
Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Graph Theory

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

Algorithmic Foundations
COMP108

How to Measure 4L?

You can pour water from one
container to another

a 3L container &
a 5L container
(without mark)

infinite supply of water

How to measure 4L of water?

3L
5L

Algorithmic Foundations
COMP108

3

(Graph)

Learning outcomes

� Able to tell what an undirected graph is and what
a directed graph is

� Know how to represent a graph using matrix and
list

� Understand what Euler circuit is and able to
determine whether such circuit exists in an
undirected graph

� Able to apply BFS and DFS to traverse a graph

� Able to tell what a tree is

Algorithmic Foundations
COMP108

Graph …

Algorithmic Foundations
COMP108

5

(Graph)

Graphs

Graph theory – an old subject with many modern
applications.

introduced in the
18th century

An undirected graph G=(V,E) consists of a set of
vertices V and a set of edges E. Each edge is an
unordered pair of vertices. (E.g., {b,c} & {c,b} refer to the
same edge.)

A directed graph G=(V,E) consists of … Each edge is
an ordered pair of vertices. (E.g., (b,c) refer to an edge
from b to c.)

a b

c d

e

f

a b

c d

e

f

Modeling Facebook & Twitter?

Algorithmic Foundations
COMP108

Graphs

represent a set of interconnected objects

6

a b

c d

e

f

a b

c d

e

f

undirected graph directed graph

Algorithmic Foundations
COMP108

7

(Graph)

Applications of graphs

In computer science, graphs are often used to model

� computer networks,

� precedence among processes,

� state space of playing chess (AI applications)

� resource conflicts, …

In other disciplines, graphs are also used to model
the structure of objects. E.g.,

� biology - evolutionary relationship

� chemistry - structure of molecules

Algorithmic Foundations
COMP108

8

(Graph)

Undirected graphs

Undirected graphs:
� simple graph: at most one edge between two

vertices, no self loop (i.e., an edge from a vertex to
itself).

� multigraph: allows more than one edge between two
vertices.

a b

c d

e

fReminder: An undirected graph G=(V,E)
consists of a set of vertices V and a set
of edges E. Each edge is an unordered
pair of vertices.

Algorithmic Foundations
COMP108

9

(Graph)

Undirected graphs

In an undirected graph G, suppose that e = {u, v} is an
edge of G

� u and v are said to be adjacent and called neighbors
of each other.

� u and v are called endpoints of e.
� e is said to be incident with u and v.
� e is said to connect u and v.

� The degree of a vertex v, denoted by deg(v), is the
number of edges incident with it (a loop contributes
twice to the degree); The degree of a graph is the
maximum degree over all vertices

u

ve

deg(u) = 1

deg(v) = 2

w

Algorithmic Foundations
COMP108

10

(Graph)

Representation (of undirected graphs)

An undirected graph can be represented by
adjacency matrix, adjacency list, incidence
matrix or incidence list.

Adjacency matrix and adjacency list record the
relationship between vertex adjacency, i.e., a
vertex is adjacent to which other vertices

Incidence matrix and incidence list record the
relationship between edge incidence, i.e., an edge
is incident with which two vertices

Algorithmic Foundations
COMP108

Data Structure - Matrix

Rectangular / 2-dimensional array

� m-by-n matrix

• m rows

• n columns

� ai,j

• row i, column j

11

(Graph)

m-by-n matrix
ai,j n columns

a1,1 a1,2 a1,3 … a1,n

a2,1 a2,2 a2,3 … a2,n

m rows a3,1 a3,2 a3,3 … a3,n

am,1 am,2 am,3 … am,n

Algorithmic Foundations
COMP108

Data Structure - Linked List

List of elements (nodes) connected together like a
chain

Each node contains two fields:

� "data" field: stores whatever type of elements

� "next" field: pointer to link this node to the next
node in the list

Head / Tail

� pointer to the beginning & end of list

12

(Graph)

data next

10 30 20
head tail

Algorithmic Foundations
COMP108

Data Structure - Linked List
Queue (FIFO: first-in-first-out)

Insert element (enqueue) to tail

Remove element (dequeue) from head

13

(Graph)

10 30 20head tail

Insert 40 10 30 20head tail40

create newnode of 40; tail.next = newnode; tail = tail.next

Remove 10 30 20head tail40

return whatever head points to; head = head.next

Algorithmic Foundations
COMP108

14

(Graph)

Adjacency matrix / list

Adjacency matrix M for a simple undirected graph
with n vertices is an nxn matrix

� M(i, j) = 1 if vertex i and vertex j are adjacent

� M(i, j) = 0 otherwise

Adjacency list: each vertex has a list of vertices
to which it is adjacent

a b

c d
e

a b c d e
a 0 0 1 1 0
b 0 0 1 1 0
c 1 1 0 1 1
d 1 1 1 0 1
e 0 0 1 1 0

a

b

c

d

e

c

a

c

c

d

db

d

d

e
a cb e

Algorithmic Foundations
COMP108

15

(Graph)

Representation (of undirected graphs)

An undirected graph can be represented by
adjacency matrix, adjacency list, incidence
matrix or incidence list.

Adjacency matrix and adjacency list record the
relationship between vertex adjacency, i.e., a
vertex is adjacent to which other vertices

Incidence matrix and incidence list record the
relationship between edge incidence, i.e., an edge
is incident with which two vertices

Algorithmic Foundations
COMP108

16

(Graph)

Incidence matrix / list
Incidence matrix M for a simple undirected graph

with n vertices and m edges is an mxn matrix
� M(i, j) = 1 if edge i and vertex j are incidence

� M(i, j) = 0 otherwise

Incidence list: each edge has a list of vertices to
which it is incident with

a b

c d
e

a b c d e
1 1 0 1 0 0
2 1 0 0 1 0
3 0 1 1 0 0
4 0 1 0 1 0
5 0 0 1 1 0
6 0 0 0 1 1
7 0 0 1 0 1

1
2 3

4
5

6

7

1
2
3
4
5

a
b

a

c

c

c

d

d

b d

6
7 c e

d elabels of edge
are edge number

Algorithmic Foundations
COMP108

17

(Graph)

Exercise
Give the adjacency matrix and incidence matrix of

the following graph

a b

d e f

c

labels of edge
are edge number

1
2

3

4

5

a b c d e f
a
b
c
d
e
f

a b c d e f
1
2
3
4
5

Algorithmic Foundations
COMP108

Directed graph …

Algorithmic Foundations
COMP108

19

(Graph)

Directed graph
Given a directed graph G, a vertex a is said to be

connected to a vertex b if there is a path from
a to b.

E.g., G represents the routes provided by a certain
airline. That means, a vertex represents a city and
an edge represents a flight from a city to another
city. Then we may ask question like: Can we fly from
one city to another?

Reminder: A directed graph
G=(V,E) consists of a set of
vertices V and a set of
edges E. Each edge is an
ordered pair of vertices.

a b

c d
e

E = { (a,b), (b,d),
(b,e), (c,b), (c,e),
(d,e) }

N.B. (a,b) is in E,
but (b,a) is NOT

Algorithmic Foundations
COMP108

20

(Graph)

In/Out degree (in directed graphs)

The in-degree of a vertex v is the number of
edges leading to the vertex v.

The out-degree of a vertex v is the number of
edges leading away from the vertex v.

v in-deg(v) out-deg(v)
a 0 1
b 2 2
c 0 2
d 1 1
e 3 0

sum: 6 6 Always equal?

a b

c d
e

Algorithmic Foundations
COMP108

21

(Graph)

Representation (of directed graphs)

Similar to undirected graph, a directed graph can
be represented by
adjacency matrix, adjacency list, incidence
matrix or incidence list.

Algorithmic Foundations
COMP108

22

(Graph)

Adjacency matrix / list
Adjacency matrix M for a directed graph with n

vertices is an nxn matrix
� M(i, j) = 1 if (i,j) is an edge
� M(i, j) = 0 otherwise

Adjacency list:
� each vertex u has a list of vertices pointed to by

an edge leading away from u
a b c d e

a 0 1 0 0 0
b 0 0 0 1 1
c 0 1 0 0 1
d 0 0 0 0 1
e 0 0 0 0 0

a

b

c

d

e

d

b

b

e

e

e

a b

c d
e

Algorithmic Foundations
COMP108

23

(Graph)

Incidence matrix / list
Incidence matrix M for a directed graph with n

vertices and m edges is an mxn matrix
� M(i, j) = 1 if edge i is leading away from vertex j

� M(i, j) = -1 if edge i is leading to vertex j

Incidence list: each edge has a list of two
vertices (leading away is 1st and leading to is 2nd)

a b c d e
1 1 -1 0 0 0
2 0 -1 1 0 0
3 0 1 0 -1 0
4 0 1 0 0 -1
5 0 0 0 1 -1
6 0 0 1 0 -1

1
2
3
4
5

c
b

a

d

b

d

e

b

b e

6 c e

a b

c d
e

1

2 3
4

5

6

Algorithmic Foundations
COMP108

24

(Graph)

4

Exercise
Give the adjacency matrix and incidence matrix of

the following graph

a b

d e f

c

labels of edge
are edge number

1
2

3

a b c d e f
a
b
c
d
e
f

a b c d e f
1
2
3
4
5
6

5
6

Algorithmic Foundations
COMP108

Euler circuit …

Algorithmic Foundations
COMP108

26

(Graph)

Paths, circuits (in undirected graphs)

� In an undirected graph, a path from a vertex u
to a vertex v is a sequence of edges e1= {u, x1},
e2= {x1, x2}, …en= {xn-1, v}, where n≥1.

� The length of this path is n.

� Note that a path from u to v implies a path
from v to u.

� If u = v, this path is called a circuit (cycle).

u

v
e1

e2

en

Algorithmic Foundations
COMP108

27

(Graph)

Euler circuit

A simple circuit visits an edge at most once.

An Euler circuit in a graph G is a circuit visiting
every edge of G exactly once.
(NB. A vertex can be repeated.)

Does every graph has an Euler circuit ?

a b

c d
e

a c b d e c d a

a b

c d
e

no Euler circuit

Algorithmic Foundations
COMP108

28

(Graph)
no Euler circuit

History: In Konigsberg, Germany, a river ran through
the city and seven bridges were built. The people
wondered whether or not one could go around the
city in a way that would involve crossing each bridge
exactly once.

5
1 2

3 4
6

7a

b

c

d1
2

3
4

5

6

7

bridges

a

b

c

d

river banks

Algorithmic Foundations
COMP108

29

(Graph)

How to determine
whether there is an
Euler circuit in a

graph?

Algorithmic Foundations
COMP108

30

(Graph)

Even if the graph is connected,
there may be no Euler circuit
either.

A trivial condition

An undirected graph G is said to be connected if
there is a path between every pair of vertices.

If G is not connected, there is no single circuit to
visit all edges or vertices.

a b

c d
e

f
a b

c d
e

a c b d e c b d a

Algorithmic Foundations
COMP108

31

(Graph)

Necessary and sufficient condition
Let G be a connected graph.

Lemma: G contains an Euler circuit if and only if
degree of every vertex is even.

Algorithmic Foundations
COMP108

32

(Graph)

Necessary and sufficient condition
Let G be a connected graph.

Lemma: G contains an Euler circuit if and only if
degree of every vertex is even.

a b

d e f

c

aeda

u'

aeda
aedbfda

u''
aedbfebcfda

u a b

d e f

c
a b

d e f

c
u

aeda
aedbfda

a b

d e f

c
u

u'

How to find it?

Algorithmic Foundations
COMP108

33

(Graph)

Hamiltonian circuit
Let G be an undirected graph.

A Hamiltonian circuit is a circuit containing every
vertex of G exactly once.

Note that a Hamiltonian circuit may NOT visit all
edges.

Unlike the case of Euler circuits, determining
whether a graph contains a Hamiltonian circuit is
a very difficult problem. (NP-hard)

Algorithmic Foundations
COMP108

Breadth First Search BFS …

Algorithmic Foundations
COMP108

35

(Graph)

Breadth First Search (BFS)

All vertices at distance k from s are explored
before any vertices at distance k+1.

a b

d e f

c

The source is a. Order of exploration
a,

g h k

Algorithmic Foundations
COMP108

All vertices at distance k from s are explored
before any vertices at distance k+1.

36

(Graph)

Breadth First Search (BFS)

a b

d e f

c

Order of exploration
a, b, e, d

g h k

Distance 1 from a.
The source is a.

Algorithmic Foundations
COMP108

All vertices at distance k from s are explored
before any vertices at distance k+1.

37

(Graph)

Breadth First Search (BFS)

a b

d e f

c

The source is a. Order of exploration
a, b, e, d, c, f, h, g

g h k

Distance 2 from a.

Algorithmic Foundations
COMP108

All vertices at distance k from s are explored
before any vertices at distance k+1.

38

(Graph)

Breadth First Search (BFS)

a b

d e f

c

The source is a. Order of exploration
a, b, e, d, c, f, h, g, k

g h k Distance 3 from a.

Algorithmic Foundations
COMP108

39

(Graph)

In general (BFS)

…

Explore dist 0 frontier s distance 0

Algorithmic Foundations
COMP108

40

(Graph)

…

In general (BFS)

…Explore dist 1 frontier
s distance 0

distance 1

Algorithmic Foundations
COMP108

41

(Graph)

…

In general (BFS)

…

distance 0

Explore dist 2 frontier

s

distance 1

…

distance 2

Algorithmic Foundations
COMP108

42

(Graph)

Breadth First Search (BFS)

A simple algorithm for searching a graph.

Given G=(V, E), and a distinguished source vertex s,
BFS systematically explores the edges of G such
that

� all vertices at distance k from s are explored
before any vertices at distance k+1.

Algorithmic Foundations
COMP108

Apply BFS to the following graph starting from
vertex a and list the order of exploration

43

(Graph)

Exercise – BFS

a b

d e f

c

Algorithmic Foundations
COMP108

Apply BFS to the following graph starting from
vertex a and list the order of exploration

44

(Graph)

Exercise (2) – BFS

a

d

b c e

f
g

Algorithmic Foundations
COMP108

45

(Graph)

BFS – Pseudo code

unmark all vertices
choose some starting vertex s
mark s and insert s into tail of list L

while L is nonempty do
begin

remove a vertex v from front of L
visit v
for each unmarked neighbor w of v do

mark w and insert w into tail of list L

end

Algorithmic Foundations
COMP108

BFS using linked list

46

(Graph)

a b

d e f

c

g h k

ahead tail

bhead taile d

ehead taild c

a, b, e, d, c, f, h, g, k

f

head taild c f

chead tailf h g

head tailf h g

head tailh g k
& so on …

Algorithmic Foundations
COMP108

Depth First Search DFS …

Algorithmic Foundations
COMP108

48

(Graph)

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

Order of exploration
a,

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

Algorithmic Foundations
COMP108

Edges are explored from the most recently
discovered vertex, backtracks when finished

49

(Graph)

Depth First Search (DFS)

Order of exploration
a,

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

search space

Algorithmic Foundations
COMP108

Edges are explored from the most recently
discovered vertex, backtracks when finished

search space

50

(Graph)

Depth First Search (DFS)

Order of exploration
a, b

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

Algorithmic Foundations
COMP108

51

(Graph)

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

Order of exploration
a, b, c

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

search space
is empty

Algorithmic Foundations
COMP108

Edges are explored from the most recently
discovered vertex, backtracks when finished

search space
52

(Graph)

Depth First Search (DFS)

Order of exploration
a, b, c

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

nowhere to go, backtrack

Algorithmic Foundations
COMP108

Edges are explored from the most recently
discovered vertex, backtracks when finished

search space
53

(Graph)

Depth First Search (DFS)

Order of exploration
a, b, c, f

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

Algorithmic Foundations
COMP108

54

(Graph)search space is empty

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

Algorithmic Foundations
COMP108

Edges are explored from the most recently
discovered vertex, backtracks when finished

search space

55

(Graph)

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k
backtrack

Algorithmic Foundations
COMP108

Edges are explored from the most recently
discovered vertex, backtracks when finished

search space
56

(Graph)

Depth First Search (DFS)

Order of exploration
a, b, c, f, k, e

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

backtrack

Algorithmic Foundations
COMP108

57

(Graph)

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k, e, d

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

search space

Algorithmic Foundations
COMP108

58

(Graph)search space is empty

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k, e, d, h

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

Algorithmic Foundations
COMP108

59

(Graph)

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k, e, d, h

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

search space backtrack

Algorithmic Foundations
COMP108

60

(Graph)search space is empty

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k, e, d, h, g

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k

Algorithmic Foundations
COMP108

61

(Graph)

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

Order of exploration
a, b, c, f, k, e, d, h, g

DFS searches
"deeper" in the
graph whenever
possible

a b

d e f

c

The source is a.

g h k
backtrack

DONE!

Algorithmic Foundations
COMP108

62

(Graph)

Depth First Search (DFS)

Depth-first search is another strategy for
exploring a graph; it search "deeper" in the
graph whenever possible.

� Edges are explored from the most recently
discovered vertex v that still has unexplored
edges leaving it.

� When all edges of v have been explored, the
search "backtracks" to explore edges leaving the
vertex from which v was discovered.

Algorithmic Foundations
COMP108

Apply DFS to the following graph starting from
vertex a and list the order of exploration

63

(Graph)

Exercise – DFS

a b

d e f

c

a, f, d, b, c, e??

Algorithmic Foundations
COMP108

Apply DFS to the following graph starting from
vertex a and list the order of exploration

64

(Graph)

Exercise (2) – DFS

a

d

b c e

f
g

a, e, b, …? a, b, f, d, c, …?

Algorithmic Foundations
COMP108

65

(Graph)

DFS – Pseudo code (recursive)

Algorithm DFS(vertex v)

visit v

for each unvisited neighbor w of v do

begin

DFS(w)

end

Algorithmic Foundations
COMP108

Data Structure - Stack

Data organised in a vertical manner

LIFO: last-in-first-out

Top: top of stack

Operations: push & pop

� push: adds a new element on top of stack

� pop: remove the element from top of stack

66

(Graph)

10

30

20

top

Algorithmic Foundations
COMP108

Data Structure - Stack

67

(Graph)

top++;
stack[top] = newvalue

10

30

20

top

10

30

20

top

40Push 40

return stack[top];
top--

10

30

20

top

Pop

10

30

top

return stack[top];
top--

Pop

Algorithmic Foundations
COMP108

68

(Graph)

DFS – Pseudo code (using stack)
unmark all vertices
push starting vertex u onto top of stack S
while S is nonempty do
begin

pop a vertex v from top of S
if (v is unmarked) then
begin

visit and mark v
for each unmarked neighbor w of v do

push w onto top of S
end

end

Algorithmic Foundations
COMP108

DFS using Stack

69

(Graph)

a b

d e f

c

g h k

a, b, c, f, k, e, d, h, g

atop d

top

e
b

d

top

e
f
c

d

top

e
f

d

top

e
k

d
top e

dtopg
top h

gtop
top

Algorithmic Foundations
COMP108

Tree …

Algorithmic Foundations
COMP108

71

(Graph)

Outline

� What is a tree?

� What are subtrees

� How to traverse a binary tree?

� Pre-order, In-order, Postorder

� Application of tree traversal

Algorithmic Foundations
COMP108

72

(Graph)

Trees
An undirected graph G=(V,E) is a tree if G is
connected and acyclic (i.e., contains no cycles)

Other equivalent statements:

1. There is exactly one path between any two
vertices in G

2. G is connected and removal of one edge
disconnects G

3. G is acyclic and adding one edge creates a cycle

4. G is connected and m=n-1 (where |V|=n, |E|=m)

(G is connected and acyclic)

(removal of an edge {u,v} disconnects at
least u and v because of [1])

(adding an edge {u,v} creates one more path between u
and v, a cycle is formed)

Algorithmic Foundations
COMP108

73

(Graph)

Proof: By induction on the number of vertices.

Base case: A tree with single vertex does not have an edge.

Induction step: P(n-1) ⇒P(n) for n > 1?

Remove an edge from the tree T. By [2], T becomes
disconnected. Two connected components T1 and T2

are obtained, neither contains a cycle (the cycle is
also present in T otherwise).

Therefore, both T1 and T2 are trees. Let n1 and n2 be
the number of vertices in T1 and T2. [n1+n2 = n]

By the induction hypothesis, T1 and T2 contains n1-1
and n2-1 edges.

Hence, T contains (n1-1) + (n2-1) + 1 = n-1 edges.

Lemma: P(n): If a tree T has n vertices and m edges,
then m=n-1.

Algorithmic Foundations
COMP108

74

(Graph)

Rooted trees

Tree with hierarchical structure, e.g., directory
structure of file system

C:\

Program
Files

My
Documents

Microsoft
Office

Internet
Explorer

My
Pictures

My
Music

Algorithmic Foundations
COMP108

75

(Graph)

Terminologies
r

a b c

d e f hg

sqpk

� Topmost vertex is called the root.

� A vertex u may have some children directly below it, u is called
the parent of its children.

� Degree of a vertex is the no. of children it has. (N.B. it is
different from the degree in an unrooted tree.)

� Degree of a tree is the max. degree of all vertices.

� A vertex with no child (degree-0) is called a leaf. All others are
called internal vertices.

root r is parent of a, b & c;
a, b, & c are children of r

deg-0: d, k, p, g, q, s (leaves)
deg-1: b, e, f
deg-2: a, c, h
deg-3: r

What is the
degree of
this tree?

Algorithmic Foundations
COMP108

76

(Graph)

More terminologies
r

a b c

d e f hg

sqpk

�We can define a tree recursively

� A single vertex is a tree.

� If T1, T2, …, Tk are disjoint trees with roots r1, r2, …, rk, the
graph obtained by attaching a new vertex r to each of r1, r2, …,
rk with a single edge forms a tree T with root r.

� T1, T2, …, Tk are called subtrees of T.

T1 T2 T3

T1 T2 T3

r

three subtrees

which are the roots
of the subtrees?

Algorithmic Foundations
COMP108

77

(Graph)

Binary tree

� a tree of degree at most TWO

� the two subtrees are called left subtree and
right subtree (may be empty)

r

a b

c d fe

khg

left subtree right subtree

There are three common ways to
traverse a binary tree:

�preorder traversal - vertex, left
subtree, right subtree

�inorder traversal - left subtree,
vertex, right subtree

�postorder traversal - left
subtree, right subtree, vertex

Algorithmic Foundations
COMP108

78

(Graph)

Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

1

2

3

r

a b

c d fe

khg

4

5

6

7
8

9 10

Algorithmic Foundations
COMP108

79

(Graph)

Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

inorder traversal
- left subtree, vertex, right subtree

c -> a -> g -> d -> r -> e -> b -> h -> f -> k5

2

1

r

a b

c d fe

khg

4

3

7

6
9

8 10

Algorithmic Foundations
COMP108

80

(Graph)

Traversing a binary tree

r

a b

c d fe

khg

preorder traversal
- vertex, left subtree, right subtree

r -> a -> c -> d -> g -> b -> e -> f -> h -> k

inorder traversal
- left subtree, vertex, right subtree

c -> a -> g -> d -> r -> e -> b -> h -> f -> k10

4

1

r

a b

c d fe

khg

3

2

9

5
8

6 7

postorder traversal
- left subtree, right subtree, vertex

c -> g -> d -> a -> e -> h -> k -> f -> b -> r

Algorithmic Foundations
COMP108

81

(Graph)

hg

Exercise

Give the order of
traversal of preorder,
inorder, and postorder
traversal of the tree

r

a b

c d fe

nmk

preorder:
inorder:
postorder:

Algorithmic Foundations
COMP108

Binary Search Tree

82

(Graph)

for a vertex with value X,
left child has value ≤ X &
right child has value > X

3010

60

40 90

20 50 11080

12010070

which traversal gives numbers
in ascending order?

Algorithmic Foundations
COMP108

Expression Tree

83

(Graph)

(2+5*4)*3
*

+

*

3

45

2

postorder traversal gives
2 5 4 * + 3 *

1. push numbers onto stack
2. when operator is

encountered,
pop 2 numbers, operate on
them & push results back
to stack

3. repeat until the expression
is exhausted

