COMP108 Algorithmic Foundations Tutorial 6 (Suggested solution and Feedback) w/c 13th March 2017

Feedback: Common mistakes include mixing up T(ⁿ/₄) and ⁿ/₄, T(ⁿ/₄) means the value of the function T() when the parameter is ⁿ/₄, it is not the same as ⁿ/₄.
 Given the recurrence:

$$T(n) = \begin{cases} 3 & \text{if } n = 1\\ 4 \times T(\frac{n}{4}) + 3 & \text{if } n > 1 \end{cases}$$

Prove that T(n) is O(n) by the substitution method, i.e., use mathematical induction. We are going to prove that $T(n) = 4 \times n - 1$ for all $n \ge 1$.

Base case:

When n = 1, LHS = T(1) = 3, RHS = $4 \times 1 - 1 = 3$. Therefore, LHS = RHS

Induction hypothesis: Assume that the property holds for all integers n' < n, i.e., assume

$$T\left(\frac{n}{4}\right) = 4 \times \frac{n}{4} - 1$$

Induction step:

We want to prove $T(n) = 4 \times n - 1$.

[The induction step can be proved by first using the recurrence to express T(n) in terms of $T(\frac{n}{4})$, and then use the hypothesis.]

LHS = $T(n) = 4 \times T\left(\frac{n}{4}\right) + 3$ \leftarrow use the recurrence $= 4 \times \left(4 \times \frac{n}{4} - 1\right) + 3$ \leftarrow use induction hypothesis $= 4 \times (n-1) + 3$ \leftarrow arithmetic $= 4 \times n - 1$

Therefore, LHS. = RHS and the property holds for n.

Conclusion: $T(n) = 4 \times n - 1$ for all positive integers n and therefore, T(n) is O(n).

2. Given the recurrence

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ 4 \times T(\frac{n}{4}) + n & \text{if } n > 1 \end{cases}$$

Prove that T(n) is $O(n \log n)$ by the substitution method, i.e., use mathematical induction. We are going to prove that $T(n) \le 4 \times n \times \log n$ for all $n \ge 4$.

Base case:

When n = 4, L.H.S. $= T(4) = 4 \times T(1) + 4 = 4 \times 1 + 4 = 8$ R.H.S. $= 4 \times 4 \times \log 4 = 32$ Therefore, L.H.S. \leq R.H.S.

Induction hypothesis: Assume that the property holds for all integers n' < n, i.e., assume

$$T\left(\frac{n}{4}\right) \le 4 \times \frac{n}{4} \times \log(\frac{n}{4})$$

Induction step:

We want to prove $T(n) \leq 4 \times n \times \log n$.

$$\begin{aligned} \text{L.H.S.} &= T(n) &= 4 \times T\left(\frac{n}{4}\right) + n & \leftarrow \text{ use the recurrence} \\ &\leq 4 \times (4 \times \frac{n}{4} \times \log(\frac{n}{4})) + n & \leftarrow \text{ use induction hypothesis} \\ &= 4 \times (n \times \log(\frac{n}{4})) + n & \leftarrow \text{ arithmetic} \\ &= 4 \times (n \times (\log n - \log 4)) + n & \leftarrow \log(\frac{x}{y}) = \log x - \log y \\ &= 4 \times (n \times (\log n - 2)) + n & \\ &= 4 \times (n \times \log n - 2n) + n \\ &= 4 \times n \times \log n - 8n + n \\ &< 4 \times n \times \log n \\ &= R.H.S. \end{aligned}$$

Therefore, L.H.S. \leq R.H.S. and the property holds for n.

Conclusion: $T(n) = 4 \times n \times \log n$ for all positive integers $n \ge 4$ and therefore, T(n) is $O(n \log n)$.

3. If there is only one value in the array, return this value.

Otherwise, divide the array into two halves, and **recursively** find the product of the values in each half.

Suppose the two values we obtain are $product_1$ and $product_2$, respectively.

Return $product_1 * product_2$.

Pseudo code:

```
Algorithm RecProduct(A[1..n])

if n == 1 then // only one value

return A[n]

else

begin Copy A[1..\frac{n}{2}] to B[]

Copy A[(\frac{n}{2}+1)..n] to C[]

product1 = RecProduct(B[1..\frac{n}{2}])

product2 = RecProduct(C[1..\frac{n}{2}])

return product1 * product2

end
```

Note: we invoke this algorithm by calling $\operatorname{RecProduct}(A[1..n])$.