Algorithmic Foundations
COMP108

COMP108
Algorithmic Foundations

Graph Theory

Prudence Wong
http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

Algorithmic Foundations

How to Measure 4L7?

O a 3L container &
a bL container
5L (without mark)

______~ infinite supply of water

You can pour water from one
container to another

Q:QL —— >
é—low to measure 4L of water? ;

\ /

a
\

3L

/
\

Algorithmic Foundations
COMP108

Learning outcomes

> Able to tell what an undirected graph is and what
a directed graph is

> Know how to represent a graph using matrix and
list

» Understand what Euler circuit is and able to
determine whether such circuit exists in an
undirected graph

> Ab
> Ab

e to apply BFS and DFS to traverse a graph
e to tell what a tree is

(Graph)

Algorithmic Foundations
COMP108

Graph ...

/Hgoﬂtnggaggggdaﬁons
introduced in the }

Gra P hs 18th century

Graph theory - an old subject with many modern
applications.

An undirected graph G=(V,E) consists of a set of
vertices V and a set of edges E. Each edge is an

unordered pair of vertices. (E.g., {b,c} & {c,b} refer to the
same edge.)

A directed graph G=(V,E) consists of ... Each edge is
an ordered pair of vertices. (E.g., (b,c) refer to an edge
fromb to c.) Modeling Facebook & Twitter?

5

(Graph)

undirected graph directed graph

Algorithmic Foundations
COMP108

Applications of graphs

In computer science, graphs are often used to model
> computer networks,
> precedence among processes,
> state space of playing chess (AI applications)
> resource conflicts, ...

In other disciplines, graphs are also used to model
the structure of objects. E.g.,

> biology - evolutionary relationship
> chemistry - structure of molecules

(Graph)

Algorithmic Foundations
COMP108

Undirected graphs

Undirected graphs:

> simple graph: at most one edge between two
vertices, no self loop (i.e., an edge from a vertex to
itself).

> multigraph: allows more than one edge between two
vertices.

Reminder: An undirected graph 6=(VE)
consists of a set of vertices V and a set
of edges E. Each edge is an unordered
pair of vertices.

Undirected graphs

Algorithmic Foundations
COMP108

In an undirected graph G, suppose that e = {u, v} is an

edge of G

> uand v are said to be adjacent and called neighbors

of each other.
> uand v are called endpoints of e.
> e is said to be /ncident with u and v.
> e is said to connectu and v.

deg(v) = 2

@%{@

deg(u) = 1

> The degree of a vertex v, denoted by deg(v), is the
number of edges incident with it (a loop contributes
twice to the degree). The degree of a graph is the

maximum degree over all vertices

9

(Graph)

Algorithmic Foundations
COMP108

Representation (of undirected graphs)

An undirected graph can be represented by
adjacency matrix, adjacency list, incidence
matrix or incidence list.

Adjacency matrix and adjacency list record the
relationship between vertex adjacency, i.e., a
vertex is adjacent to which other vertices

10

(Graph)

Algorithmic Foundations
COMP108

Data Structure - Matrix

Rectangular / 2-dimensional array

> m-by-n matrix m-by-n matrix
qQ; ; n columns
* m rows Jr \
a1 G412 413 .. Q4
h columns @1 Gz Qa3 .. G,
> Qg mrows |@3; d32 Q33 .. Q3,
* row i, column j

kam,l Qn.2 Qp,3 - am,nj

11

(Graph)

Algorithmic Foundations

Data Structure - Linked List

COMP108

List of elements (nodes) connected together like a

chain

Each node contains two fields:

> 'data" fie

> "next" fie

node in the list
0 P

Head / Tail

[:dafa

next}

d: stores whatever type of elements

d: pointer to link this node to the next

i

> pointer to the beginning & end of list

12

(Graph)

Algorithmic Foundations
COMP108

Data Structure - Linked List
Queue (FIFO: first-in-first-out)
Insert element (enqueue) to tail
Remove element (dequeue) from head

=S

%—{30

1120

Insert 40 10

[

kP

bla0 |/JCraid

create newnode of 40: tail.next = newnode: tail = tail.next

Remove [10 J 30

alp

ba0 |/JCraiD

return whatever head points to. head = head.next

13

(Graph)

Algorithmic Foundations
COMP108

Adjacency matrix / list

Adjacency matrix M for a simple undirected graph
with n vertices is an nxn matrix

> M(i, |

> M(, |

) = 1if vertex i and vertex j are adjacent
) = 0 otherwise

Adjacency list: each vertex has a list of vertices
to which it is adjacent

abcde [g/Lcl|LldY
a(00110) { —
bloo110]| LblItelrid
clt1011]| |c Ptalplblr{d[Pfe
dl[11101| |d|rtalrb|lc[Ple
e\l00110/ e ""I’C Ll d (Graplh‘:

Algorithmic Foundations
COMP108

Representation (of undirected graphs)

An undirected graph can be represented by
adjacency matrix, adjacency list, incidence
matrix or incidence list.

Incidence matrix and incidence list record the
relationship between edge incidence, i.e., an edge
1S incident with which two vertices

15

(Graph)

Algorithmic Foundations
COMP108

Incidence matrix / list

Incidence matrix M for a simple undirected graph
with n vertices and m edges is an mxn matrix

> M(i, j) = 1if edge i and vertex j are incidence
> M(i, j) = 0 otherwise

Incidence list: each edge has a list of vertices to
which it is incident with

erCde 1—e|»_q——>_c/
10100) > | Ha Pla
10010 - 1
3| Ttb [lc
01100 1,
4 | tb [”ld
401010 e T
5(00110]| [2 i d
labels of edge 610001 1 6 ‘9|’_d _)I_Q
are edge number -{g o0 1 0 1) L7 Ttc [Ple e

(Graph)

Algorithmic Foundations
COMP108

Exercise

Give the adjacency matrix and incidence matrix of

the following graph abcdef

0 Q0 O

labels of edge
are edge number

OTDWN =

17

(Graph)

Algorithmic Foundations
COMP108

Directed graph ...

Algorithmic Foundations
COMP108

Directed graph

Given a directed graph G, a vertex ais said to be
connected to a vertex b if there is a path from
ato b.

E.g., G represents the routes provided by a certain
airline. That means, a vertex represents a city and
an edge represents a flight from a city to another
city. Then we may ask question like: Can we fly from
one city to another? (a)—(b) E={(ab), (bd),

Reminder: A directed graph (b.e), (c.b), (c.e),

G=(V,E) consists of a set of 9 (de)}

vertices V and a set of N.B. (a,b) is in E,

edges E. Each edge is an but (b,a) is NOT
ordered pair of vertices.

19

(Graph)

Algorithmic Foundations
COMP108

In/Out degree (in directed graphs)

The in-degree of a vertex vis the number of
edges /eading to the vertex v.

The out-degree of a vertex vis the number of
edges /eading away from the vertex v.

(a—(b) v in-deg(v) out-deg(v)

a 0] 1
2

C 0] 2

d 1 1

e 3 0]

sum: 6 6 Always equal?

20

(Graph)

Algorithmic Foundations

Representation (of directed graphs)

Similar to undirected graph, a directed graph can
be represented by
adjacency matrix, adjacency list, incidence
matrix or incidence list.

21

(Graph)

Algorithmic Foundations
COMP108

Adjacency matrix / list

Adjacency matrix M for a directed graph with n
vertices i1s an nxn matrix

> M(i, j)=1if (i,j) is an edge
> M(i, j) = O otherwise
Adjacency list:
> each vertex v has a list of vertices pointed to by
an edge leading away from v

@—> abcde a b }/

(@ bloOO1 1 1 e
clo1oo01]| LS j/e/
dloooo1| |d |Tte
el00000/) |e |/ 22

(Graph)

Algorithmic Foundations
COMP108

Incidence matrix / list
Incidence matrix M for a directed graph with n
vertices and m edges is an mxn matrix

> M(i, j) = 1if edge i is leading away from vertex |
> M(i, j) = -1 if edge i is leading to vertex |

Incidence list: each edge has a list of two

vertices (leading away is 1st and leading to is 2nd)
bc d e

1 ¢ 1.[b]
(@—(b) 4 1(1-10 0 o) lli=a—
2" 13 & 2/l0-11 0 of | 2] Tte b
(@ 3|0 10-1 0| [3|]thld
: 4(0 100 -1| [4|tb[Tle
50 00 1 -1| |5 +td Hle

60 01 0 -1) |6|+tc Tlell,,

(Graph)

Algorithmic Foundations
COMP108

Exercise

Give the adjacency matrix and incidence matrix of

the following graph abcdef

0 Q0 O

a b ¢ d e f

labels of edge
are edge number

AT WN =

\arapin)

Algorithmic Foundations
COMP108

Euler circuit...

Algorithmic Foundations
COMP108

Paths, circuits (in undirected graphs)

> In an undirected graph, a path from a vertex v
to a vertex v is a sequence of edges e;= {u, Xy},
e,= {xq, X,}, ..e,= {X, ¢, v}, where n21.

> The length of this path is n.

> Note that a path from ¢ to v implies a path
from vto u.

> If u=v, this path is called a circuit (cycle).

en
el eZ

26

(Graph)

Algorithmic Foundations
COMP108

Fuler circuit

A simple circuit visits an edge at most once.

An Euler circuit in a graph G is a circuit visiting
every edge of G exactly once.
(NB. A vertex can be repeated.)

Does every graph has an Euler circuit ?

acbdecda no Euler circuit

27

(Graph)

Algorithmic Foundations
COMP108

History: In Konigsberg, Germany, a river ran through
the city and seven bridges were built. The people
wondered whether or not one could go around the
city in a way that would involve crossing each bridge
exactly once.

bridges

no Euler circuit

Algorithmic Foundations
COMP108

How to determine
whether there is an
Euler circuit in a
graph? \

O 29

(Graph)

Algorithmic Foundations
COMP108

A trivial condition

An undirected graph G is said to be connected if
there is a path between every pair of vertices.

If G is not connected, there is no single circuit to
visit all edges or vertices.

@ 6 Even if the graph is connected,
there may be no Euler circuit
either.
OO0 @ a b) acbdecbda

C d

30

(Graph)

Algorithmic Foundations
COMP108

Necessary and sufficient condition
Let G be a connected graph.

Lemma: G contains an Euler circuit if and only if
degree of every vertex is even.

31

(Graph)

Algorithmic Foundations
COMP108

Necessary and sufficient condition

Let G be a connected graph.

Lemma: 6 contains an Euler circuit if and only if
degree of every vertex is even. ‘

‘\\\
@ b0 (‘@ b—©
I.’i" "lll |Iiiis§!ii=!l ujﬁizifggéizzgé;
Lot | Mo

aeda

\\aedbfda //
\

aeda
aedbfda
, aedbfebcfda

/// 32

(Graph)

Algorithmic Foundations
COMP108

Hamiltonian circuit
Let G be an undirected graph.

A Hamiltonian circuit is a circuit containing every
vertex of G exactly once.

Note that a Hamiltonian circuit may NOT visit all
edges.

Unlike the case of Euler circuits, determining

whether a graph contains a Hamiltonian circuit is
a very difficult problem. (NP-hard)

33

(Graph)

Algorithmic Foun dations
COMP108

Breadth First Search BFS ...

Algorithmic Foundations
COMP108

Breadth First Search (BFS)

All vertices at distance k from s are explored
before any vertices at distance k+1.

The source is . Order of exploration

a,

Q

35

(Graph)

Algorithmic Foundations
COMP108

Breadth First Search (BFS)

All vertices at distance k from s are explored
before any vertices at distance k+1.

. Distance 1 from a.
The source is a.

Order of exploration
a, b, e, d

36

(Graph)

Algorithmic Foundations
COMP108

Breadth First Search (BFS)

All vertices at distance k from s are explored
before any vertices at distance k+1.

The source is . Order of exploration

a,b,e, d, c, f, h,g

Distance 2 from a.

37

(Graph)

Algorithmic Foundations
COMP108

Breadth First Search (BFS)

All vertices at distance k from s are explored
before any vertices at distance k+1.

The source is . Order of exploration

,b,e,d,c,f,h,g, k
a b e a,b,e, d,c g

38

9 Q ‘ k ' Distance 3 from a.

(Graph)

In general (BFS)

Explore dist O fr%

Algorithmic Foundations
COMP108

distance O

39

(Graph)

In general (BFS)

Explore dist 1 frontier

Algorithmic Foundations
COMP108

distance O

distance 1

40

(Graph)

Algorithmic Foundations
COMP108

In general (BFS)

distance O

distance 1

Explore dist
distance 2

41

(Graph)

Algorithmic Foundations
COMP108

Breadth First Search (BFS)

A simple algorithm for searching a graph.

Given G=(V, E), and a distinguished source vertex s,
BFS systematically explores the edges of G such
that

> all vertices at distance k& from s are explored
before any vertices at distance k+1.

42

(Graph)

Algorithmic Foundations
COMP108

Exercise - BFS

Apply BFS to the following graph starting from
vertex a and list the order of exploration

(e (b—(c
e'\’e\e

43

(Graph)

Algorithmic Foundations
COMP108

Exercise (2) - BFS

Apply BFS to the following graph starting from
vertex a and list the order of exploration

44

(Graph)

Algorithmic Foundations
COMP108

BFS - Pseudo code

unmark all vertices
choose some starting vertex s
mark s and insert s into tail of list L
while L is nonempty do
begin

remove a vertex v from front of L

VISIT v

for each unmarked neighbor w of v do

mark w and insert w into tail of list L

end s

(Graph)

Chead~{ b H{ e [Jo{ ¢}—CraiD

@ ® k0 Cead—~{e[F{aH{Hrl—GCGaD
a,b,e d c fh gk :d ‘:":C "’fv

o Gead~{af}—GaD

5

o

BFS using linked list

(a,
d

Chead~{e [} ¢} [o/ }—CraiD

Chead—{ ¢ [H{ [H{ o }—CraiD
Chead>—{ |} g J—CraiD

& soon ..

Algorithmic Foundations
CCCCCCC

Depth First Search DFS ...

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration

b (¢) -
Q e 6 DFS searches
"deeper" in the
@)

Q

graph whenever
possible

48

(Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration

Py -
0 e 6 DFS searches
"deeper" in the
(o) (h) (K,

Q

graph whenever
possible

49

search space (Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

search space

Order of exploration
a, b

\e
0 e 6 DFS searches

"deeper" in the
graph whenever

Q 0 0 possible

The source is a.

50

(Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

search space

s empty Order of exploration

a,b, c

The source is a.

a b

"deeper" in the
graph whenever
possible

-
6 DFS searches
(K

51

(Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

Order of exploration

The source is a. N
a,b,c

DFS searches
"deeper" in the
graph whenever
possible

search space (Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration
ab,c, f
o b, (@
0 6‘ f DFS searches
"deeper" in the
graph whenever
9 0 possible

search space (Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration

; - G ab,c, f, k
0 e DFS searches
"deeper" in the
9 v

graph whenever

: k | possible

search space is empty (Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration
a,b,c,f, ke

Q

DFS searches
"deeper" in the
graph whenever
possible

backtrack

(Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration

SN a b c f ke

a b G

backtrack

DFS searches
"deeper" in the
graph whenever
possible

SZC(I"Ch space (Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration

a,b,c,f,k,e, d
o ® @

d

DFS searches

° G "deeper" in the
hy ke

graph whenever
possible

57

search space (Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration

a,b,c,f, ke d, h
o B @

DFS searches

G "deeper" in the
k.

graph whenever
possible

h
(3

search space is empty (Graph)

58

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration

a,b,c,f ke d h
o B @

Q e G DFS searches
"deeper" in the
h wh
' 9 Q 0 ggcslgibr\é enever

backtrack
(Graph)

search space

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration

a,b,c,f, ke dh,g
o B (e
Q ° G DFS searches

"deeper" in the
graph whenever
g

i N Q 0 possible

search space is empty (Graph)

60

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Edges are explored from the most recently
discovered vertex, backtracks when finished

The source is a. Order of exploration
a,b,c,f, ke dh,g
PONE! (@ b ¢

< e G DFS searches
"deeper" in the
9 h k.

graph whenever
possible

61

backtrack

(Graph)

Algorithmic Foundations
COMP108

Depth First Search (DFS)

Depth-first search is another strategy for
exploring a graph; it search "deeper" in the
graph whenever possible.

> Edges are explored from the most recently
discovered vertex v that still has unexplored
edges leaving it.

> When all edges of v have been explored, the
search "backitracks’to explore edges leaving the
vertex from which v was discovered.

62

(Graph)

Algorithmic Foundations
COMP108

Exercise - DFS

Apply DFS to the following graph starting from
vertex a and list the order of exploration

(a) (o
a'\’e\e

a, f,d, b, c, e??

63

(Graph)

Algorithmic Foundations
COMP108

Exercise (2) - DFS

Apply DFS to the following graph starting from
vertex a and list the order of exploration

a,e, b, .2 a b, f, d, c,..?

64

(Graph)

Algorithmic Foundations

DFS - Pseudo code (recursive)

Algorithm DFS(vertex v)
visit v
for each unvisited neighbor w of v do
begin
DFS(w)
end

65

(Graph)

Algorithmic Foundations
COMP108

Data Structure - Stack

Data organised in a vertical manner 20
LIFO: last-in-first-out ?g
Top: top of stack
Operations: push & pop

> push: adds a new element on top of stack

> pop: remove the element from top of stack

66

(Graph)

Data Structure - Stack

20

Push 4

(>

30

10

30

10

top++;
stack[top] = newvalue

< Pop

return stack[top]:
top--

Algorithmic Foundations
COMP108

return stack[top]:
top--

N

20

30

10

67

(Graph)

Algorithmic Foundations
COMP108

DFS - Pseudo code (using stack)

unmark all vertices
push starting vertex u onto top of stack S
while S is nonempty do
begin
pop a vertex v from top of S
if (v is unmarked) then
begin
visit and mark v
for each unmarked neighbor w of v do
push w onto top of S
end
end

68

(Graph)

Algorithmic Foundations
COMP108

DFS using Stack

ONONG
N ial

e
Top+ a d

@ b & l

a,b,c,f, ke, d h,g

QOO
Q0 X

e
top g g | top+d d

top> -

69

(Graph)

Algorithmic Foundations
COMP108

Tree ...

Algorithmic Foundations
COMP108

Outline

> What is a tree?
> What are subtrees

> How to traverse a binary tree?
> Pre-order, In-order, Postorder

> Application of tree traversal

71

(Graph)

Algorithmic Foundations
COMP108

Trees
An undirected graph G=(V,E) is a tree if G is
connected and acyclic (i.e., contains no cycles)

Other equivalent statements:

1. There is exactly one path between any two
vertices in G (G is connected and acyclic)

2. G is connected and removal of one edge

disconhects G (removal of an edge {u,v} disconnects at
least u and v because of [1])

3. G is acyclic and adding one edge creates a cycle
(adding an edge {u,v} creates one more path between u
and v, a cycle is formed)

4. G is connected and m=n-1 (where |V|=n, |E|=m)

72

(Graph)

Algorithmic Foundations
COMP108

Lemma: P(n): If a tree T has n vertices and m edges,
then m=n-1.

Proof: By induction on the number of vertices.

Base case: A tree with single vertex does not have an edge.
Induction step: P(n-1) =P(n) for n> 1?

Remove an edge from the tree T. By [2], T becomes
disconnected. Two connected components T, and T,
are obtained, neither contains a cycle (the cycle is
also present in T otherwise).

Therefore, both T; and T, are trees. Let n; and n, be
the number of vertices in T; and T,. [n;+n, = n]

By the induction hypothesis, T; and T, contains n,-1
and n,-1 edges.

Hence, T contains (n;-1) + (n,-1) + 1 = n-1 edges.

Algorithmic Foundations
COMP108

Rooted trees

Tree with hierarchical structure, e.g., directory
structure of file system

Program
Files -~ ...
Microsoft Internet $ $
Office Explorer

Algorithmic Foundations
COMP108

Terminologies

root (r) } r is parent of a, b & c;
a, b, & ¢ are children of r

deg-0:d, k, p, g, q, s (leaves)

deg-1: b, e, f

deg-2: a, ¢, h What is the

deg-3: r degree of
this tree?

> Topmost vertex is called the root.

> A vertex ¢ may have some children directly below it, vis called
the parent of its children.

> Degree of a vertexis the no. of children it has. (N.B. it is
different from the degree in an unrooted tree.)

> Degree of a freeis the max. degree of all vertices.

> A vertex with no child (degree-0) is called a leaf. All others are
called internal vertices. 75

(Graph)

Algorithmic Foundations
COMP108

More terinologies

three subtrees

>»We can define a tree recursively which are the roots

> A single vertex is a tree. of the subtrees?

> If T, T,, .., T are disjoint trees with roots ry, ry, ..., ry, the
graph obtained by attaching a new vertex rto each of ry, r,, ..,
r. with a single edge forms a tree T with root r.

> Ty, Ty, ..., T are called subtrees of T.

76

(Graph)

Algorithmic Foundations
COMP108

Binary tree

> a tree of degree at most TWO

> the two subtrees are called left subtree and
right subtree (may be empty)

There are three common ways to
tfraverse a binary tree:

»preorder traversal - vertex, left
subtree, right subtree

>inorder traversal - left subtree,
vertex, right subtree

left subtree right subtree|>postorder traversal - left
subtree, right subtree, vertex

77

(Graph)

Algorithmic Foundations
COMP108

Traversing a binary tree

preorder traversal
- vertex, left subtree, right subtree

r->a->c->d->9->b->e->f->h->k

78

(Graph)

Algorithmic Foundations
COMP108

Traversing a binary tree

preorder traversal
- vertex, left subtree, right subtree

r->a->c->d->9->b->e->f->h->k

inorder traversal
- left subtree, vertex, right subtree

c->q->9->d->r'->e->b->h->f->k

79

(Graph)

Algorithmic Foundations
COMP108

Traversing a binary tree

preorder traversal
- vertex, left subtree, right subtree

r->a->c->d->9->b->e->f->h->k

inorder traversal
- left subtree, vertex, right subtree

c->q->9->d->r'->e->b->h->f->k

postorder traversal
- left subtree, right subtree, vertex

c->9->d->a->e->h->k->f->b->r

80

(Graph)

Algorithmic Foundations
COMP108

Exercise (r)

Give the order of
traversal of preorder, e e
inorder, and postorder

traversal of the tree e o e 0
9 W k) (m (a

preorder:
inorder:
postorder:

81

(Graph)

Algorithmic Foundations
COMP108

Binary Search Tree 0

for a vertex with value X,

left child has value < X & @ @
right child has value > X

200 (50) (80) (10
10 39 (70 @00 (20

which traversal gives numbers
in ascending order?

82

(Graph)

Algorithmic Foundations
COMP108

Expression Tree (2+5%4)*3

postorder traversal gives
/\@ 25 4% 4+ 3%
1. push numbers onto stack
" 2. when operator is
encountered,

pop 2 numbers, operate on
e ° them & push results back
to stack

3. repeat until the expression
is exhausted

83

(Graph)

