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How to Measure 4L?

You can pour water from one 
container to another 

a 3L container &
a 5L container 
(without mark)

infinite supply of water

How to measure 4L of water?

3L
5L
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(Graph)

Learning outcomes

� Able to tell what an undirected graph is and what 
a directed graph is

� Know how to represent a graph using matrix and 
list

� Understand what Euler circuit is and able to 
determine whether such circuit exists in an 
undirected graph

� Able to apply BFS and DFS to traverse a graph

� Able to tell what a tree is
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(Graph)

Graphs

Graph theory – an old subject with many modern 
applications.

introduced in the 
18th century

An undirected graph G=(V,E) consists of a set of 
vertices V and a set of edges E. Each edge is an 
unordered pair of vertices. (E.g., {b,c} & {c,b} refer to the 
same edge.)

A directed graph G=(V,E) consists of … Each edge is 
an ordered pair of vertices. (E.g., (b,c) refer to an edge 
from b to c.)

a b

c d

e

f

a b

c d

e

f

Modeling Facebook & Twitter?
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Graphs

represent a set of interconnected objects

6

a b

c d

e

f

a b

c d

e

f

undirected graph directed graph
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(Graph)

Applications of graphs

In computer science, graphs are often used to model

� computer networks,

� precedence among processes,

� state space of playing chess (AI applications)

� resource conflicts, …

In other disciplines, graphs are also used to model 
the structure of objects. E.g., 

� biology - evolutionary relationship

� chemistry - structure of molecules
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(Graph)

Undirected graphs

Undirected graphs:
� simple graph: at most one edge between two 

vertices, no self loop (i.e., an edge from a vertex to 
itself).

� multigraph: allows more than one edge between two 
vertices.

a b

c d

e

fReminder: An undirected graph G=(V,E) 
consists of a set of vertices V and a set 
of edges E. Each edge is an unordered 
pair of vertices.
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(Graph)

Undirected graphs

In an undirected graph G, suppose that e = {u, v} is an 
edge of G

� u and v are said to be adjacent and called neighbors
of each other.

� u and v are called endpoints of e.
� e is said to be incident with u and v.
� e is said to connect u and v.

� The degree of a vertex v, denoted by deg(v), is the 
number of edges incident with it (a loop contributes 
twice to the degree); The degree of a graph is the 
maximum degree over all vertices

u

ve

deg(u) = 1

deg(v) = 2

w



Algorithmic Foundations
COMP108

10
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Representation (of undirected graphs)

An undirected graph can be represented by 
adjacency matrix, adjacency list, incidence 
matrix or incidence list.

Adjacency matrix and adjacency list record the 
relationship between vertex adjacency, i.e., a 
vertex is adjacent to which other vertices

Incidence matrix and incidence list record the 
relationship between edge incidence, i.e., an edge 
is incident with which two vertices
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Data Structure - Matrix

Rectangular / 2-dimensional array

� m-by-n matrix

• m rows

• n columns

� ai,j

• row i, column j

11

(Graph)

m-by-n matrix
ai,j n columns

a1,1 a1,2 a1,3 … a1,n

a2,1 a2,2 a2,3 … a2,n

m rows a3,1 a3,2 a3,3 … a3,n

am,1 am,2 am,3 … am,n
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Data Structure - Linked List

List of elements (nodes) connected together like a 
chain

Each node contains two fields:

� "data" field: stores whatever type of elements

� "next" field: pointer to link this node to the next 
node in the list

Head / Tail

� pointer to the beginning & end of list

12

(Graph)

data next

10 30 20
head tail
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Data Structure - Linked List
Queue (FIFO: first-in-first-out)

Insert element (enqueue) to tail

Remove element (dequeue) from head

13

(Graph)

10 30 20head tail

Insert 40 10 30 20head tail40

create newnode of 40; tail.next = newnode; tail = tail.next

Remove 10 30 20head tail40

return whatever head points to; head = head.next
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(Graph)

Adjacency matrix / list

Adjacency matrix M for a simple undirected graph 
with n vertices is an nxn matrix

� M(i, j) = 1 if vertex i and vertex j are adjacent

� M(i, j) = 0 otherwise

Adjacency list: each vertex has a list of vertices 
to which it is adjacent

a b

c d
e

a b c d e
a 0 0 1 1 0
b 0 0 1 1 0
c 1 1 0 1 1
d 1 1 1 0 1
e 0 0 1 1 0

a

b

c

d

e

c

a

c

c

d

db

d

d

e
a cb e
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(Graph)

Representation (of undirected graphs)

An undirected graph can be represented by 
adjacency matrix, adjacency list, incidence 
matrix or incidence list.

Adjacency matrix and adjacency list record the 
relationship between vertex adjacency, i.e., a 
vertex is adjacent to which other vertices

Incidence matrix and incidence list record the 
relationship between edge incidence, i.e., an edge 
is incident with which two vertices
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(Graph)

Incidence matrix / list
Incidence matrix M for a simple undirected graph 

with n vertices and m edges is an mxn matrix
� M(i, j) = 1 if edge i and vertex j are incidence

� M(i, j) = 0 otherwise

Incidence list: each edge has a list of vertices to 
which it is incident with

a b

c d
e

a b c d e
1 1 0 1 0 0
2 1 0 0 1 0
3 0 1 1 0 0
4 0 1 0 1 0
5 0 0 1 1 0
6 0 0 0 1 1
7 0 0 1 0 1

1
2 3

4
5

6

7

1
2
3
4
5

a
b

a

c

c

c

d

d

b d

6
7 c e

d elabels of edge 
are edge number
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(Graph)

Exercise
Give the adjacency matrix and incidence matrix of 

the following graph

a b

d e f

c

labels of edge 
are edge number

1
2

3

4

5

a b c d e f
a
b
c
d
e
f

a b c d e f
1
2
3
4
5
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(Graph)

Directed graph
Given a directed graph G, a vertex a is said to be 

connected to a vertex b if there is a path from
a to b.

E.g., G represents the routes provided by a certain 
airline. That means, a vertex represents a city and 
an edge represents a flight from a city to another 
city. Then we may ask question like: Can we fly from 
one city to another?

Reminder: A directed graph 
G=(V,E) consists of a set of 
vertices V and a set of 
edges E. Each edge is an 
ordered pair of vertices.

a b

c d
e

E = { (a,b), (b,d), 
(b,e), (c,b), (c,e), 
(d,e) }

N.B. (a,b) is in E, 
but (b,a) is NOT
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(Graph)

In/Out degree (in directed graphs)

The in-degree of a vertex v is the number of 
edges leading to the vertex v.

The out-degree of a vertex v is the number of 
edges leading away from the vertex v.

v in-deg(v) out-deg(v)
a 0 1
b 2 2
c 0 2
d 1 1
e 3 0

sum: 6 6 Always equal?

a b

c d
e
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(Graph)

Representation (of directed graphs)

Similar to undirected graph, a directed graph can 
be represented by
adjacency matrix, adjacency list, incidence 
matrix or incidence list.
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(Graph)

Adjacency matrix / list
Adjacency matrix M for a directed graph with n 

vertices is an nxn matrix
� M(i, j) = 1 if (i,j) is an edge
� M(i, j) = 0 otherwise

Adjacency list:
� each vertex u has a list of vertices pointed to by 

an edge leading away from u
a b c d e

a 0 1 0 0 0
b 0 0 0 1 1
c 0 1 0 0 1
d 0 0 0 0 1
e 0 0 0 0 0

a

b

c

d

e

d

b

b

e

e

e

a b

c d
e
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(Graph)

Incidence matrix / list
Incidence matrix M for a directed graph with n 

vertices and m edges is an mxn matrix
� M(i, j) = 1 if edge i is leading away from vertex j

� M(i, j) = -1 if edge i is leading to vertex j

Incidence list: each edge has a list of two 
vertices (leading away is 1st and leading to is 2nd)

a b c d e
1 1 -1 0 0 0
2 0 -1 1 0 0
3 0 1 0 -1 0
4 0 1 0 0 -1
5 0 0 0 1 -1
6 0 0 1 0 -1

1
2
3
4
5

c
b

a

d

b

d

e

b

b e

6 c e

a b

c d
e

1

2 3
4

5

6
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(Graph)

4

Exercise
Give the adjacency matrix and incidence matrix of 

the following graph

a b

d e f

c

labels of edge 
are edge number

1
2

3

a b c d e f
a
b
c
d
e
f

a b c d e f
1
2
3
4
5
6

5
6
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(Graph)

Paths, circuits (in undirected graphs)

� In an undirected graph, a path from a vertex u 
to a vertex v is a sequence of edges e1= {u, x1}, 
e2= {x1, x2}, …en= {xn-1, v}, where n≥1.

� The length of this path is n.

� Note that a path from u to v implies a path 
from v to u.

� If u = v, this path is called a circuit (cycle).

u

v
e1

e2

en
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(Graph)

Euler circuit

A simple circuit visits an edge at most once.

An Euler circuit in a graph G is a circuit visiting 
every edge of G exactly once.
(NB. A vertex can be repeated.)

Does every graph has an Euler circuit ?

a b

c d
e

a c b d e c d a

a b

c d
e

no Euler circuit
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(Graph)
no Euler circuit

History: In Konigsberg, Germany, a river ran through 
the city and seven bridges were built. The people 
wondered whether or not one could go around the 
city in a way that would involve crossing each bridge 
exactly once.

5
1 2

3 4
6

7a

b

c

d1
2

3
4

5

6

7

bridges

a

b

c

d

river banks
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(Graph)

How to determine 
whether there is an 
Euler circuit in a 

graph?
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(Graph)

Even if the graph is connected, 
there may be no Euler circuit 
either.

A trivial condition

An undirected graph G is said to be connected if 
there is a path between every pair of vertices.

If G is not connected, there is no single circuit to 
visit all edges or vertices.

a b

c d
e

f
a b

c d
e

a c b d e c b d a
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(Graph)

Necessary and sufficient condition
Let G be a connected graph. 

Lemma: G contains an Euler circuit if and only if 
degree of every vertex is even.
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(Graph)

Necessary and sufficient condition
Let G be a connected graph. 

Lemma: G contains an Euler circuit if and only if 
degree of every vertex is even.

a b

d e f

c

aeda

u'

aeda
aedbfda

u''
aedbfebcfda

u a b

d e f

c
a b

d e f

c
u

aeda
aedbfda

a b

d e f

c
u

u'

How to find it?
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(Graph)

Hamiltonian circuit
Let G be an undirected graph.

A Hamiltonian circuit is a circuit containing every 
vertex of G exactly once.

Note that a Hamiltonian circuit may NOT visit all 
edges.

Unlike the case of Euler circuits, determining 
whether a graph contains a Hamiltonian circuit is 
a very difficult problem. (NP-hard)
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(Graph)

Breadth First Search (BFS)

All vertices at distance k from s are explored 
before any vertices at distance k+1.

a b

d e f

c

The source is a. Order of exploration
a, 

g h k
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All vertices at distance k from s are explored 
before any vertices at distance k+1.
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(Graph)

Breadth First Search (BFS)

a b

d e f

c

Order of exploration
a, b, e, d

g h k

Distance 1 from a.
The source is a.
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All vertices at distance k from s are explored 
before any vertices at distance k+1.
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(Graph)

Breadth First Search (BFS)

a b

d e f

c

The source is a. Order of exploration
a, b, e, d, c, f, h, g

g h k

Distance 2 from a.
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All vertices at distance k from s are explored 
before any vertices at distance k+1.
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(Graph)

Breadth First Search (BFS)

a b

d e f

c

The source is a. Order of exploration
a, b, e, d, c, f, h, g, k

g h k Distance 3 from a.
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(Graph)

In general (BFS)

…

Explore dist 0 frontier s distance 0
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(Graph)

…

In general (BFS)

…Explore dist 1 frontier
s distance 0

distance 1
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(Graph)

…

In general (BFS)

…

distance 0

Explore dist 2 frontier

s

distance 1

…

distance 2
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(Graph)

Breadth First Search (BFS)

A simple algorithm for searching a graph.

Given G=(V, E), and a distinguished source vertex s, 
BFS systematically explores the edges of G such 
that

� all vertices at distance k from s are explored 
before any vertices at distance k+1.
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Apply BFS to the following graph starting from 
vertex a and list the order of exploration

43

(Graph)

Exercise – BFS

a b

d e f

c
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Apply BFS to the following graph starting from 
vertex a and list the order of exploration

44

(Graph)

Exercise (2) – BFS

a

d

b c e

f
g
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(Graph)

BFS – Pseudo code

unmark all vertices
choose some starting vertex s 
mark s and insert s into tail of list L

while L is nonempty do
begin

remove a vertex v from front of L
visit v
for each unmarked neighbor w of v do

mark w and insert w into tail of list L

end
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BFS using linked list

46

(Graph)

a b

d e f

c

g h k

ahead tail

bhead taile d

ehead taild c

a, b, e, d, c, f, h, g, k

f

head taild c f

chead tailf h g

head tailf h g

head tailh g k
& so on …
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(Graph)

Depth First Search (DFS)

Edges are explored from the most recently 
discovered vertex, backtracks when finished

Order of exploration
a, 

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k
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Edges are explored from the most recently 
discovered vertex, backtracks when finished
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(Graph)

Depth First Search (DFS)

Order of exploration
a, 

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k

search space
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Edges are explored from the most recently 
discovered vertex, backtracks when finished

search space
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(Graph)

Depth First Search (DFS)

Order of exploration
a, b

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k
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(Graph)

Depth First Search (DFS)

Edges are explored from the most recently 
discovered vertex, backtracks when finished

Order of exploration
a, b, c

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k

search space
is empty
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Edges are explored from the most recently 
discovered vertex, backtracks when finished

search space
52

(Graph)

Depth First Search (DFS)

Order of exploration
a, b, c

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k

nowhere to go, backtrack
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Edges are explored from the most recently 
discovered vertex, backtracks when finished

search space
53

(Graph)

Depth First Search (DFS)

Order of exploration
a, b, c, f

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k
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(Graph)search space is empty

Depth First Search (DFS)

Edges are explored from the most recently 
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k
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Edges are explored from the most recently 
discovered vertex, backtracks when finished

search space
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(Graph)

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k
backtrack
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Edges are explored from the most recently 
discovered vertex, backtracks when finished

search space
56

(Graph)

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k

backtrack
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(Graph)

Depth First Search (DFS)

Edges are explored from the most recently 
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k, e, d

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k

search space
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(Graph)search space is empty

Depth First Search (DFS)

Edges are explored from the most recently 
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k, e, d, h

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k
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(Graph)

Depth First Search (DFS)

Edges are explored from the most recently 
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k, e, d, h

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k

search space backtrack
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(Graph)search space is empty

Depth First Search (DFS)

Edges are explored from the most recently 
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k, e, d, h, g

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k
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(Graph)

Depth First Search (DFS)

Edges are explored from the most recently 
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k, e, d, h, g

DFS searches 
"deeper" in the 
graph whenever 
possible

a b

d e f

c

The source is a.

g h k
backtrack

DONE!
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(Graph)

Depth First Search (DFS)

Depth-first search is another strategy for 
exploring a graph; it search "deeper" in the 
graph whenever possible.

� Edges are explored from the most recently 
discovered vertex v that still has unexplored 
edges leaving it.

� When all edges of v have been explored, the 
search "backtracks" to explore edges leaving the 
vertex from which v was discovered.
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Apply DFS to the following graph starting from 
vertex a and list the order of exploration

63

(Graph)

Exercise – DFS

a b

d e f

c

a, f, d, b, c, e??
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Apply DFS to the following graph starting from 
vertex a and list the order of exploration

64

(Graph)

Exercise (2) – DFS

a

d

b c e

f
g

a, e, b, …? a, b, f, d, c, …? 
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(Graph)

DFS – Pseudo code (recursive)

Algorithm DFS(vertex v)

visit v

for each unvisited neighbor w of v do

begin

DFS(w)

end
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Data Structure - Stack

Data organised in a vertical manner

LIFO: last-in-first-out

Top: top of stack

Operations: push & pop

� push: adds a new element on top of stack

� pop: remove the element from top of stack

66

(Graph)

10

30

20

top
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Data Structure - Stack

67

(Graph)

top++; 
stack[top] = newvalue

10

30

20

top

10

30

20

top

40Push 40

return stack[top];
top--

10

30

20

top

Pop

10

30

top

return stack[top];
top--

Pop
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(Graph)

DFS – Pseudo code (using stack)
unmark all vertices
push starting vertex u onto top of stack S
while S is nonempty do
begin

pop a vertex v from top of S
if (v is unmarked) then 
begin

visit and mark v
for each unmarked neighbor w of v do

push w onto top of S
end

end
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DFS using Stack

69

(Graph)

a b

d e f

c

g h k

a, b, c, f, k, e, d, h, g

atop d

top

e
b

d

top

e
f
c

d

top

e
f

d

top

e
k

d
top e

dtopg
top h

gtop
top
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Tree …
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(Graph)

Outline

� What is a tree?

� What are subtrees

� How to traverse a binary tree?

� Pre-order, In-order, Postorder

� Application of tree traversal
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(Graph)

Trees
An undirected graph G=(V,E) is a tree if G is 
connected and acyclic (i.e., contains no cycles)

Other equivalent statements:

1. There is exactly one path between any two 
vertices in G

2. G is connected and removal of one edge 
disconnects G

3. G is acyclic and adding one edge creates a cycle

4. G is connected and m=n-1 (where |V|=n, |E|=m)

(G is connected and acyclic)

(removal of an edge {u,v} disconnects at 
least u and v because of [1])

(adding an edge {u,v} creates one more path between u 
and v, a cycle is formed)
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(Graph)

Proof: By induction on the number of vertices.

Base case: A tree with single vertex does not have an edge.

Induction step: P(n-1) ⇒P(n) for n > 1?

Remove an edge from the tree T. By [2], T becomes 
disconnected. Two connected components T1 and T2

are obtained, neither contains a cycle (the cycle is 
also present in T otherwise).

Therefore, both T1 and T2 are trees. Let n1 and n2 be 
the number of vertices in T1 and T2. [n1+n2 = n]

By the induction hypothesis, T1 and T2 contains n1-1 
and n2-1 edges.

Hence, T contains (n1-1) + (n2-1) + 1 = n-1 edges.

Lemma: P(n): If a tree T has n vertices and m edges, 
then m=n-1.
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(Graph)

Rooted trees

Tree with hierarchical structure, e.g., directory 
structure of file system

C:\

Program 
Files

My 
Documents

Microsoft 
Office

Internet 
Explorer

My 
Pictures

My 
Music
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(Graph)

Terminologies
r

a b c

d e f hg

sqpk

� Topmost vertex is called the root.

� A vertex u may have some children directly below it, u is called 
the parent of its children.

� Degree of a vertex is the no. of children it has. (N.B. it is 
different from the degree in an unrooted tree.)

� Degree of a tree is the max. degree of all vertices.

� A vertex with no child (degree-0) is called a leaf. All others are 
called internal vertices.

root r is parent of a, b & c;
a, b, & c are children of r

deg-0: d, k, p, g, q, s (leaves)
deg-1: b, e, f
deg-2: a, c, h
deg-3: r

What is the 
degree of 
this tree?
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More terminologies
r

a b c

d e f hg

sqpk

�We can define a tree recursively

� A single vertex is a tree.

� If T1, T2, …, Tk are disjoint trees with roots r1, r2, …, rk, the 
graph obtained by attaching a new vertex r to each of r1, r2, …, 
rk with a single edge forms a tree T with root r.

� T1, T2, …, Tk are called subtrees of T.

T1 T2 T3

T1 T2 T3

r

three subtrees

which are the roots 
of the subtrees?
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Binary tree

� a tree of degree at most TWO

� the two subtrees are called left subtree and 
right subtree (may be empty)

r

a b

c d fe

khg

left subtree right subtree

There are three common ways to 
traverse a binary tree:

�preorder traversal - vertex, left 
subtree, right subtree

�inorder traversal - left subtree, 
vertex, right subtree

�postorder traversal - left 
subtree, right subtree, vertex
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Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

1

2

3

r

a b

c d fe

khg

4

5

6

7
8

9 10
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Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

inorder traversal
- left subtree, vertex, right subtree

c -> a -> g -> d -> r -> e -> b -> h -> f -> k5

2

1

r

a b

c d fe

khg

4

3

7

6
9

8 10
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Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

inorder traversal
- left subtree, vertex, right subtree

c -> a -> g -> d -> r -> e -> b -> h -> f -> k10

4

1

r

a b

c d fe

khg

3

2

9

5
8

6 7

postorder traversal
- left subtree, right subtree, vertex

c -> g -> d -> a -> e -> h -> k -> f -> b -> r
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Exercise

Give the order of 
traversal of preorder, 
inorder, and postorder 
traversal of the tree

r

a b

c d fe

nmk

preorder:
inorder:
postorder:
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for a vertex with value X,
left child has value ≤ X &
right child has value > X

3010

60

40 90

20 50 11080

12010070

which traversal gives numbers 
in ascending order?
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(2+5*4)*3
*

+

*

3

45

2

postorder traversal gives
2 5 4 * + 3 *

1. push numbers onto stack
2. when operator is 

encountered,
pop 2 numbers, operate on 
them & push results back 
to stack

3. repeat until the expression 
is exhausted


