COMP108 Algorithmic Foundations

Graph Theory

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

How to Measure 4L?

a 3L container \&
a 5 L container
(without mark)
infinite supply of water
You can pour water from one container to another

Learning outcomes

> Able to tell what an undirected graph is and what a directed graph is
> Know how to represent a graph using matrix and list
> Understand what Euler circuit is and able to determine whether such circuit exists in an undirected graph
> Able to apply BFS and DFS to traverse a graph
> Able to tell what a tree is

Graph ...

Graphs

introduced in the 18th century

Graph theory - an old subject with many modern applications.
An undirected graph $G=(V, E)$ consists of a set of vertices V and a set of edges E. Each edge is an unordered pair of vertices. (E.g., $\{b, c\} \&\{c, b\}$ refer to the same edge.)

A directed graph $G=(V, E)$ consists of ... Each edge is an ordered pair of vertices. (E.g., (b,c) refer to an edge from b to c.)

Modeling Facebook \& Twitter?

Graphs

represent a set of interconnected objects

undirected graph
directed graph

Applications of graphs

In computer science, graphs are often used to model > computer networks,
> precedence among processes,
> state space of playing chess (AI applications)
> resource conflicts, ...
In other disciplines, graphs are also used to model the structure of objects. E.g.,
> biology - evolutionary relationship
> chemistry - structure of molecules

Undirected graphs

Undirected graphs:
> simple graph: at most one edge between two vertices, no self loop (i.e., an edge from a vertex to itself).
> multigraph: allows more than one edge between two vertices.

> Reminder: An undirected graph G=(V,E) consists of a set of vertices V and a set of edges E. Each edge is an unordered pair of vertices.

Undirected graphs

In an undirected graph G, suppose that $e=\{u, v\}$ is an edge of G
> u and v are said to be adjacent and called neighbors of each other.
$>u$ and v are called endpoints of e.
$>e$ is said to be incident with u and v.
$>e$ is said to connect u and v. $\operatorname{deg}(v)=2$

> The degree of a vertex v, denoted by $\operatorname{deg}(v)$, is the number of edges incident with it (a loop contributes twice to the degree); The degree of a graph is the maximum degree over all vertices

Representation (of undirected graphs)

An undirected graph can be represented by adjacency matrix, adjacency list, incidence matrix or incidence list.

Adjacency matrix and adjacency list record the relationship between vertex adjacency, i.e., a vertex is adjacent to which other vertices

Incidence matrix and incidence list record the

 relationship between edge incidence, i.e., an edge is incident with which two vertices
Data Structure - Matrix

Rectangular / 2-dimensional array

> m-by-n matrix

- m rows
- n columns
$>a_{i, j}$
- row i, column j
m-by-n matrix

m rows $a_{i, j}\left(\right.$| n columns | | | | |
| :---: | :---: | :---: | :---: | :---: |
| $a_{1,1}$ | $a_{1,2}$ | $a_{1,3}$ | \ldots | $a_{1, n}$ |
| $a_{2,1}$ | $a_{2,2}$ | $a_{2,3}$ | \ldots | $a_{2, n}$ |
| $a_{3,1}$ | $a_{3,2}$ | $a_{3,3}$ | \ldots | $a_{3, n}$ |
| \vdots | \vdots | \vdots | | \vdots |
| $a_{m, 1}$ | $a_{m, 2}$ | $a_{m, 3}$ | \ldots | $a_{m, n}$ |$)$

Data Structure - Linked List

List of elements (nodes) connected together like a chain

Each node contains two fields: data next
> "data" field: stores whatever type of elements
> "next" field: pointer to link this node to the next node in the list
Head / Tail

> pointer to the beginning \& end of list

Data Structure - Linked List

Queue (FIFO: first-in-first-out)
Insert element (enqueue) to tail
Remove element (dequeue) from head

Insert 40
 tail
create newnode of 40; tail.next = newnode; tail = tail.next

Remove

return whatever head points to; head = head.next

Adjacency matrix / list

Adjacency matrix M for a simple undirected graph with n vertices is an $n \times n$ matrix
> $M(i, j)=1$ if vertex i and vertex j are adjacent
> $M(i, j)=0$ otherwise
Adjacency list: each vertex has a list of vertices to which it is adjacent

Representation (of undirected graphs)

An undirected graph can be represented by adjacency matrix, adjacency list, incidence matrix or incidence list.

Adjacency matrix and adjacency list record the relationship between vertex adjacency, i.e., a vertex is adjacent to which other vertices

Incidence matrix and incidence list record the relationship between edge incidence, i.e., an edge is incident with which two vertices

Incidence matrix / list

Incidence matrix M for a simple undirected graph with n vertices and m edges is an $m \times n$ matrix
> $M(i, j)=1$ if edge i and vertex j are incidence
$>M(i, j)=0$ otherwise
Incidence list: each edge has a list of vertices to which it is incident with

Exercise

Give the adjacency matrix and incidence matrix of the following graph abcdef

labels of edge are edge number

Directed graph ...

Directed graph

Given a directed graph G, a vertex a is said to be connected to a vertex b if there is a path from a to b.
E.g., G represents the routes provided by a certain airline. That means, a vertex represents a city and an edge represents a flight from a city to another city. Then we may ask question like: Can we fly from one city to another?

> Reminder: A directed graph $G=(V, E)$ consists of a set of vertices V and a set of edges E. Each edge is an ordered pair of vertices.
 $E=\{(a, b),(b, d)$, (b,e), (c,b), (c,e), (d,e) \} N.B. (a, b) is in E, but (b, a) is NOT

In/Out degree (in directed graphs)

The in-degree of a vertex v is the number of edges leading to the vertex v.
The out-degree of a vertex v is the number of edges leading away from the vertex v.

Always equal?

Representation (of directed graphs)

Similar to undirected graph, a directed graph can be represented by adjacency matrix, adjacency list, incidence matrix or incidence list.

Adjacency matrix / list

Adjacency matrix M for a directed graph with n vertices is an $n \times n$ matrix
$>M(i, j)=1$ if (i, j) is an edge
$>M(i, j)=0$ otherwise

Adjacency list:

reach vertex uhas a list of vertices pointed to by an edge leading away from u

 a a b c 0 1 1 0 0 0 0 0 0 0 1 0 d 0 0 e 0 0

Incidence matrix / list

Incidence matrix M for a directed graph with n vertices and m edges is an m xn matrix
$>M(i, j)=1$ if edge i is leading away from vertex j
$>M(i, j)=-1$ if edge i is leading to vertex j
Incidence list: each edge has a list of two
vertices (leading away is 1 st and leading to is $2 n d$)

Exercise

Give the adjacency matrix and incidence matrix of the following graph $a b c d e f$

labels of edge are edge number

Euler circuit ...

Paths, circuits (in undirected graphs)

$>$ In an undirected graph, a path from a vertex u to a vertex v is a sequence of edges $e_{1}=\left\{u, x_{1}\right\}$, $e_{2}=\left\{x_{1}, x_{2}\right\}, \ldots e_{n}=\left\{x_{n-1}, v\right\}$, where $n \geq 1$.
$>$ The length of this path is n.
> Note that a path from u to v implies a path from v to u.
$>$ If $u=v$, this path is called a circuit (cycle).

Euler circuit

A simple circuit visits an edge at most once.
An Euler circuit in a graph G is a circuit visiting every edge of G exactly once.
(NB. A vertex can be repeated.)
Does every graph has an Euler circuit?

$a c b d e c d a$

no Euler circuit

History: In Konigsberg, Germany, a river ran through the city and seven bridges were built. The people wondered whether or not one could go around the city in a way that would involve crossing each bridge exactly once.

A trivial condition

An undirected graph G is said to be connected if there is a path between every pair of vertices.
If G is not connected, there is no single circuit to visit all edges or vertices.

Even if the graph is connected, there may be no Euler circuit either.

Necessary and sufficient condition

 Let G be a connected graph.Lemma: G contains an Euler circuit if and only if degree of every vertex is even.

Necessary and sufficient condition

 Let G be a connected graph. How to find it?Lemma: G contains an Euler circuit if and only if degree of every vertex is even.

Hamiltonian circuit

Let G be an undirected graph.
A Hamiltonian circuit is a circuit containing every vertex of G exactly once.

Note that a Hamiltonian circuit may NOT visit all edges.
Unlike the case of Euler circuits, determining whether a graph contains a Hamiltonian circuit is a very difficult problem. (NP-hard)

Breadth First Search BFS ...

Breadth First Search (BFS)

All vertices at distance k from s are explored before any vertices at distance $k+1$.

The source is a.

Order of exploration
a.

Breadth First Search (BFS)

All vertices at distance k from s are explored before any vertices at distance $k+1$.

Order of exploration a, b, e, d

Breadth First Search (BFS)

All vertices at distance k from s are explored before any vertices at distance $k+1$.

The source is a.

Order of exploration a, b, e, d, c, f, h, g

Breadth First Search (BFS)

All vertices at distance k from s are explored before any vertices at distance $k+1$.

The source is a.

Order of exploration $a, b, e, d, c, f, h, g, k$

In general (BFS)

Explore dist 0 frontier

 distance 0
In general (BFS)

distance 0
distance 1

In general (BFS)

Breadth First Search (BFS)

A simple algorithm for searching a graph.
Given $G=(V, E)$, and a distinguished source vertex s, BFS systematically explores the edges of G such that
> all vertices at distance k from s are explored before any vertices at distance $k+1$.

Exercise - BFS

Apply BFS to the following graph starting from vertex a and list the order of exploration

Exercise (2) - BFS

Apply BFS to the following graph starting from vertex a and list the order of exploration

BFS - Pseudo code

unmark all vertices
choose some starting vertex s
mark s and insert s into tail of list L
while L is nonempty do
begin
remove a vertex v from front of L
visit v
for each unmarked neighbor w of v do mark w and insert w into tail of list L end

BFS using linked list

$a, b, e, d, c, f, h, g, k$

Depth First Search DFS ...

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

Order of exploration a,

DFS searches "deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

Order of exploration a,

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished search space
The source is a.

> DFS searches "deeper" in the graph whenever possible

Order of exploration a, b

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.
search space is empty

Order of exploration a, b, c

DFS searches
"deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

Order of exploration a, b, c
nowhere to go, backtrack
DFS searches
"deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

Order of exploration a, b, c, f

DFS searches
"deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

Order of exploration a, b, c, f, k

DFS searches "deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

Order of exploration a, b, c, f, k, e

DFS searches "deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.
 a, b, c, f, k, e

DFS searches
"deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

Order of exploration a, b, c, f, k, e, d

DFS searches
"deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

search space is empty

Order of exploration a, b, c, f, k, e, d, h

DFS searches
"deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

Order of exploration a, b, c, f, k, e, d, h

DFS searches
"deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

Order of exploration $a, b, c, f, k, e, d, h, g$

DFS searches
"deeper" in the graph whenever possible

Depth First Search (DFS)

Edges are explored from the most recently discovered vertex, backtracks when finished

The source is a.

backtrack

Order of exploration
$a, b, c, f, k, e, d, h, g$

DFS searches "deeper" in the graph whenever possible

Depth First Search (DFS)

Depth-first search is another strategy for exploring a graph; it search "deeper" in the graph whenever possible.

- Edges are explored from the most recently discovered vertex v that still has unexplored edges leaving it.
> When all edges of v have been explored, the search "backtracks" to explore edges leaving the vertex from which v was discovered.

Exercise - DFS

Apply DFS to the following graph starting from vertex a and list the order of exploration

$$
a, f, d, b, c, e ? ?
$$

Exercise (2) - DFS

Apply DFS to the following graph starting from vertex a and list the order of exploration

DFS - Pseudo code (recursive)

Algorithm DFS(vertex v)
visit v
for each unvisited neighbor w of v do begin

DFS(w)
end

Data Structure - Stack

Data organised in a vertical manner
LIFO: last-in-first-out
Top: top of stack
Operations: push \& pop
> push: adds a new element on top of stack
> pop: remove the element from top of stack

Data Structure - Stack

return stack[top]:
top--

DFS - Pseudo code (using stack)

 unmark all vertices push starting vertex u onto top of stack S while S is nonempty do beginpop a vertex v from top of S
if (v is unmarked) then
begin
visit and mark v
for each unmarked neighbor w of v do push w onto top of S end end

DFS using Stack

$a, b, c, f, k, e, d, h, g$

Tree ...

Outline

> What is a tree?
> What are subtrees
> How to traverse a binary tree?
> Pre-order, In-order, Postorder
> Application of tree traversal

Trees

An undirected graph $G=(V, E)$ is a tree if G is connected and acyclic (i.e., contains no cycles)
Other equivalent statements:

1. There is exactly one path between any two vertices in G (G is connected and acyclic)
2. G is connected and removal of one edge disconnects G (removal of an edge $\{u, v\}$ disconnects at least u and v because of [1])
3. G is acyclic and adding one edge creates a cycle (adding an edge $\{u, v\}$ creates one more path between u and v, a cycle is formed)
4. G is connected and $m=n-1$ (where $|V|=n,|E|=m$)

Lemma: $P(n)$: If a tree T has n vertices and m edges, then $m=n-1$.

Proof: By induction on the number of vertices.
Base case: A tree with single vertex does not have an edge.
Induction step: $P(n-1) \Rightarrow P(n)$ for $n>1$?
Remove an edge from the tree T. By [2], T becomes disconnected. Two connected components T_{1} and T_{2} are obtained, neither contains a cycle (the cycle is also present in Totherwise).
Therefore, both T_{1} and T_{2} are trees. Let n_{1} and n_{2} be the number of vertices in T_{1} and T_{2}. $\left[n_{1}+n_{2}=n\right]$
By the induction hypothesis, T_{1} and T_{2} contains $n_{1}-1$ and $n_{2}-1$ edges.
Hence, T contains $\left(n_{1}-1\right)+\left(n_{2}-1\right)+1=n-1$ edges.

Rooted trees

Tree with hierarchical structure, e.g., directory structure of file system

Terminologies

> Topmost vertex is called the root.

deg-0: d, k, p, g, q, s (leaves)
deg-1: b, e, f
$\operatorname{deg}-2: a, c, h$
$\operatorname{deg}-3: r$

| What is the |
| :--- | :--- |
| degree of |
| this tree? |

> A vertex u may have some children directly below it, u is called the parent of its children.
> Degree of a vertex is the no. of children it has. (N.B. it is different from the degree in an unrooted tree.)
> Degree of a tree is the max. degree of all vertices.

- A vertex with no child (degree-0) is called a leaf. All others are called internal vertices.

More terminologies

three subtrees
>We can define a tree recursively

- A single vertex is a tree.
which are the roots of the subtrees?
> If $T_{1}, T_{2}, \ldots, T_{k}$ are disjoint trees with roots $r_{1}, r_{2}, \ldots, r_{k}$, the graph obtained by attaching a new vertex r to each of r_{1}, r_{2}, \ldots, r_{k} with a single edge forms a tree T with root r.
$>T_{1}, T_{2}, \ldots, T_{k}$ are called subtrees of T.

Binary tree

$>$ a tree of degree at most TWO
> the two subtrees are called left subtree and right subtree (may be empty)

left subtree right subtree

There are three common ways to traverse a binary tree:
>preorder traversal - vertex, left subtree, right subtree
$>$ inorder traversal - left subtree, vertex, right subtree
>postorder traversal - left subtree, right subtree, vertex

Traversing a binary tree

preorder traversal

- vertex, left subtree, right subtree

$$
r \rightarrow a \rightarrow c \rightarrow d \rightarrow g \rightarrow b \rightarrow e \rightarrow f \rightarrow h \rightarrow k
$$

Traversing a binary tree

preorder traversal

- vertex, left subtree, right subtree

$$
r \rightarrow a \rightarrow c \rightarrow d \rightarrow g \rightarrow b \rightarrow e \rightarrow f \rightarrow h \rightarrow k
$$

inorder traversal

- left subtree, vertex, right subtree

$$
c \rightarrow a \rightarrow g \rightarrow d \rightarrow r \text { r } \rightarrow e \rightarrow b \rightarrow h \rightarrow f \rightarrow k
$$

Traversing a binary tree

preorder traversal

- vertex, left subtree, right subtree

$$
r \rightarrow a \rightarrow c \rightarrow d \rightarrow p g b b e \rightarrow f \rightarrow h \rightarrow k
$$

inorder traversal

- left subtree, vertex, right subtree

$$
c \rightarrow a \rightarrow g \text { } \rightarrow d \rightarrow r \text { r } \rightarrow e \rightarrow b \text { b } h \rightarrow f \rightarrow k
$$

postorder traversal

- left subtree, right subtree, vertex

$$
c \rightarrow g \rightarrow d \rightarrow a \rightarrow e \rightarrow h \rightarrow k \rightarrow f \rightarrow b \rightarrow r
$$

Exercise

Give the order of traversal of preorder, inorder, and postorder traversal of the tree

preorder:
inorder:
postorder:

Binary Search Tree

for a vertex with value X, left child has value $\leq X$ \& right child has value > X

which traversal gives numbers in ascending order?

Expression Tree

$(2+5 * 4) * 3$

1. push numbers onto stack
2. when operator is
encountered,
pop 2 numbers, operate on them \& push results back to stack
3. repeat until the expression is exhausted
