## COMP108 Algorithmic Foundations <br> Tutorial 6 (Suggested solution and Feedback) w/c 13th March 2017

1. Feedback: Common mistakes include mixing up $T\left(\frac{n}{4}\right)$ and $\frac{n}{4}, T\left(\frac{n}{4}\right)$ means the value of the function $T()$ when the parameter is $\frac{n}{4}$, it is not the same as $\frac{n}{4}$.
Given the recurrence:

$$
T(n)= \begin{cases}3 & \text { if } n=1 \\ 4 \times T\left(\frac{n}{4}\right)+3 & \text { if } n>1\end{cases}
$$

Prove that $T(n)$ is $O(n)$ by the substitution method, i.e., use mathematical induction.
We are going to prove that $T(n)=4 \times n-1$ for all $n \geq 1$.
Base case:
When $n=1$, LHS $=T(1)=3$, RHS $=4 \times 1-1=3$.
Therefore, LHS $=$ RHS
Induction hypothesis: Assume that the property holds for all integers $n^{\prime}<n$, i.e., assume

$$
T\left(\frac{n}{4}\right)=4 \times \frac{n}{4}-1
$$

## Induction step:

We want to prove $\boldsymbol{T}(\boldsymbol{n})=4 \times \boldsymbol{n}-\mathbf{1}$.
[The induction step can be proved by first using the recurrence to express $T(n)$ in terms of $T\left(\frac{n}{4}\right)$, and then use the hypothesis.]

$$
\begin{aligned}
\text { LHS }=T(n) & =4 \times T\left(\frac{n}{4}\right)+3 & & \leftarrow \text { use the recurrence } \\
& =4 \times\left(4 \times \frac{n}{4}-1\right)+3 & & \leftarrow \text { use induction hypothesis } \\
& =4 \times(n-1)+3 & & \leftarrow \text { arithmetic }
\end{aligned}
$$

Therefore, LHS. $=$ RHS and the property holds for $n$.
Conclusion: $T(n)=4 \times n-1$ for all positive integers $n$ and therefore, $T(n)$ is $O(n)$.
2. Given the recurrence

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ 4 \times T\left(\frac{n}{4}\right)+n & \text { if } n>1\end{cases}
$$

Prove that $T(n)$ is $O(n \log n)$ by the substitution method, i.e., use mathematical induction.
We are going to prove that $T(n) \leq 4 \times n \times \log n$ for all $n \geq 4$.

## Base case:

When $n=4$,
L.H.S. $=T(4)=4 \times T(1)+4=4 \times 1+4=8$
R.H.S. $=4 \times 4 \times \log 4=32$

Therefore, L.H.S. $\leq$ R.H.S.
Induction hypothesis: Assume that the property holds for all integers $n^{\prime}<n$, i.e., assume

$$
T\left(\frac{n}{4}\right) \leq 4 \times \frac{n}{4} \times \log \left(\frac{n}{4}\right)
$$

## Induction step:

We want to prove $\boldsymbol{T}(\boldsymbol{n}) \leq 4 \times n \times \log \boldsymbol{n}$.

$$
\begin{array}{rlr}
\text { L.H.S. }=T(n) & =4 \times T\left(\frac{n}{4}\right)+n & \leftarrow \text { use the recurrence } \\
& \leq 4 \times\left(4 \times \frac{n}{4} \times \log \left(\frac{n}{4}\right)\right)+n & \leftarrow \text { use induction hypothesis } \\
& =4 \times\left(n \times \log \left(\frac{n}{4}\right)\right)+n & \leftarrow \text { arithmetic } \\
& =4 \times(n \times(\log n-\log 4))+n & \leftarrow \log \left(\frac{x}{y}\right)=\log x-\log y \\
& =4 \times(n \times(\log n-2))+n & \\
& =4 \times(n \times \log n-2 n)+n & \\
& =4 \times n \times \log n-8 n+n & \\
& <4 \times n \times \log n & \\
& =\text { R.H.S. }
\end{array}
$$

Therefore, L.H.S. $\leq$ R.H.S. and the property holds for $n$.
Conclusion: $T(n)=4 \times n \times \log n$ for all positive integers $n \geq 4$ and therefore, $T(n)$ is $O(n \log n)$.
3. If there is only one value in the array, return this value.

Otherwise, divide the array into two halves, and recursively find the product of the values in each half.
Suppose the two values we obtain are product $_{1}$ and product $_{2}$, respectively.
Return product $_{1} *$ product $_{2}$.

Pseudo code:

```
Algorithm RecProduct(A[1..n])
    if \(n==1\) then \(\quad / /\) only one value
        return \(A[n]\)
    else
    begin Copy \(A\left[1 . . \frac{n}{2}\right]\) to \(B[]\)
        Copy \(A\left[\left(\frac{n}{2}+1\right) . . n\right]\) to \(C[]\)
        product1 \(=\operatorname{RecProduct}\left(B\left[1 . . \frac{n}{2}\right]\right)\)
        \(\operatorname{product} 2=\operatorname{RecProduct}\left(C\left[1 ., \frac{n}{2}\right]\right)\)
        return product \(1 *\) product 2
    end
```

Note: we invoke this algorithm by calling $\operatorname{RecProduct}(A[1 . . n])$.

