
Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Divide and Conquer

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

Algorithmic Foundations
COMP108

Pancake Sorting
Input: Stack of pancakes, each of different sizes

Output: Arrange in order of size (smallest on top)

Action: Slip a flipper under one of the pancakes and
flip over the whole stack above the flipper

finish

4

1

3

2

4

1

3

2

start

Algorithmic Foundations
COMP108

Triomino Puzzle
Input: 2n-by-2n chessboard with one missing square &

many L-shaped tiles of 3 adjacent squares
Question: Cover the chessboard with L-shaped tiles

without overlapping

Is it do-able?

2n

2n

Algorithmic Foundations
COMP108

Divide and Conquer …

Algorithmic Foundations
COMP108

5

(Divide & Conquer)

Learning outcomes

� Understand how divide and conquer works and
able to analyse complexity of divide and conquer
methods by solving recurrence

� See examples of divide and conquer methods

Algorithmic Foundations
COMP108

6

(Divide & Conquer)

Divide and Conquer
One of the best-known algorithm design

techniques

Idea:

� A problem instance is divided into several smaller
instances of the same problem, ideally of about
same size

� The smaller instances are solved, typically
recursively

� The solutions for the smaller instances are
combined to get a solution to the large instance

Algorithmic Foundations
COMP108

Merge Sort …

Algorithmic Foundations
COMP108

8

(Divide & Conquer)

Merge sort

� using divide and conquer technique

� divide the sequence of n numbers into two halves

� recursively sort the two halves

� merge the two sorted halves into a single sorted
sequence

Algorithmic Foundations
COMP108

9

(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

we want to sort these 8 numbers,
divide them into two halves

Algorithmic Foundations
COMP108

10

(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

divide these 4
numbers into

halves

similarly for
these 4

Algorithmic Foundations
COMP108

11

(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

further divide each shorter sequence …
until we get sequence with only 1 number

Algorithmic Foundations
COMP108

12

(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

merge pairs of
single number into

a sequence of 2
sorted numbers

Algorithmic Foundations
COMP108

13

(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

then merge again into sequences of
4 sorted numbers

Algorithmic Foundations
COMP108

14

(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

10, 13, 51, 64 5, 21, 32, 34

one more merge give the final sorted sequence

Algorithmic Foundations
COMP108

15

(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

5, 10, 13, 21, 32, 34, 51, 64

10, 13, 51, 64 5, 21, 32, 34

Algorithmic Foundations
COMP108

16

(Divide & Conquer)

Summary

Divide

� dividing a sequence of n numbers into two
smaller sequences is straightforward

Conquer

� merging two sorted sequences of total length
n can also be done easily, at most n-1
comparisons

Algorithmic Foundations
COMP108

17

(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

To merge two sorted sequences,
we keep two pointers, one to each sequence

Result:

Compare the two numbers pointed,
copy the smaller one to the result

and advance the corresponding pointer

Algorithmic Foundations
COMP108

18

(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

Then compare again the two numbers
pointed to by the pointer;

copy the smaller one to the result
and advance that pointer

5, Result:

Algorithmic Foundations
COMP108

19

(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

Repeat the same process …

5, 10, Result:

Algorithmic Foundations
COMP108

20

(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

Again …

5, 10, 13Result:

Algorithmic Foundations
COMP108

21

(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

and again …

5, 10, 13, 21Result:

Algorithmic Foundations
COMP108

22

(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

…

5, 10, 13, 21, 32Result:

Algorithmic Foundations
COMP108

23

(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

When we reach the end of one sequence,
simply copy the remaining numbers in the other

sequence to the result

5, 10, 13, 21, 32, 34Result:

Algorithmic Foundations
COMP108

24

(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34

Then we obtain the final sorted sequence

5, 10, 13, 21, 32, 34, 51, 64Result:

Algorithmic Foundations
COMP108

25

(Divide & Conquer)

Pseudo code
Algorithm Mergesort(A[1..n])Algorithm Mergesort(A[1..n])

if n > 1 then begin

copy A[1..n/2] to B[1..n/2]

copy A[n/2+1..n] to C[1..n/2]

Mergesort(B[1..n/2])

Mergesort(C[1..n/2])

Merge(B, C, A)

end

Algorithmic Foundations
COMP108

26

(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

5, 10, 13, 21, 32, 34, 51, 64

10, 13, 51, 64 5, 21, 32, 34

MS()

MS(

MS(

MS(

MS()

) MS() MS() MS()

)MS() MS() MS() MS()MS() MS()MS()

M(), M(),

M(,)

)

Algorithmic Foundations
COMP108

)

27

(Divide & Conquer)

51, 13, 10, 64, 34, 5, 32, 21

51, 13, 10, 64 34, 5, 32, 21

51, 13 10, 64 34, 5 32, 21

51 13 10 64 34 5 32 21

13, 51 10, 64 5, 34 21, 32

5, 10, 13, 21, 32, 34, 51, 64

10, 13, 51, 64 5, 21, 32, 34

MS()

MS(

MS(

MS(

MS()

) MS() MS() MS()

)MS() MS() MS() MS()MS() MS()MS()

M(), M(),

M(,)

1

2

3 4

5

6

7 8

9

10

11

12

13 14

15

16

17 18

19

20

21

order of execution

Algorithmic Foundations
COMP108

28

(Divide & Conquer)

Pseudo code
Algorithm Merge(B[1..p], C[1..q], A[1..p+q])

set i=1, j=1, k=1

while i<=p and j<=q do

begin

if B[i]≤C[j] then

set A[k] = B[i] and i = i+1

else set A[k] = C[j] and j = j+1

k = k+1

end

if i==p+1 then copy C[j..q] to A[k..(p+q)]

else copy B[i..p] to A[k..(p+q)]

Algorithmic Foundations
COMP108

29

(Divide & Conquer)

10, 13, 51, 64 5, 21, 32, 34B: C:

p=4 q=4

i j k A[]

Before loop 1 1 1 empty

End of 1st iteration 1 2 2 5

End of 2nd iteration 2 2 3 5, 10

End of 3rd 3 2 4 5, 10, 13

End of 4th 3 3 5 5, 10, 13, 21

End of 5th 3 4 6 5, 10, 13, 21, 32

End of 6th 3 5 7 5, 10, 13, 21, 32, 34

5, 10, 13, 21, 32, 34, 51, 64

Algorithmic Foundations
COMP108

30

(Divide & Conquer)

Time complexity
Let T(n) denote the time complexity of Let T(n) denote the time complexity of
running merge sort on n numbers.

T(n) =

We call this formula a recurrence.

A recurrence is an equation or inequality that
describes a function in terms of its value on
smaller inputs.

To solve a recurrence is to derive asymptotic
bounds on the solution

1 if n=1
2×T(

�

�
) + n otherwise

Algorithmic Foundations
COMP108

31

(Divide & Conquer)

Time complexity
Prove that is O(n log n)

Make a guess: T(n) ≤ 2 n log n (We prove by MI)

For the base case when n=2,For the base case when n=2,
L.H.S = T(2) = 2×T(1) + 2 = 4,
R.H.S = 2 × 2 log 2 = 4
L.H.S ≤ R.H.S

T(n) =

Substitution method

1 if n=1
2×T(

�

�
) + n otherwise

Algorithmic Foundations
COMP108

32

(Divide & Conquer)

Time complexity
Prove that is O(n log n)

Make a guess: T(n) ≤ 2 n log n (We prove by MI)

Assume true for all n'<n [assume T(
�

�
) ≤ 2 x (

�

�
) x log(

�

�
)]

T(n) = 2×T(
�

�
)+n

≤ 2 × (2×(
�

�
)xlog(

�

�
)) + n

= 2 n (log n - 1) + n

= 2 n log n - 2n + n

≤ 2 n log n

i.e., T(n) ≤ 2 n log n

1 if n=1
2×T(

�

�
) + n otherwise

T(n) =

by hypothesis

Algorithmic Foundations
COMP108

33

(Divide & Conquer)

Example

Guess: T(n) ≤ 2 log n

T(n) =

For the base case when n=2,

L.H.S = T(2) = T(1) + 1 = 2

R.H.S = 2 log 2 = 2

L.H.S ≤ R.H.S

1 if n=1
T(

�

�
) + 1 otherwise

Algorithmic Foundations
COMP108

34

(Divide & Conquer)

Example
T(n) =

i.e., T(n) ≤ 2 log n

1 if n=1
T(

�

�
) + 1 otherwise

Algorithmic Foundations
COMP108

35

(Divide & Conquer)

More example
Prove that is O(n)

Guess: T(n) ≤ 2n – 1

For the base case when n=1,
L.H.S = T(1) = 1
R.H.S = 2×1 - 1 = 1
L.H.S ≤ R.H.S

T(n) =
1 if n=1
2 x T(

�

�
) + 1 otherwise

Algorithmic Foundations
COMP108

36

(Divide & Conquer)

More example
Prove that is O(n)

Guess: T(n) ≤ 2n – 1

Assume true for all n' < n [assume T(
�

�
) ≤ 2x(

�

�
)-1]

T(n) = 2×T(
�

�
)+1

≤ 2 × (2×(
�

�
)-1) + 1 ← by hypothesis

= 2n – 2 + 1

= 2n - 1 i.e., T(n) ≤ 2n-1

1 if n=1
2×T(

�

�
) + 1 otherwise

T(n) =

Algorithmic Foundations
COMP108

37

(Divide & Conquer)

Summary

Depending on the recurrence, we can guess the
order of growth

T(n) = T(
�

�
)+1 T(n) is O(log n)

T(n) = 2×T(
�

�
)+1 T(n) is O(n)

T(n) = 2×T(
�

�
)+n T(n) is O(n log n)

Algorithmic Foundations
COMP108

Tower of Hanoi …

Algorithmic Foundations
COMP108

39

(Divide & Conquer)

Tower of Hanoi - Initial config

There are three pegs and some discs of different
sizes are on Peg A

3
2
1

A B C

Algorithmic Foundations
COMP108

40

(Divide & Conquer)

Tower of Hanoi - Final config

Want to move the discs to Peg C

3
2
1

A B C

Algorithmic Foundations
COMP108

41

(Divide & Conquer)

Tower of Hanoi - Rules

Only 1 disk can be moved at a time

A disc cannot be placed on top of other discs that
are smaller than it

3
2

Target: Use the smallest number of moves

Algorithmic Foundations
COMP108

42

(Divide & Conquer)

Tower of Hanoi - One disc only

Easy!

1

A B C

Algorithmic Foundations
COMP108

43

(Divide & Conquer)

Tower of Hanoi - One disc only

Easy! Need one move only.

1

A B C

Algorithmic Foundations
COMP108

44

(Divide & Conquer)

Tower of Hanoi - Two discs

We first need to move Disc-2 to C, How?

2
1

A B C

by moving Disc-1 to B first, then Disc-2 to C

Algorithmic Foundations
COMP108

45

(Divide & Conquer)

Tower of Hanoi - Two discs

Next?

2

A B C

1

Move Disc-1 to C

Algorithmic Foundations
COMP108

46

(Divide & Conquer)

Tower of Hanoi - Two discs

Done!

2
1

A B C

Algorithmic Foundations
COMP108

47

(Divide & Conquer)

Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?

� Move Disc-1&2 to B (recursively)

3
2
1

A B C

Algorithmic Foundations
COMP108

48

(Divide & Conquer)

Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?

� Move Disc-1&2 to B (recursively)

3 2

A B C

1

� Then move Disc-3 to C

Algorithmic Foundations
COMP108

49

(Divide & Conquer)

Tower of Hanoi - Three discs

Only task left: move Disc-1&2 to C (similarly as
before)

32
1

A B C

Algorithmic Foundations
COMP108

50

(Divide & Conquer)

Tower of Hanoi - Three discs

Done!

3
2
1

A B C

Algorithmic Foundations
COMP108

Tower of Hanoi

ToH(num_disc, source, dest, spare)

begin

if (num_disc > 1) then

ToH(num_disc-1, source, spare, dest)

Move the disc from source to dest

if (num_disc > 1) then

ToH(num_disc-1, spare, dest, source)

end

51

(Divide & Conquer)

invoke by calling
ToH(3, A, C, B)

Algorithmic Foundations
COMP108

52

(Divide & Conquer)

ToH(3, A, C, B)

move 1 disc
from A to C

ToH(2, A, B, C) ToH(2, B, C, A)

ToH(1, A, C, B) ToH(1, C, B, A)

move 1 disc
from A to B

move 1 disc
from A to C

move 1 disc
from C to B

ToH(1, B, A, C) ToH(1, A, C, B)

move 1 disc
from B to C

move 1 disc
from B to A

move 1 disc
from A to C

Algorithmic Foundations
COMP108

53

(Divide & Conquer)

ToH(3, A, C, B)

move 1 disc
from A to C

ToH(2, A, B, C) ToH(2, B, C, A)

ToH(1, A, C, B) ToH(1, C, B, A)

move 1 disc
from A to B

move 1 disc
from A to C

move 1 disc
from C to B

ToH(1, B, A, C) ToH(1, A, C, B)

move 1 disc
from B to C

move 1 disc
from B to A

move 1 disc
from A to C

1

2

3

4
5

6

7 8

9

10

11
12

13

from A to C; from A to B; from C to B;
from A to C;

from B to A; from B to C; from A to C;

Algorithmic Foundations
COMP108

54

(Divide & Conquer)

move n-1
discs from

B to C

Time complexity

T(n) = T(n-1) + 1 + T(n-1)

Let T(n) denote the time
complexity of running
the Tower of Hanoi
algorithm on n discs.

1 if n=1

2×T(n-1) + 1 otherwise

move n-1
discs from

A to B
move Disc-n
from A to C

T(n) =

Algorithmic Foundations
COMP108

55

(Divide & Conquer)

Time complexity (2)
T(n) = 2×T(n-1) + 1

= 2[2×T(n-2) + 1] + 1

= 22 T(n-2) + 2 + 1

= 22 [2×T(n-3) + 1] + 21 + 20

= 23 T(n-3) + 22 + 21 + 20

…
= 2k T(n-k) + 2k-1 + 2k-2 + … + 22 + 21 + 20

…
= 2n-1 T(1) + 2n-2 + 2n-3 + … + 22 + 21 + 20

= 2n-1 + 2n-2 + 2n-3 + … + 22 + 21 + 20

= 2n-1

1 if n=1

2×T(n-1) + 1 otherwise
T(n) =

In Tutorial 2, we prove by MI that
20 + 21 + … + 2n-1 = 2n-1

i.e., T(n) is O(2n)iterative
method

Algorithmic Foundations
COMP108

56

(Divide & Conquer)

Summary - continued

Depending on the recurrence, we can guess the
order of growth

T(n) = T(
�

�
)+1 T(n) is O(log n)

T(n) = 2×T(
�

�
)+1 T(n) is O(n)

T(n) = 2×T(
�

�
)+n T(n) is O(n log n)

T(n) = 2×T(n-1)+1 T(n) is O(2n)

Algorithmic Foundations
COMP108

Fibonacci number …

Algorithmic Foundations
COMP108

Fibonacci's Rabbits

58

(Divide & Conquer)

A pair of rabbits, one month old, is too young to reproduce.
Suppose that in their second month, and every month

thereafter, they produce a new pair.

end of
month-0

end of
month-1

end of
month-3

end of
month-4

How many
at end of

month-5, 6,7
and so on?

end of
month-2

Algorithmic Foundations
COMP108

Petals on flowers

59

(Divide & Conquer)

1 petal:
white calla lily

2 petals:
euphorbia

3 petals:
trillium

5 petals:
columbine

8 petals:
bloodroot

13 petals:
black-eyed susan

21 petals:
shasta daisy

34 petals:
field daisy

Search: Fibonacci Numbers in Nature

Algorithmic Foundations
COMP108

60

(Divide & Conquer)

Fibonacci number
Fibonacci number F(n)

F(n) =
1 if n = 0 or 1
F(n-1) + F(n-2) if n > 1

n 0 1 2 3 4 5 6 7 8 9 10

F(n) 1 1 2 3 5 8 13 21 34 55 89

Pseudo code for the recursive algorithm:Pseudo code for the recursive algorithm:
Algorithm F(n)

if n==0 or n==1 then

return 1

else

return F(n-1) + F(n-2)

Algorithmic Foundations
COMP108

61

(Divide & Conquer)

The execution of F(7)

F7

F6

F5

F5

F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F4 F4

F3

F3

F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F1

Algorithmic Foundations
COMP108

62

(Divide & Conquer)

The execution of F(7)

F7

F6

F5

F5

F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F4 F4

F3

F3

F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F1

1
2

3

4

5

6

7
8

9

10

13

18

27

order of execution
(not everything shown)

Algorithmic Foundations
COMP108

63

(Divide & Conquer)

The execution of F(7)

F7

F6

F5

F5

F4 F3

F3

F2

F1 F0

F2

F1 F0

F1

F2

F1 F0

F2

F1 F0

F2

F1 F0

F4 F4

F3

F3

F3

F2

F1 F0

F2

F1 F0

F2

F1 F0

F1

F1 F1

F1

return value
(not everything shown)

1 1

2

3

1

2

5

8

3

5

13 8

21

Algorithmic Foundations
COMP108

64

(Dynamic Programming)

Time complexity - exponential
f(n) = f(n-1) + f(n-2) + 1

= [f(n-2)+f(n-3)+1] + f(n-2) + 1

> 2 f(n-2)

> 2 [2×f(n-2-2)] = 22 f(n-4)

> 22 [2×f(n-4-2)] = 23 f(n-6)

> 23 [2×f(n-6-2)] = 24 f(n-8)

…

> 2k f(n-2k)
If n is even, f(n) > 2n/2 f(0) = 2n/2

If n is odd, f(n) > f(n-1) > 2(n-1)/2

exponential in n

Suppose f(n)
denote the time
complexity to
compute F(n)

Algorithmic Foundations
COMP108

Robozzle - Recursion
Task: to program a robot to pick up all stars in a

certain area
Command: Go straight, Turn Left, Turn Right

