n) =
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(Divide & Conquer)

Summary

Depending on the recurrence, we can guess the 
order of growth

T(n) = T(
�

�
)+1 T(n) is O(log n)

T(n) = 2×T(
�

�
)+1 T(n) is O(n)

T(n) = 2×T(
�

�
)+n T(n) is O(n log n)
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Tower of Hanoi …
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(Divide & Conquer)

Tower of Hanoi - Initial config

There are three pegs and some discs of different 
sizes are on Peg A

3
2
1

A B C
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(Divide & Conquer)

Tower of Hanoi - Final config 

Want to move the discs to Peg C

3
2
1

A B C
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(Divide & Conquer)

Tower of Hanoi - Rules

Only 1 disk can be moved at a time

A disc cannot be placed on top of other discs that 
are smaller than it

3
2

Target: Use the smallest number of moves
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(Divide & Conquer)

Tower of Hanoi - One disc only

Easy!

1

A B C
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(Divide & Conquer)

Tower of Hanoi - One disc only

Easy!  Need one move only.

1

A B C
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(Divide & Conquer)

Tower of Hanoi - Two discs

We first need to move Disc-2 to C, How?

2
1

A B C

by moving Disc-1 to B first, then Disc-2 to C
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(Divide & Conquer)

Tower of Hanoi - Two discs

Next?

2

A B C

1

Move Disc-1 to C
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(Divide & Conquer)

Tower of Hanoi - Two discs

Done!

2
1

A B C
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(Divide & Conquer)

Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?

� Move Disc-1&2 to B (recursively)

3
2
1

A B C
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(Divide & Conquer)

Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?

� Move Disc-1&2 to B (recursively)

3 2

A B C

1

� Then move Disc-3 to C
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(Divide & Conquer)

Tower of Hanoi - Three discs

Only task left: move Disc-1&2 to C (similarly as 
before)

32
1

A B C
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(Divide & Conquer)

Tower of Hanoi - Three discs

Done!

3
2
1

A B C
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Tower of Hanoi

ToH(num_disc, source, dest, spare)

begin

if (num_disc > 1) then

ToH(num_disc-1, source, spare, dest)

Move the disc from source to dest

if (num_disc > 1) then

ToH(num_disc-1, spare, dest, source)

end

51

(Divide & Conquer)

invoke by calling
ToH(3, A, C, B)
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(Divide & Conquer)

ToH(3, A, C, B)

move 1 disc
from A to C

ToH(2, A, B, C) ToH(2, B, C, A)

ToH(1, A, C, B) ToH(1, C, B, A)

move 1 disc
from A to B

move 1 disc
from A to C

move 1 disc
from C to B

ToH(1, B, A, C) ToH(1, A, C, B)

move 1 disc
from B to C

move 1 disc
from B to A

move 1 disc
from A to C
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(Divide & Conquer)

ToH(3, A, C, B)

move 1 disc
from A to C

ToH(2, A, B, C) ToH(2, B, C, A)

ToH(1, A, C, B) ToH(1, C, B, A)

move 1 disc
from A to B

move 1 disc
from A to C

move 1 disc
from C to B

ToH(1, B, A, C) ToH(1, A, C, B)

move 1 disc
from B to C

move 1 disc
from B to A

move 1 disc
from A to C

1

2

3

4
5

6

7 8

9

10

11
12

13

from A to C; from A to B; from C to B;
from A to C;

from B to A; from B to C; from A to C;
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(Divide & Conquer)

move n-1 
discs from 

B to C

Time complexity

T(n) = T(n-1) + 1 + T(n-1) 

Let T(n) denote the time 
complexity of running 
the Tower of Hanoi 
algorithm on n discs.

1 if n=1

2×T(n-1) + 1 otherwise

move n-1 
discs from 

A to B
move  Disc-n 
from A to C

T(n) =



Algorithmic Foundations
COMP108

55

(Divide & Conquer)

Time complexity (2)
T(n) = 2×T(n-1) + 1

= 2[2×T(n-2) + 1] + 1

= 22 T(n-2) + 2 + 1

= 22 [2×T(n-3) + 1] + 21 + 20

= 23 T(n-3) + 22 + 21 + 20

…
= 2k T(n-k) + 2k-1 + 2k-2 + … + 22 + 21 + 20

…
= 2n-1 T(1) + 2n-2 + 2n-3 + … + 22 + 21 + 20

= 2n-1 + 2n-2 + 2n-3 + … + 22 + 21 + 20

= 2n-1

1 if n=1

2×T(n-1) + 1 otherwise
T(n) =

In Tutorial 2, we prove by MI that
20 + 21 + … + 2n-1 = 2n-1

i.e., T(n) is O(2n)iterative 
method
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(Divide & Conquer)

Summary - continued

Depending on the recurrence, we can guess the 
order of growth

T(n) = T(
�

�
)+1 T(n) is O(log n)

T(n) = 2×T(
�

�
)+1 T(n) is O(n)

T(n) = 2×T(
�

�
)+n T(n) is O(n log n)

T(n) = 2×T(n-1)+1 T(n) is O(2n)
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Fibonacci number …
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58

(Divide & Conquer)

A pair of rabbits, one month old, is too young to reproduce. 
Suppose that in their second month, and every month 

thereafter, they produce a new pair.

end of
month-0

end of
month-1

end of
month-3

end of
month-4

How many 
at end of

month-5, 6,7
and so on?

end of
month-2
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59

(Divide & Conquer)

1 petal:
white calla lily

2 petals:
euphorbia

3 petals:
trillium

5 petals:
columbine

8 petals:
bloodroot

13 petals:
black-eyed susan

21 petals:
shasta daisy

34 petals:
field daisy

Search: Fibonacci Numbers in Nature
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(Divide & Conquer)

Fibonacci number
Fibonacci number F(n)

F(n) = 
1 if n = 0 or 1
F(n-1) + F(n-2) if n > 1

n 0 1 2 3 4 5 6 7 8 9 10

F(n) 1 1 2 3 5 8 13 21 34 55 89

Pseudo code for the recursive algorithm:Pseudo code for the recursive algorithm:
Algorithm F(n)

if n==0 or n==1 then

return 1

else

return F(n-1) + F(n-2)



Algorithmic Foundations
COMP108

61

(Divide & Conquer)

The execution of F(7)

F7

F6

F5

F5

F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F4 F4

F3

F3

F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F1



Algorithmic Foundations
COMP108

62

(Divide & Conquer)

The execution of F(7)

F7

F6

F5

F5

F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F4 F4

F3

F3

F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F1

1
2

3

4

5

6

7
8

9

10

13

18

27

order of execution
(not everything shown)
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(Divide & Conquer)

The execution of F(7)

F7

F6

F5

F5

F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F4 F4

F3

F3

F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F1

return value
(not everything shown)

1 1

2

3

1

2

5

8

3

5

13 8

21
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(Dynamic Programming)

Time complexity - exponential
f(n) = f(n-1) + f(n-2) + 1 

= [f(n-2)+f(n-3)+1] + f(n-2) + 1

> 2 f(n-2)

> 2 [2×f(n-2-2)] = 22 f(n-4)

> 22 [2×f(n-4-2)] = 23 f(n-6)

> 23 [2×f(n-6-2)] = 24 f(n-8)

…

> 2k f(n-2k)
If n is even, f(n) > 2n/2 f(0) = 2n/2

If n is odd, f(n) > f(n-1) > 2(n-1)/2

exponential in n

Suppose f(n) 
denote the time 
complexity to 
compute F(n)
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Robozzle - Recursion
Task: to program a robot to pick up all stars in a 

certain area
Command: Go straight, Turn Left, Turn Right


