COMP108 Algorithmic Foundations Tutorial 3 (Suggested Solution and Feedback) w/c 20th February 2017

- 1. (a) $O(n^4)$
 - (b) $O(n^3)$
 - (c) $O(n^3)$
- 2. To prove that $2n^2 + 3n + 4$ is $O(n^2)$, we show that

 \exists constants c and n_0 such that for any integer $n \ge n_0$, $2n^2 + 3n + 4 \le c n^2$.

- $2n^2 = 2n^2 \forall n$,
- $3n \le 3n^2 \ \forall n \ge 1$, N.B. $n \le n^2$ for 0 < n < 1
- $4 \le 4n^2 \ \forall n \ge 1$,

As a result, $2n^2 + 3n + 4 \le 9n^2 \quad \forall n \ge 1.$

Since 9 and 1 are constants, the function $2n^2 + 3n + 4$ is $O(n^2)$. N.B.: Should give reasons for the inequalities as shown above.

Alternatively, we can prove in the following way:

•
$$2n^2 = 2n^2 \forall n$$
,

- $3n \le n^2 \ \forall n \ge 3$, and
- $4 \le n^2 \ \forall n \ge 2$,

As a result, $2n^2 + 3n + 4 \le 4n^2 \quad \forall n \ge 3.$

3. To prove that $2n^3 + 3n^2 + n \log n$ is $O(n^3)$, we show that

 \exists constants c and n_0 such that for any integer $n \ge n_0$, $2n^3 + 3n^2 + n\log n \le cn^3$.

- $2n^3 = 2n^3 \forall n$,
- $3n^2 \leq 3n^3 \forall n \geq 1$, N.B. $n^2 \not\leq n^3$ for 0 < n < 1 nor n < 0
- $n \log n \le n^3 \ \forall n \ge 1$, $\because \log n \ge 0$ and $n^2 \le n^3 \ \forall n \ge 1$

As a result, $2n^3 + 3n^2 + n \log n \le 6n^3 \quad \forall n \ge 1$. Since 6 and 1 are constants, the function $2n^3 + 3n^2 + n \log n$ is $O(n^3)$. **N.B.: Should give reasons for the inequalities as shown above.**

Alternatively, we can prove in the following way:

- $2n^3 = 2n^3 \forall n$,
- $3n^2 \le n^3 \ \forall n \ge 3$, and
- $n \log n \le n^3 \ \forall n \ge 1$,

As a result, $2n^3 + 3n^2 + n\log n \le 4n^3 \quad \forall n \ge 3$.

4. To check whether x is prime, we should check all integers from 2 to x - 1; if x is divisible by ANY of them, then x is not prime; if x is not divisible by ALL of them, then x is prime.

```
prime = true
i = 2
while i \le x - 1 and prime == true do
begin
if x\%i == 0 then
prime = false
else i = i + 1
end
output prime
The time complexity of this algorithm is O(x).
```

We can speed up the algorithm by stopping earlier.

```
prime = true
i = 2
while i \le \sqrt{x} and prime == true do
begin
if x\%i == 0 then
prime = false
else i = i + 1
end
output prime
```

The time complexity of this algorithm is $O(\sqrt{x})$.

5. It is impossible to pick 10 numbers from an infinite supply of 1, 3, 7 to obtain a sum of 39. No matter which numbers we pick, every two of them have a sum being an even number. Therefore, picking 10 of them forms 5 even sums and any even number plus even number gives even number, so we cannot get a sum of 39, which is an odd number.