COMP108 Algorithmic Foundations

Tutorial 3 (Suggested Solution and Feedback) w/c 20th February 2017

1. (a) $O\left(n^{4}\right)$
(b) $O\left(n^{3}\right)$
(c) $O\left(n^{3}\right)$
2. To prove that $2 n^{2}+3 n+4$ is $O\left(n^{2}\right)$, we show that
\exists constants c and n_{0} such that for any integer $n \geq n_{0}, 2 n^{2}+3 n+4 \leq c n^{2}$.

- $2 n^{2}=2 n^{2} \forall n$,
- $3 n \leq 3 n^{2} \forall n \geq 1$,
N.B. $n \not \leq n^{2}$ for $0<n<1$
- $4 \leq 4 n^{2} \forall n \geq 1$,

As a result, $2 n^{2}+3 n+4 \leq 9 n^{2} \forall n \geq 1$.
Since 9 and 1 are constants, the function $2 n^{2}+3 n+4$ is $O\left(n^{2}\right)$.
N.B.: Should give reasons for the inequalities as shown above.

Alternatively, we can prove in the following way:

- $2 n^{2}=2 n^{2} \forall n$,
- $3 n \leq n^{2} \forall n \geq 3$, and
- $4 \leq n^{2} \forall n \geq 2$,

As a result, $2 n^{2}+3 n+4 \leq 4 n^{2} \forall n \geq 3$.
3. To prove that $2 n^{3}+3 n^{2}+n \log n$ is $O\left(n^{3}\right)$, we show that
\exists constants c and n_{0} such that for any integer $n \geq n_{0}, 2 n^{3}+3 n^{2}+n \log n \leq c n^{3}$.

- $2 n^{3}=2 n^{3} \forall n$,
- $3 n^{2} \leq 3 n^{3} \forall n \geq 1, \quad$ N.B. $n^{2} \not \leq n^{3}$ for $0<n<1$ nor $n<0$
- $n \log n \leq n^{3} \forall n \geq 1, \quad \because \log n \geq 0$ and $n^{2} \leq n^{3} \forall n \geq 1$

As a result, $2 n^{3}+3 n^{2}+n \log n \leq 6 n^{3} \forall n \geq 1$.
Since 6 and 1 are constants, the function $2 n^{3}+3 n^{2}+n \log n$ is $O\left(n^{3}\right)$.

N.B.: Should give reasons for the inequalities as shown above.

Alternatively, we can prove in the following way:

- $2 n^{3}=2 n^{3} \forall n$,
- $3 n^{2} \leq n^{3} \forall n \geq 3$, and
- $n \log n \leq n^{3} \forall n \geq 1$,

As a result, $2 n^{3}+3 n^{2}+n \log n \leq 4 n^{3} \forall n \geq 3$.
4. To check whether x is prime, we should check all integers from 2 to $x-1$; if x is divisible by ANY of them, then x is not prime; if x is not divisible by ALL of them, then x is prime.

```
prime \(=\) true
\(i=2\)
while \(i \leq x-1\) and prime \(==\) true do
begin
    if \(x \% i==0\) then
        prime \(=\) false
    else \(i=i+1\)
end
output prime
```

The time complexity of this algorithm is $O(x)$.

We can speed up the algorithm by stopping earlier.

```
prime = true
i=2
while }i\leq\sqrt{}{x}\mathrm{ and prime == true do
begin
    if }x%i==0 then
        prime = false
    else i=i+1
end
output prime
```

The time complexity of this algorithm is $O(\sqrt{x})$.
5. It is impossible to pick 10 numbers from an infinite supply of $1,3,7$ to obtain a sum of 39 . No matter which numbers we pick, every two of them have a sum being an even number. Therefore, picking 10 of them forms 5 even sums and any even number plus even number gives even number, so we cannot get a sum of 39 , which is an odd number.

