## COMP108 Algorithmic Foundations

Tutorial 1 (Suggested solution and Feedback) w/c 6th February 2017

1. (a) $(x-2)(x+1)+x+2=x^{2}-x-2+x+2=x^{2}$
(b) $\sqrt{x^{2}+2 x+1}=\sqrt{(x+1)^{2}}=x+1$
(c) $\frac{x^{2}-x-2}{x-2}+\frac{x^{2}+2 x+1}{x+1}=\frac{(x-2)(x+1)}{x-2}+\frac{(x+1)^{2}}{x+1}=x+1+x+1=2 x+2$

One way to factorise $x^{2}-x-2$ : we want to express it as $(x+/-?)(x+/-?)$. To get the constant -2 , we have two options, either $2 \times-1$ or $-2 \times 1$. Then we check that $(x+2)(x-1)$ gives $x^{2}+2 x-x-2=x^{2}+x-2$. On the other hand, $(x-2)(x+1)$ gives $x^{2}-2 x+x-2=x^{2}-x-2$. Therefore, we know $\left(x^{2}-x-2\right)=(x-2)(x+1)$.
(d) $2\left(\frac{x+3}{3}+\frac{x}{6}\right)=2\left(\frac{2 x+6}{6}+\frac{x}{6}\right)=2\left(\frac{3 x+6}{6}\right)=2\left(\frac{x+2}{2}\right)=x+2$
(e) $\log _{2} 32+\log _{3} 9=5+2=7$ because 32 is $2^{5}$ and 9 is $3^{2}$.
2. The trace table for $m=32$.

|  | $x$ | count |
| :--- | :---: | :---: |
| Before while loop | 1 | 0 |
| 1st iteration | 2 | 1 |
| 2nd iteration | 4 | 2 |
| 3rd iteration | 8 | 3 |
| 4th iteration | 16 | 4 |
| 5th iteration | 32 | 5 |

The output of the algorithm for $m=32$ is 5 .
The while loop is executed for $\log _{2} m$ times when the input $m$ is a positive power of 2 .
3. To solve this problem, we can identify a few sub-problems.

- We need a counter variable to go from $x$ to $y$, how do we write this as a skeleton of the loop?
- We need to accumulate a sum, so we need a variable, what should be its initial value before the loop?
- In the loop, we need to check if the counter variable is a multiple of 3 , how should the if-statement look like?

There are many ways to write the pseudo code. Some examples are shown below.
sum $=0$
$i=x$
while $i \leq y$ do
begin
if $i \% 3==0$
then sum $=$ sum $+i$
$i=i+1$

## end

output sum

Alternatively,
sum $=0$
$i=\lceil x / 3\rceil$
while $i \leq\lfloor y / 3\rfloor$ do
begin

$$
\text { sum }=\operatorname{sum}+3 * i
$$

$$
i=i+1
$$

end
output sum
4. The farmer can cross the river as follows. Notations: F-farmer, W-wolf, G-goat, C-cabbages. Remind that W\&G and G\&C cannot be left alone without F.

|  | left bank | boat | direction | right bank |
| :--- | :---: | :---: | :---: | :---: |
| initial | W,G,C | - | - | nothing |
| 1st ride | W,C | $\mathrm{F}+\mathrm{G}$ | $\rightarrow$ | nothing |
| 2nd ride | $\mathrm{W}, \mathrm{C}$ | F | $\leftarrow$ | G |
| 3rd ride | C | $\mathrm{F}+\mathrm{W}$ | $\rightarrow$ | G |
| 4th ride | C | $\mathrm{F}+\mathrm{G}$ | $\leftarrow$ | W |
| 5th ride | G | $\mathrm{F}+\mathrm{C}$ | $\rightarrow$ | W |
| 6th ride | G | F | $\leftarrow$ | $\mathrm{W}, \mathrm{C}$ |
| 7th ride | nothing | $\mathrm{F}+\mathrm{G}$ | $\rightarrow$ | W,C |
| final | nothing | - | - | W,G,C |

