COMP108 Algorithmic Foundations Greedy methods

Prudence Wong

http://www.csc.liv.ac.uk/~pwong/teaching/comp108/201617

Coin Change Problem Suppose we have 3 types of coins

10p 20p 50p Minimum number of coins to make £0.8, £1.0, £1.4 ?

Greedy method

2

Learning outcomes

- > Understand what greedy method is
- > Able to apply Kruskal's algorithm to find minimum spanning tree
- > Able to apply Dijkstra's algorithm to find singlesource shortest-paths
- > Able to apply greedy algorithm to find solution for Knapsack problem

Greedy methods

How to be greedy?

- > At every step, make the best move you can make
- > Keep going until you're done

Advantages

- > Don't need to pay much effort at each step
- > Usually finds a solution very quickly
- > The solution found is usually not bad

Possible problem

> The solution found may NOT be the best one

Greedy methods - examples

Minimum spanning tree

> Kruskal's algorithm

Single-source shortest-paths

> Dijkstra's algorithm

Both algorithms find one of the BEST solutions

Knapsack problem

> greedy algorithm does NOT find the BEST solution

Kruskal's algorithm ...

Minimum Spanning tree (MST)

Given an undirected connected graph G

> The edges are labelled by weight

Spanning tree of G

 \succ a tree containing all vertices in G

Minimum spanning tree of G

> a spanning tree of G with minimum weight

Examples

Kruskal's algorithm - MST

Arrange edges from smallest to largest weight

(h,g)	1
(i,c)	2
(g,f)	2
(a,b)	4
(c,f)	4
(c,d)	7
(h,i)	7
(b,c)	8
(a,h)	8
(d,e)	9
(f,e)	10
(b,h)	11
(d,f)	14

Kruskal's algorithm - MST

Choose the minimum weight edge

⇒	(h,g)	1
	(i,c)	2
	(g,f)	2
	(a,b)	4
	(c,f)	4
	(c,d)	7
	(h,i)	7
	(b,c)	8
	(a,h)	8
	(d,e)	9
	(f,e)	10
	(b,h)	11
	(d,f)	14

italic: chosen 11

(Greedy)

Kruskal's algorithm - MST

Choose the next minimum weight edge

(h,	<i>g</i>)	1
⇒ (i, e	シ	2
(g,	f)	2
(a,	b)	4
(c,	f)	4
(c,	d)	7
(h,	i)	7
(b,	c)	8
(a,	h)	8
(d,	e)	9
(f,	e)	10
(b,	h)	11
(d,	f)	14

Kruskal's algorithm - MST

Continue as long as no cycle forms

italic: chosen 13

(Greedy)

Kruskal's algorithm - MST

Continue as long as no cycle forms

1
2
2
4
4
7
7
8
8
9
10
11
14

Kruskal's algorithm - MST

Continue as long as no cycle forms

Kruskal's algorithm - MST

Continue as long as no cycle forms

	(h,g)	1
	(i,c)	2
	(g,f)	2
	(a,b)	4
	(c,f)	4
⇒	(c,d)	7
	(h,i)	7
	(b,c)	8
	(a,h)	8
	(d,e)	9
	(f,e)	10
	(b,h)	11
	(d,f)	14

Kruskal's algorithm - MST

(h,i) cannot be included, otherwise, a cycle is formed

italic: chosen 17

(Greedy)

Kruskal's algorithm - MST

Choose the next minimum weight edge

Kruskal's algorithm - MST

(a,h) cannot be included, otherwise, a cycle is formed

Kruskal's algorithm - MST

Choose the next minimum weight edge

Kruskal's algorithm - MST

(f,e) cannot be included, otherwise, a cycle is formed

Kruskal's algorithm - MST

(b,h) cannot be included, otherwise, a cycle is formed

italic: chosen 22

(Greedy)

Kruskal's algorithm - MST

(d,f) cannot be included, otherwise, a cycle is formed

Kruskal's algorithm - MST

(Greedy)

Kruskal's algorithm - MST

Kruskal's algorithm is greedy in the sense that it always attempt to select the smallest weight edge to be included in the MST

Exercise – Find MST for this graph

order of (edges) selection:

26

(Greedy)

Pseudo code

// Given an undirected connected graph G=(V,E)

- $T = \emptyset$ and E' = E
- while $E' \neq \emptyset$ do

begin

pick an edge e in E' with minimum weight if adding e to T does not form cycle then add e to T, i.e., $T = T \cup \{e\}$ remove e from E', i.e., E' = E' \ { e } \bigcirc

end

Time complexity?

Dijkstra's algorithm ...

Single-source shortest-paths

Consider a (un)directed connected graph G

> The edges are labelled by weight

Given a particular vertex called the *source*

Find shortest paths from the source to all other vertices (shortest path means the total weight of the path is the smallest)

Example

(Greedy)

30

Single-source shortest paths vs MST

(Greedy)

Algorithms for shortest paths

Algorithms

> there are many algorithms to solve this problem, one of them is Dijkstra's algorithm, which assumes the weights of edges are <u>non-negative</u>

Idea of Dijkstra's algorithm

choose the edge leading to vertex s.t. cost of path to source is min

Mind that the edge added is *NOT* necessarily the minimum-cost one

Input: A directed connected weighted graph G and a source vertex *s*

Output: For every vertex v in G, find the shortest path from s to v

Dijkstra's algorithm runs in iterations:

- in the i-th iteration, the vertex which is the i-th closest to s is found,
- > for every remaining vertices, the current shortest path to s found so far (this shortest path will be updated as the algorithm runs)

Suppose vertex *a* is the source, we now show how Dijkstra's algorithm works

(Greedy)

Every vertex v keeps 2 labels: (1) the weight of the current shortest path from *a*: (2) the vertex leading to v on that path, initially as (∞ , -)

(Greedy)

For every neighbor u of a, update the weight to the weight of (a, u) and the leading vertex to a. Choose from b, c, d the one with the smallest such weight.

Dijkstra's algorithm

For every un-chosen neighbor of vertex *b*, update the weight and leading vertex. Choose from ALL un-chosen vertices (i.e., *c*, *d*, *h*) the one with smallest weight.

If a new path with smallest weight is discovered, e.g., for vertices *e*, *h*, the weight is updated. Otherwise, like vertex *d*, no update. Choose among <u>*d*</u>, <u>*e*</u>, <u>*h*</u>.

Repeat the procedure. After d is chosen, the weight of e and k is updated. Choose among $\underline{e, h, k}$. Next vertex chosen is h.

Dijkstra's algorithm After h is chosen, the weight of e and k is updated

again. Choose among <u>e, k</u>. Next vertex chosen is <u>e</u>.

Dijkstra's algorithm After *e* is chosen, the weight of *f* and *k* is updated

again. Choose among <u>f</u>, <u>k</u>. Next vertex chosen is <u>f</u>.

Dijkstra's algorithm After f is chosen, it is NOT necessary to update the weight of k. The final vertex chosen is k.

At this point, all vertices are chosen, and the shortest path from *a* to every vertex is discovered.

Exercise - Shortest paths from a

order of (edges) selection:

Compare the solution with slide #26

45

To describe the algorithm using pseudo code, we give some notations

Each vertex **v** is labelled with two labels:

- > a numeric label d(v) indicates the length of the shortest path from the source to v found so far
- > another label p(v) indicates next-to-last vertex on such path, i.e., the vertex immediately before v on that shortest path

Pseudo code

// Given a graph G=(V, E) and a source vertex s for every vertex v in the graph do set $d(v) = \infty$ and p(v) = null set d(s) = 0 and $V_T = \emptyset$ while $V \mid V_T \neq \emptyset$ do // there is still some vertex left begin

choose the vertex u in $V \setminus V_T$ with minimum d(u)set $V_T = V_T \cup \{ u \}$

for every vertex v in $V \mid V_T$ that is a neighbor of u do

if d(u) + w(u, v) < d(v) then // a shorter path is found set d(v) = d(u) + w(u, v) and p(v) = u

Does Greedy algorithm always return the best solution?

Knapsack Problem

- **Input:** Given n items with weights w_1 , w_2 , ..., w_n and values v_1 , v_2 , ..., v_n , and a knapsack with capacity W.
- Output: Find the most valuable subset of items that can fit into the knapsack

Application: A transport plane is to deliver the most valuable set of items to a remote location without exceeding its capacity

capacity = 50

knapsack

Example 1

w = 10

v = 60

item 1

subset

Φ

{1}

{2}

{3}

{1,2}

{1,3}

{2,3}

{1,2,3}

w = 20

v = 100

item $\overline{2}$

total

weight

()

10

20

30

30

40

50

60

w = 30

v = 120

item 3

total

value

0

60

100

120

160

180

220

N/A

50

(Greedy)

v = 60 v = 100 v = 120 item 1 item 2 item 3 Knapsack Greedy: pick the item with the next largest value if total weight ≤ capacity. Nesult:

w = 30

- > item 3 is taken, total value = 120, total weight = 30
- > item 2 is taken, total value = 220, total weight = 50
- > item 1 cannot be taken

Greedy approach

w = 20

w = 10

Algorithmic Foundations **COMP108** Example 2 capacity = 10w = 3w = 5w = 4 w = 7v = 42 v = 12 v = 40 v = 25 item 2 item 3 knapsack item 1 item 4 total total total total subset value subset weight value weight 52 {2,3} 7 0 ()0 {1} 42 {2,4} 37 8 {2} 3 12 9 65 **{3,4} {3}** 40 N/A 4 14 $\{1, 2, 3\}$ 5 25 **{4}** $\{1, 2, 4\}$ 15 N/A N/A {1,2} 10 54 $\{1,3,4\}$ 16 N/A 12 N/A 11 $\{2,3,4\}$ {1,3} 12 N/A $\{1,2,3,4\}$ 19 N/A {1,4} (Greedy)

52

Greedy approach

capacity = 10

Greedy: pick the item with the next largest value if total weight < capacity.

Result:

- > item 1 is taken, total value = 42, total weight = 7
- > item 3 cannot be taken
- > item 4 cannot be taken
- > item 2 is taken, total value = 54, total weight = 10

53

best!

Greedy approach 2

$$v/w = 6$$
 $v/w = 4$
 $v/w = 10$
 $v/w = 5$
 capacity = 10

 $w = 7$
 $w = 3$
 $w = 4$
 $w = 5$
 $v = 25$

 item 1
 item 2
 item 3
 item 4
 knapsack

Greedy 2: pick the item with the next largest (value/weight) if total weight ≤ capacity. Result:

- > item 3 is taken, total value = 40, total weight = 4
- > item 1 cannot be taken
- > item 4 is taken, total value = 65, total weight = 9
- > item 2 cannot be taken

Greedy approach 2

$$v/w = 6$$
 $v/w=5$ $v/w = 4$ $w = 10$ $w = 20$ $w = 30$ $v = 60$ $v = 100$ $v = 120$ item 1item 2item 3

capacity = 50

Greedy: pick the item with the next largest (value/weight) if total weight ≤ capacity. Result:

- > item 1 is taken, total value = 60, total weight = 10
- > item 2 is taken, total value = 160, total weight = 30
- > item 3 cannot be taken

knapsack

Lesson Learned: Greedy algorithm does NOT always return the best solution