COMP108 Algorithmic Foundations Divide and Conquer

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

Pancake Sorting

Input: Stack of pancakes, each of different sizes Output: Arrange in order of size (smallest on top) Action: Slip a flipper under one of the pancakes and flip over the whole stack above the flipper

Triomino Puzzle

Input: $\quad 2^{n}-b y-2^{n}$ chessboard with one missing square \& many L-shaped tiles of 3 adjacent squares
Question: Cover the chessboard with L-shaped tiles without overlapping

Is it do-able?

Divide and Conquer ...

Learning outcomes

> Understand how divide and conquer works and able to analyse complexity of divide and conquer methods by solving recurrence
> See examples of divide and conquer methods

Divide and Conquer

One of the best-known algorithm design techniques
Idea:

- A problem instance is divided into several smaller instances of the same problem, ideally of about same size
> The smaller instances are solved, typically recursively
> The solutions for the smaller instances are combined to get a solution to the large instance

Merge Sort ...
> using divide and conquer technique
> divide the sequence of n numbers into two halves
> recursively sort the two halves
$>$ merge the two sorted halves into a single sorted sequence

$51,13,10,64,34,5,32,21$

we want to sort these 8 numbers, divide them into two halves

$51,13,10,64,34,5,32,21$

$51,13,10,64$

$$
34,5,32,21
$$

divide these 4 numbers into halves
similarly for these 4

$51,13,10,64,34,5,32,21$

further divide each shorter sequence ... until we get sequence with only 1 number

$51,13,10,64,34,5,32,21$

merge pairs of
single number into
a sequence of 2
sorted numbers

$51,13,10,64,34,5,32,21$

then merge again into sequences of 4 sorted numbers

$51,13,10,64,34,5,32,21$

one more merge give the final sorted sequence

$51,13,10,64,34,5,32,21$

$5,10,13,21,32,34,51,64$

Summary

Divide

> dividing a sequence of n numbers into two smaller sequences is straightforward

Conquer
> merging two sorted sequences of total length n can also be done easily, at most $n-1$ comparisons

$10,13,51,64$

$5,21,32,34$

Result:

To merge two sorted sequences, we keep two pointers, one to each sequence

Compare the two numbers pointed, copy the smaller one to the result and advance the corresponding pointer

10, 13, 51, 64

5, 21, 32, 34

1
lt: 5 ,

Result: 5,

Then compare again the two numbers pointed to by the pointer:
copy the smaller one to the result and advance that pointer

$10,13,51,64$

1
5,10,

Result: 5,10,
 Repeat the same process ...

$10,13,51,64$

5, 21, 32, 34

Result: 5, 10, 13

Again ...

$10,13,51,64$

5,21,32,34

Result: 5, 10, 13, 21

and again ...

$10,13,51,64$

Result: 5, 10, 13, 21, 32

$10,13,51,64$

5, 21, 32, 34

Result: 5,10,13,21,32,34

When we reach the end of one sequence, simply copy the remaining numbers in the other sequence to the result

$10,13,51,64$

$5,21,32,34$

Result: 5, 10, 13, 21, 32, 34,51, 64

Then we obtain the final sorted sequence

Pseudo code

Algorithm Mergesort(A[1..n])
if $n>1$ then begin copy $A[1 . .\lfloor n / 2\rfloor]$ to $B[1 . .\lfloor n / 2\rfloor]$ copy $A[L n / 2]+1 . . n]$ to $C[1 . .[n / 2\rceil]$ Mergesort($B[1 . .\lfloor n / 2\rfloor])$ Mergesort(C[1.. $\lceil n / 2\rceil])$ Merge (B, C, A)
end

$\operatorname{MS}(51,13,10,64,34,5,32,21)$

$\operatorname{MS}(51,13,10,64)$
$\operatorname{MS}(51,13) \quad \operatorname{MS}(10,64)$
$\operatorname{ms(51)~Ms(13)~Ms(10)~Ms(64)~}$

M($10,13,51,64$
$\operatorname{MS}(34,5,32,21)$ $\operatorname{Ms}(34,5) \operatorname{MS}(32,21)$ $\operatorname{Ms(34)} \operatorname{Ms}(5) \quad \mathrm{Ms}(32) \operatorname{Ms}(21)$

5, 21, 32, 34
$5,10,13,21,32,34,51,64$

$\operatorname{MS}(51,13,10,64,34,5,32,21)$

MS(51)MS(13) MS(10) MS(64)

$\operatorname{MS}(\sqrt{34}, 5,32,21)$

21
$5,10,13,21,32,34,51,64$

Pseudo code

Algorithm Merge (B[1..p], C[1..q], A[1..p+q])
set $i=1, j=1, k=1$
while $i<=p$ and $j<=q$ do
begin

```
if \(B[i] \leq C[j]\) then
set \(A[k]=B[i]\) and \(i=i+1\)
```

else set $A[k]=C[j]$ and $j=j+1$
k $=$ k+1
end
if i==p+1 then copy C[j..q] to A[k..(p+q)]
else copy B[i..p] to A[k..(p+q)]

B: $\quad \begin{gathered}p=4 \\ 10,13,51,64\end{gathered}$

	\mathbf{i}	\mathbf{j}	\mathbf{k}	$\mathbf{A [}]$
Before loop	1	1	1	empty
End of 1st iteration	1	2	2	5
End of 2nd iteration	2	2	3	5,10
End of 3rd	3	2	4	$5,10,13$
End of 4th	3	3	5	$5,10,13,21$
End of 5th	3	4	6	$5,10,13,21,32$
End of 6th	3	5	7	$5,10,13,21,32,34$
				$5,10,13,21,32,34,51,64$

Time complexity

Let $T(n)$ denote the time complexity of running merge sort on n numbers.

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \times T\left(\frac{n}{2}\right)+n & \text { otherwise }\end{cases}
$$

We call this formula a recurrence.
A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
To solve a recurrence is to derive asymptotic bounds on the solution

Time complexity

Prove that $T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \times T\left(\frac{n}{2}\right)+n & \text { otherwise }\end{cases}$
Make a guess: $T(n) \leq 2 n \log n$ (We prove by MI)

$$
\begin{aligned}
& \text { For the base case when } n=2, \\
& \text { L.H.S }=T(2)=2 \times T(1)+2=4, \\
& \text { R.H.S }=2 \times 2 \log 2=4 \\
& \text { L.H.S } \leq \text { R.H.S }
\end{aligned}
$$

Substitution method

Time complexity

Prove that $T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \times T\left(\frac{n}{2}\right)+n & \text { otherwise }\end{cases}$
Make a guess: $T(n) \leq 2 n \log n$ (We prove by MI)
Assume true for all $n^{\prime}<n$ [assume $T\left(\frac{n}{2}\right) \leq 2 \times\left(\frac{n}{2}\right) \times \log \left(\frac{n}{2}\right)$]

$$
\begin{aligned}
T(n) & =2 \times T\left(\frac{n}{2}\right)+n \\
& \leq 2 \times\left(2 \times\left(\frac{n}{2}\right) \times \log \left(\frac{n}{2}\right)\right)+n \\
& =2 n(\log n-1)+n \\
& =2 n \log n-2 n+n \quad \text { i.e.. } T(n) \leq 2 n \log n \\
& \leq 2 n \log n
\end{aligned}
$$

Example

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T\left(\frac{n}{2}\right)+1 & \text { otherwise }\end{cases}
$$

Guess: $T(n) \leq 2 \log n$
For the base case when $n=2$,

$$
\begin{aligned}
& \text { L.H.S }=T(2)=T(1)+1=2 \\
& \text { R.H.S }=2 \log 2=2 \\
& \text { L.H.S } \leq \text { R.H.S }
\end{aligned}
$$

Example

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T\left(\frac{n}{2}\right)+1 & \text { otherwise }\end{cases}
$$

Guess: $T(n) \leq 2 \log n$
Assume true for all $n^{\prime}<n$ [assume $T\left(\frac{n}{2}\right) \leq 2 \times \log \left(\frac{n}{2}\right)$]

$$
\begin{aligned}
T(n) & =\underbrace{T\left(\frac{n}{2}\right)}+1 \\
& \leq 2 \times \log \left(\frac{n}{2}\right)+1 \leftarrow \text { by hypothesis } \\
& =2 \times(\log n-1)+1 \leftarrow \log \left(\frac{n}{2}\right)=\log n-\log 2 \\
& <2 \log n \quad \text { i.e. } T(n) \leq 2 \log n
\end{aligned}
$$

More example

Prove that $T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \times T\left(\frac{n}{2}\right)+1 & \text { otherwise }\end{cases}$
is $O(n)$

Guess: $T(n) \leq 2 n-1$

For the base case when $n=1$,
L.H.S $=T(1)=1$
R.H.S $=2 \times 1-1=1$
L.H.S \leq R.H.S

More example

Prove that $T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \times T\left(\frac{n}{2}\right)+1 & \text { otherwise }\end{cases}$
is $O(n)$

Guess: $T(n) \leq 2 n-1$
Assume true for all $n^{\prime}<n$ [assume $T\left(\frac{n}{2}\right) \leq 2 \times\left(\frac{n}{2}\right)-1$]

$$
\begin{aligned}
T(n) & =2 \times T\left(\frac{n}{2}\right)+1 & & \\
& \leq 2 \times\left(2 \times\left(\frac{n}{2}\right)-1\right)+1 & & \leftarrow \text { by hypothesis } \\
& =2 n-2+1 & & \\
& =2 n-1 & & \text { i.e. } T(n) \leq 2 n-1
\end{aligned}
$$

Summary

Depending on the recurrence, we can guess the order of growth

$$
\begin{array}{ll}
T(n)=T\left(\frac{n}{2}\right)+1 & T(n) \text { is } O(\log n) \\
T(n)=2 \times T\left(\frac{n}{2}\right)+1 & T(n) \text { is } O(n) \\
T(n)=2 \times T\left(\frac{n}{2}\right)+n & T(n) \text { is } O(n \log n)
\end{array}
$$

Tower of Hanoi ...

Tower of Hanoi - Initial config

There are three pegs and some discs of different sizes are on Peg A

A

B

C

Tower of Hanoi - Final config

Want to move the discs to Peg C

Tower of Hanoi - Rules

Only 1 disk can be moved at a time
A disc cannot be placed on top of other discs that are smaller than it

Target: Use the smallest number of moves

Tower of Hanoi - One disc only

Easy!

A

B

C

Tower of Hanoi - One disc only

Easy! Need one move only.

Tower of Hanoi - Two discs

We first need to move Disc-2 to C, How? by moving Disc-1 to B first, then Disc-2 to C

A

B

C

Tower of Hanoi - Two discs

Next?
Move Disc-1 to C

Tower of Hanoi - Two discs

Done!

A

B

C

Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?
> Move Disc-1\&2 to B (recursively)

Tower of Hanoi - Three discs

We first need to move Disc-3 to C, How?
> Move Disc-1\&2 to B (recursively)
> Then move Disc-3 to C

Tower of Hanoi - Three discs

Only task left: move Disc-1\&2 to C (similarly as before)

Tower of Hanoi - Three discs

Done!

A

B

C

Tower of Hanoi

 beginif (num_disc > 1) then
ToH(num_disc-1, source, spare, dest)
Move the disc from source to dest
if (num_disc > 1) then
ToH(num_disc-1, spare, dest, source)
end

from A to C : from A to B; from C to B : from A to C :
from B to A; from B to C; from A to C :

Time complexity

Let $T(n)$ denote the time complexity of running the Tower of Hanoi algorithm on n discs.

Time complexity (2)

$$
T(n)=2 \times T(n-1)+1
$$

$$
=2[2 \times T(n-2)+1]+1
$$

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 \times T(n-1)+ & \text { otherwise }\end{cases}
$$

$$
=2^{2} T(n-2)+2+1
$$

$$
=2^{2}[2 \times T(n-3)+1]+2^{1}+2^{0}
$$

$$
=2^{3} T(n-3)+2^{2}+2^{1}+2^{0}
$$

$$
=2^{k} T(n-k)+2^{k-1}+2^{k-2}+\ldots+2^{2}+2^{1}+2^{0}
$$

$$
=2^{n-1} T(1)+2^{n-2}+2^{n-3}+\ldots+2^{2}+2^{1}+2^{0}
$$

$$
=2^{n-1}+2^{n-2}+2^{n-3}+\ldots+2^{2}+2^{1}+20
$$

$$
=2^{n}-1
$$

Summary - continued

Depending on the recurrence, we can guess the order of growth

$$
\begin{array}{ll}
T(n)=T\left(\frac{n}{2}\right)+1 & T(n) \text { is } O(\log n) \\
T(n)=2 \times T\left(\frac{n}{2}\right)+1 & T(n) \text { is } O(n) \\
T(n)=2 \times T\left(\frac{n}{2}\right)+n & T(n) \text { is } O(n \log n) \\
T(n)=2 \times T(n-1)+1 & T(n) \text { is } O\left(2^{n}\right)
\end{array}
$$

Fibonacci number ...

Fibonacci's Rabbits
A pair of rabbits, one month old, is too young to reproduce. Suppose that in their second month, and every month thereafter, they produce a new pair.

Petals on flowers

3 petals: trillium

21 petals: shasta daisy

5 petals: columbine

34 petals: field daisy

Search: Fibonacci Numbers in Nature

Fibonacci number

Fibonacci number $F(n)$

$$
F(n)= \begin{cases}1 & \text { if } n=0 \text { or } 1 \\ F(n-1)+F(n-2) & \text { if } n>1\end{cases}
$$

n	0	1	2	3	4	5	6	7	8	9	10
$F(n)$	1	1	2	3	5	8	13	21	34	55	89

Pseudo code for the recursive algorithm:

Algorithm $F(n)$

```
if n==0 or n==1 then
    return 1
    else
                                return F(n-1) + F(n-2)
```


The execution of $F(7)$

The execution of $F(7)$

The execution of $F(7)$

return value
(not everything shown),

Time complexity - exponential

$$
\begin{aligned}
f(n) & =\underbrace{f(n-1)+f(n-2)+1} \\
& =[f(n-2)+f(n-3)+1]+f(n-2)+1 \\
& >2 f(n-2) \\
& >2[2 \times f(n-2-2)]=2^{2} f(n-4) \\
& >2^{2}[2 \times f(n-4-2)]=2^{3} f(n-6) \\
& >2^{3}[2 \times f(n-6-2)]=2^{4} f(n-8)
\end{aligned}
$$

exponential in n

$>2^{k} f(n-2 k)$

If n is even, $f(n)>2^{n / 2} f(0)=2^{n / 2}$
If n is odd, $f(n)>f(n-1)>2^{(n-1) / 2}$

Task: to program a robot to pick up all stars in a certain area
Command: Go straight, Turn Left, Turn Right

