COMP108 Algorithmic Foundations Greedy methods

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

Coin Change Problem

Suppose we have 3 types of coins

10p

20p

50p

Minimum number of coins to make £0.8, £1.0, £1.4?

Greedy method

Learning outcomes

> Understand what greedy method is
> Able to apply Kruskal's algorithm to find minimum spanning tree
> Able to apply Dijkstra's algorithm to find singlesource shortest-paths
> Able to apply greedy algorithm to find solution for Knapsack problem

Greedy methods

How to be greedy?
> At every step, make the best move you can make
> Keep going until you're done
Advantages
> Don't need to pay much effort at each step
> Usually finds a solution very quickly
> The solution found is usually not bad
Possible problem
> The solution found may NOT be the best one

Greedy methods - examples

Minimum spanning tree
> Kruskal's algorithm
Single-source shortest-paths
> Dijkstra's algorithm
Both algorithms find one of the BEST solutions
Knapsack problem
> greedy algorithm does NOT find the BEST solution

Kruskal's algorithm ...

Minimum Spanning tree (MST)

Given an undirected connected graph G
> The edges are labelled by weight
Spanning tree of G
>a tree containing all vertices in G
Minimum spanning tree of G
> a spanning tree of G with minimum weight

Examples

Spanning trees of G

Idea of Kruskal's algorithm - MST

Kruskal's algorithm - MST

Arrange edges from smallest to largest weight

(h, g)	1
(i, c)	2
(g, f)	2
(a, b)	4
(c, f)	4
(c, d)	7
(h, i)	7
(b, c)	8
(a, h)	8
(d, e)	9
(f, e)	10
(b, h)	11
(d, f)	14

Kruskal's algorithm - MST

Choose the minimum weight edge

\Rightarrow| (h, g) | 1 |
| :--- | :--- |
| (i, c) | 2 |
| (g, f) | 2 |
| (a, b) | 4 |
| (c, f) | 4 |
| (c, d) | 7 |
| (h, i) | 7 |
| (b, c) | 8 |
| (a, h) | 8 |
| (d, e) | 9 |
| (f, e) | 10 |
| (b, h) | 11 |
| (d, f) | 14 |

italic: chosen

Kruskal's algorithm - MST

Choose the next minimum weight edge

\Longrightarrow| (h, g) | 1 |
| :--- | :--- |
| (i, c) | 2 |
| (g, f) | 2 |
| (a, b) | 4 |
| (c, f) | 4 |
| (c, d) | 7 |
| (h, i) | 7 |
| (b, c) | 8 |
| (a, h) | 8 |
| (d, e) | 9 |
| (f, e) | 10 |
| (b, h) | 11 |
| (d, f) | 14 |

italic: chosen

Kruskal's algorithm - MST

$\Rightarrow \Rightarrow$| (h, g) | 1 |
| :--- | :--- |
| (i, c) | 2 |
| (g, f) | 2 |
| (a, b) | 4 |
| (c, f) | 4 |
| (c, d) | 7 |
| (h, i) | 7 |
| (b, c) | 8 |
| (a, h) | 8 |
| (d, e) | 9 |
| (f, e) | 10 |
| (b, h) | 11 |
| (d, f) | 14 |

Continue as long as no cycle forms
italic: chosen

Kruskal's algorithm - MST

Continue as long as no cycle forms

(h, g)	1
(i, c)	2
(g, f)	2
(a, b)	4
(c, f)	4
(c, d)	7
(h, i)	7
(b, c)	8
(a, h)	8
(d, e)	9
(f, e)	10
(b, h)	11
(d, f)	14

italic: chosen ${ }_{14}$

Kruskal's algorithm - MST

italic: chosen ${ }_{15}$

Kruskal's algorithm - MST

Continue as long as no cycle forms

(h, g)	1
(i, c)	2
(g, f)	2
(a, b)	4
(c, f)	4
(c, d)	7
(h, i)	7
(b, c)	8
(a, h)	8
(d, e)	9
(f, e)	10
(b, h)	11
(d, f)	14

italic: chosen ${ }_{16}$

Kruskal's algorithm - MST

(h, i) cannot be included, otherwise, a cycle is formed

(h, g)	1
(i, c)	2
(g, f)	2
(a, b)	4
(c, f)	4
(c, d)	7
(h, i)	7
(b, c)	8
(a, h)	8
(d, e)	9
(f, e)	10
(b, h)	11
(d, f)	14

italic: chosen

Kruskal's algorithm - MST

Choose the next minimum weight edge

| (h, g) | 1 |
| :--- | :--- | :--- |
| (i, c) | 2 |
| (g, f) | 2 |
| (a, b) | 4 |
| (c, f) | 4 |
| (c, d) | 7 |
| (h, i) | 7 |
| (b, c) | 8 |
| (a, h) | 8 |
| (d, e) | 9 |
| (f, e) | 10 |
| (b, h) | 11 |
| (d, f) | 14 |

italic: chosen ${ }_{18}$

Kruskal's algorithm - MST

(a, h) cannot be included, otherwise, a cycle is formed

| (h, g) | 1 |
| :--- | :--- | :--- |
| (i, c) | 2 |
| (g, f) | 2 |
| (a, b) | 4 |
| (c, f) | 4 |
| (c, d) | 7 |
| (h, i) | 7 |
| (b, c) | 8 |
| (a, h) | - |
| (d, e) | 9 |
| (f, e) | 10 |
| (b, h) | 11 |
| (d, f) | 14 |

italic: chosen ${ }_{19}$

Kruskal's algorithm - MST

Choose the next minimum weight edge

(h, g)	1
(i, c)	2
(g, f)	2
(a, b)	4
(c, f)	4
(c, d)	7
(h, i)	7
(b, c)	8
(a, h)	9
(d, e)	9
(f, e)	10
(b, h)	11
(d, f)	14

italic: chosen 20

Kruskal's algorithm - MST

(f, e) cannot be included, otherwise, a cycle is formed

(h, g)	1
(i, c)	2
(g, f)	2
(a, b)	4
(c, f)	4
(c, d)	7
(h, i)	7
(b, c)	8
(a, h)	$2-$
(d, e)	9
(f, e)	10
(b, h)	11
(d, f)	14

italic: chosen

Kruskal's algorithm - MST

(h, g)	1
(i, c)	2
(g, f)	2
(a, b)	4
(c, f)	4
(c, d)	7
(h, i)	7
(b, c)	8
(a, h)	8
(d, e)	9
(f, e)	10
(b, h)	11
(d, f)	14

(b,h) cannot be included, otherwise, a cycle is formed
italic: chosen

Kruskal's algorithm - MST

(h, g)	1
(i, c)	2
(g, f)	2
(a, b)	4
(c, f)	4
(c, d)	7
(h, i)	7
(b, c)	8
(a, h)	9
(d, e)	9
(f, e)	10
(b, h)	11
(d, f)	14

italic: chosen

Kruskal's algorithm - MST

MST is found when all edges are examined

(h, g)	1
(i, c)	2
(g, f)	2
(a, b)	4
(c, f)	4
(c, d)	7
(h, i)	7
(b, c)	8
(a, h)	8
(d, e)	9
(f, e)	10
(b, h)	11
(d, f)	14

italic: chosen 24

Kruskal's algorithm - MST

Kruskal's algorithm is greedy in the sense that it always attempt to select the smallest weight edge to be included in the MST

Exercise - Find MST for this graph

order of (edges) selection:

Pseudo code

// Given an undirected connected graph G=(V,E)
$T=\varnothing$ and $E^{\prime}=E$
while $E^{\prime} \neq \varnothing$ do
begin
Time complexity?
pick an edge e in E^{\prime} with minimum weight
if adding e to T does not form cycle then add e to T, i.e., $T=T \cup\{e\}$
remove e from E^{\prime}, i.e., $E^{\prime}=E^{\prime} \backslash\{e\} \bigcirc$
end
Can be tested by marking vertices

Dijkstra's algorithm ...

Single-source shortest-paths

 Consider a (un)directed connected graph G> The edges are labelled by weight
Given a particular vertex called the source
> Find shortest paths from the source to all other vertices (shortest path means the total weight of the path is the smallest)

Example

Directed Graph G (edge label is weight) a is source vertex

thick lines: shortest path dotted lines: not in shortest path

Single-source shortest paths vs MST

Shortest paths from a

> What is the difference between MST and shortest paths from a?

Algorithms for shortest paths

Algorithms
> there are many algorithms to solve this problem, one of them is Dijkstra's algorithm, which assumes the weights of edges are non-negative

Idea of Dijkstra's algorithm

choose the edge leading to vertex s.t. cost of path to source is min

Dijkstra's algorithm

Input: A directed connected weighted graph G and a source vertex s

Output: For every vertex v in G, find the shortest path from s to v

Dijkstra's algorithm runs in iterations:
$>$ in the i-th iteration, the vertex which is the i-th closest to s is found,
> for every remaining vertices, the current shortest path to s found so far (this shortest path will be updated as the algorithm runs)

Dijkstra's algorithm

Suppose vertex a is the source, we now show how Dijkstra's algorithm works

Dijkstra's algorithm

Every vertex v keeps 2 labels: (1) the weight of the current shortest path from a; (2) the vertex leading to v on that path, initially as ($\infty,-$)

Dijkstra's algorithm

For every neighbor u of a, update the weight to the weight of (a, u) and the leading vertex to a. Choose from b, c, d the one with the smallest such weight.

Dijkstra's algorithm

For every un-chosen neighbor of vertex b, update the weight and leading vertex. Choose from ALL un-chosen vertices (i.e. c, d, h) the one with smallest weight.

Dijkstra's algorithm

If a new path with smallest weight is discovered, e.g., for vertices e, h, the weight is updated. Otherwise, like vertex d, no update. Choose among d, e, h.

Dijkstra's algorithm

Repeat the procedure. After d is chosen, the weight of e and k is updated. Choose among e, h, k. Next vertex chosen is h.

Dijkstra's algorithm

After h is chosen, the weight of e and k is updated again. Choose among e,k. Next vertex chosen is e.

Dijkstra's algorithm

After e is chosen, the weight of f and k is updated again. Choose among $\underline{f, k}$. Next vertex chosen is f.

Dijkstra's algorithm

After f is chosen, it is NOT necessary to update the weight of k. The final vertex chosen is k.

Dijkstra's algorithm

At this point, all vertices are chosen, and the shortest path from a to every vertex is discovered.

Exercise - Shortest paths from a

order of (edges) selection:
Compare the solution with slide \#26

Dijkstra's algorithm

To describe the algorithm using pseudo code, we give some notations

Each vertex v is labelled with two labels:
> a numeric label $d(v)$ indicates the length of the shortest path from the source to v found so far
> another label $p(v)$ indicates next-to-last vertex on such path, i.e., the vertex immediately before v on that shortest path

Pseudo code

// Given a graph $G=(V, E)$ and a source vertex s for every vertex v in the graph do
set $d(v)=\infty$ and $p(v)=$ null set $d(s)=0$ and $V_{T}=\varnothing$ while $V I V_{T} \neq \varnothing$ do // there is still some vertex left begin choose the vertex u in $V \mid V_{T}$ with minimum $d(u)$ set $V_{T}=V_{T} \cup\{u\}$ for every vertex v in $V \mid V_{T}$ that is a neighbor of u do

$$
\begin{aligned}
& \text { if } d(u)+w(u, v)<d(v) \text { then // a shorter path is found } \\
& \text { set } d(v)=d(u)+w(u, v) \text { and } p(v)=u
\end{aligned}
$$

end

Does Greedy algorithm always return the best solution?

Knapsack Problem

Input: Given n items with weights $w_{1}, w_{2}, \ldots, w_{n}$ and values $v_{1}, v_{2}, \ldots, v_{n}$, and a knapsack with capacity W.

Output: Find the most valuable subset of items that can fit into the knapsack
Application: A transport plane is to deliver the most valuable set of items to a remote location without exceeding its capacity

Example 1

$w=10$	$w=20$	$w=30$
$v=60$	$v=100$	$v=120$
item 1	item 2	item 3

subset	total weight	total value
$\{1\}$	0	0
$\{2\}$	10	60
$\{3\}$	30	100
$\{1,2\}$	30	120
$\{1,3\}$	40	180
$\{2,3\}$	50	220
$\{1,2,3\}$	60	$\mathrm{~N} / \mathrm{A}$

Greedy approach

knapsack

Greedy: pick the item with the next largest value if total weight \leq capacity. Result:

> item 3 is taken, total value $=120$, total weight $=30$
> item 2 is taken, total value $=220$, total weight $=50$
> item 1 cannot be taken

Example 2

$w=7$	$w=3$	$w=4$	$w=5$

subset	total	total		total	total
	weight	value	subset	weight	value
¢	0	0	\{2,3\}	7	52
\{1\}	7	42	$\{2,4\}$	8	37
\{2\}	3	12	\{3,4\}	9	65
\{3\}	4	40	\{1,2,3\}	14	N/A
\{4\}	5	25	\{1,2,4\}	15	N/A
$\{1,2\}$	10	54	\{1,3,4\}	16	N/A
$\{1,3\}$	11	N/A	\{2,3,4\}	12	N/A
$\{1,4\}$	12	N/A	\{1,2,3,4\}	19	N/A

Greedy approach

$w=7$	$w=3$	$w=4$	w $=5$
$v=42$	$v=12$	$v=40$	$v=25$
item 1	item 2	item 3	item 4

Greedy: pick the item with the next largest value if total weight \leq capacity.
Result:
$>$ item 1 is taken, total value $=42$, total weight $=7$ not the
> item 3 cannot be taken
> item 4 cannot be taken
> item 2 is taken, total value $=54$, total weight $=10$

Greedy approach 2

$v / w=6$	$v / w=4$	$v / w=10$	$v / w=5$
$w=7$	$w=3$	$w=4$	$w=5$
$v=42$	$v=12$	$v=40$	$v=25$
item 1	item 2	item 3	item 4

Greedy 2: pick the item with the next largest
(value/weight) if total weight s capacity.

Result:

> item 3 is taken, total value $=40$, total weight $=4$
> item 1 cannot be taken
> item 4 is taken, total value $=65$, total weight $=9$
> item 2 cannot be taken

Greedy approach 2

Greedy: pick the item with the next largest (value/weight) if total weight s capacity. Result:
> item 1 is taken, total value $=60$, total weight $=10$
$>$ item 2 is taken, total value $=160$, total weight $=30$
> item 3 cannot be taken

Lesson Learned: Greedy algorithm does NOT always return the best solution

