
COMP323 – Introduction to Computational Game Theory

Selfish Routing and the Inefficiency of Equilibria

Paul G. Spirakis

Department of Computer Science
University of Liverpool

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 1 / 91

Outline

1 Modeling network traffic using game theory

2 Network congestion games

3 Selfish load balancing and the Price of Anarchy

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 2 / 91

Modeling network traffic using game theory

1 Modeling network traffic using game theory
Network traffic as a game
Equilibrium traffic
Braess’s paradox

2 Network congestion games

3 Selfish load balancing and the Price of Anarchy

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 3 / 91

Modeling network traffic using game theory Network traffic as a game

Introduction

Traveling through a transportation network, or sending packets
through the Internet, involves fundamentally game-theoretic
reasoning:
Rather than simply choosing a route in isolation, individuals need to
evaluate routes in the presence of the congestion resulting from the
decisions made by themselves and everyone else.

We will explore models for network traffic using game-theoretic ideas.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 4 / 91

Modeling network traffic using game theory Network traffic as a game

Transportation networks as directed graphs

We represent a transportation network by a directed graph:

We consider the edges to be highways.

We consider the nodes to be exits where you can get on or off a
particular highway.

There are two particular nodes, A and B, and we assume everyone
wants to drive from A to B.

Each edge has a designated travel time that depends on the amount
of traffic it contains.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 5 / 91

Modeling network traffic using game theory Network traffic as a game

Transportation networks as directed graphs
An example

A B

C

D

x/100

x/100

45

45

The label on each edge gives the travel time (in minutes) when there
are x cars using the edge.

The A-D and C-B edges are insensitive to congestion: each takes 45
minutes to traverse regardless of the number of cars on them.

The A-C and D-B edges are highly sensitive to congestion: for each
one, it takes x/100 minutes to traverse when there are x cars using
the edge.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 6 / 91

Modeling network traffic using game theory Network traffic as a game

Transportation networks as directed graphs
An example

A B

C

D

x/100

x/100

45

45

Suppose that 4000 cars want to get from A to B.
There are two possible routes that each car can choose: the upper
route through C, or the lower route through D.
If each car takes the upper route, then the total travel time for
everyone is 85 minutes, since 4000/100 + 45 = 85.
The same is true if everyone takes the lower route.
If the cars divide up evenly between the two routes, so that each
carries 2000 cars, then the total travel time for people on both routes
is 2000/100 + 45 = 65.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 7 / 91

Modeling network traffic using game theory Network traffic as a game

Network traffic as a game

The traffic model weve described is really a game in which

the players correspond to the drivers,

each player’s possible actions or pure strategies consist of the possible
routes from A to B, and the payoff for a player is the negative of his or
her travel time (we use the negative since large travel times are bad).

In our example, this means that each player only has two strategies, but in
larger networks, there could be many strategies for each player (possibly
exponential to the number of nodes of the network!).

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 8 / 91

Modeling network traffic using game theory Equilibrium traffic

Equilibrium traffic

A B

C

D

x/100

x/100

45

45

So what do we expect will happen?

In this traffic game, there is generally no dominant strategy.

Either route has the potential to be the best choice for a player if all
the other players are using the other route.

The game does have pure Nash equilibria, however: any list of
strategies in which the drivers balance themselves evenly between the
two routes (2000 on each) is a Nash equilibrium, and these are the
only Nash equilibria.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 9 / 91

Modeling network traffic using game theory Equilibrium traffic

Equilibrium traffic

A B

C

D

x/100

x/100

45

45

Why does equal balance yield a Nash equilibrium?
With an even balance between the two routes, no driver has an incentive
to switch over to the other route.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 10 / 91

Modeling network traffic using game theory Equilibrium traffic

Equilibrium traffic

A B

C

D

x/100

x/100

45

45

Why do all Nash equilibria have equal balance?

Consider a list of strategies in which x drivers use the upper route and
4000− x drivers use the lower route.

If x is not equal to 2000, the two routes will have unequal travel
times, and any driver on the slower route would have an incentive to
switch to the faster one.

Hence any list of strategies in which x is not equal to 2000 cannot be
a Nash equilibrium.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 10 / 91

Modeling network traffic using game theory Braess’s paradox

Braess’s paradox

A B

C

D

x/100

x/100

45

45

In this example, everything works out very cleanly: self-interested
behavior by all drivers causes them, at equilibrium, to balance
perfectly between the available routes.

But with only a small change to the network, we can quickly find
ourselves in truly counter-intuitive territory.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 11 / 91

Modeling network traffic using game theory Braess’s paradox

Braess’s paradox

A B

C

D

x/100

x/10045

45

0

The change is as follows:

We decide to build a new, very fast highway from C to D.

We model its travel time as 0, regardless of the number of cars on it.

It would stand to reason that people’s travel time from A to B ought
to get better after this edge from C to D is added.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 12 / 91

Modeling network traffic using game theory Braess’s paradox

Braess’s paradox

A B

C

D

x/100

x/10045

45

0

Here is the surprise:

There is a unique Nash equilibrium in this new network, but it leads
to a worse travel time for everyone.

At equilibrium, every driver uses the route through both C and D.

As a result, the travel time for every driver is
4000/100 + 0 + 4000/100 = 80

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 12 / 91

Modeling network traffic using game theory Braess’s paradox

Braess’s paradox

A B

C

D

x/100

x/10045

45

0

At equilibrium, every driver uses the route through both C and D: No
driver can benefit by changing their route, since any other route
would now take 85 minutes.

This is the only equilibrium: the creation of the edge from C to D has
in fact made the route through C and D a dominant strategy for all
drivers: regardless of the current traffic pattern, you gain by switching
your route to go through C and D.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 12 / 91

Modeling network traffic using game theory Braess’s paradox

Braess’s paradox

Once the fast highway from C to D is built, the route through C and
D acts like a “vortex” that draws all drivers into it, to the detriment
of all.

In the new network there is no way, given individually self-interested
behavior by the drivers, to get back to the even-balance solution that
was better for everyone.

This phenomenon, that adding resources to a transportation network
can sometimes hurt performance at equilibrium, was first articulated
by Dietrich Braess in 1968, and it has become known as Braess’s
Paradox.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 13 / 91

Modeling network traffic using game theory Braess’s paradox

Braess’s paradox
Reflections

But is there actually something really “paradoxical” about Braess’s
paradox? Recall the Prisoner’s Dilemma:

Quiet Fink
Quiet (2,2) (0,3)
Fink (3,0) (1,1)

If the only strategy for each player were Quiet, then both players
would be better off compared with the game where Fink is an option.

Still, we have an informal sense that offering more options, such as
“upgrading” a network, has to be a good thing, and so it is surprising
when it turns out to make things worse.

Braess’s paradox is actually the starting point for a large body of work on
game-theoretic analysis of network traffic.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 14 / 91

Modeling network traffic using game theory Braess’s paradox

Network traffic as a game

We will focus on several issues regarding games modeling network traffic,
including:

Which are the appropriate models to study selfish behavior of network
users?

Do such games possess a pure strategy Nash equilibrium?

Can we compute one efficiently?

Are there “better” and “worse” equilibria, with respect to some
global objective, such as the maximum delay over a path?

How do the delay functions (travel times) on the edges affect the
answer to the above questions?

What happens if the network users (travellers) are not identical (i.e.,
have different weights)?

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 15 / 91

Network congestion games

1 Modeling network traffic using game theory

2 Network congestion games
Network congestion models
Pure Nash equilibria and potential functions

3 Selfish load balancing and the Price of Anarchy

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 16 / 91

Network congestion games Network congestion models

Congestion models

Recall our definition of a congestion model: it is defined by

1 a set of players N = {1, 2, . . . , n};
2 a set of resources M = {1, 2, . . . ,m};
3 for each player i ∈ N, a set Σi of pure strategies of a player i , where

each Ai ∈ Σi is a non-empty subset of resources;

4 for each resource j ∈ M, a non-decreasing delay function
dj() : {1, . . . , n} → R+, where dj(k) denotes the cost (delay) to each
user of resource j , if there are exactly k players using j .

Observe that network traffic models are congestion models such that the
resources correspond to the edges of a network and the set of pure
strategies of each player correspond to source-destination paths in the
network.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 17 / 91

Network congestion games Network congestion models

Congestion models

Recall our definition of a congestion model: it is defined by

1 a set of players N = {1, 2, . . . , n};
2 a set of resources M = {1, 2, . . . ,m};
3 for each player i ∈ N, a set Σi of pure strategies of a player i , where

each Ai ∈ Σi is a non-empty subset of resources;

4 for each resource j ∈ M, a non-decreasing delay function
dj() : {1, . . . , n} → R+, where dj(k) denotes the cost (delay) to each
user of resource j , if there are exactly k players using j .

Observe that network traffic models are congestion models such that the
resources correspond to the edges of a network and the set of pure
strategies of each player correspond to source-destination paths in the
network.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 17 / 91

Network congestion games Network congestion models

Network congestion games

More specifically, a general network congestion game is defined by:

A directed network G = (V ,E) with the edges playing the role of
resources.

A set of players N = {1, 2, . . . , n} (the network users).

For each player i , a source-destination pair of nodes (si , ti) ∈ V 2.

For each player i , a weight wi ∈ R+, representing her load.

For each edge e ∈ E , a non-decreasing delay function de : R+ → R+.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 18 / 91

Network congestion games Network congestion models

Network congestion games

Then, the action (pure strategy) set of player i is the set Pi of all
network paths from si to ti .

We denote by $ = ($i)i∈N ∈ ×i∈NPi a configuration or pure
strategy profile, where each user has chosen a path.

We denote by P = ×i∈NPi the set of all configurations.

The delay θe($) on edge e ∈ E in configuration $ ∈ P is

θe($) = de

 ∑
i :e∈$i

wi

 .

The cost for user i in configuration $ is the total delay on her path:

λi ($) =
∑
e∈$i

de(θe($)) .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 19 / 91

Network congestion games Network congestion models

Network congestion games

The objective of each player i is to choose an si − ti path so that her
cost is minimized.

A network congestion game where all users have equal weights
(wi = 1 for all i ∈ N) is called unweighted.

If all origin-destination pairs (si , ti) of the players coincide with a
unique pair (s, t) we have a single-commodity network congestion
game and then all users share the same strategy set.

An unweighted single-commodity network congestion game is a
symmetric game (all users are identical and share the same strategy
set).

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 20 / 91

Network congestion games Pure Nash equilibria and potential functions

Pure Nash equilibrium

Definition (PNE of a network congestion game)

A configuration $ ∈ P is a pure Nash equilibrium of the network
congestion game iff, for all i ∈ N,

λi ($) ≤ λi (πi , $−i) ∀πi ∈ Pi

where (πi , $−i) is the same configuration as $ except for user i that has
now been assigned to path πi .

Do pure equilibria exist?

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 21 / 91

Network congestion games Pure Nash equilibria and potential functions

Existence of PNE

Recall:

Theorem (Rosenthal, 1973)

Every unweighted congestion game admits an exact potential.

Proof. Rosenthal’s potential, using our notation for network congestion
games, is:

Φ($) =
∑
e∈E

σe($)∑
k=1

de(k) ,

where
σe($) = |{i ∈ N : e ∈ $i}|

is the total number of users using edge e. �

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 22 / 91

Network congestion games Pure Nash equilibria and potential functions

Existence of PNE

Thus unweighted (network) congestion games are exact potential
games.

Therefore they possess pure strategy Nash equilibria.

What about weighted network congestion games?

Are they exact potential games?
If not, do they admit some other kind of potential?

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 23 / 91

Network congestion games Pure Nash equilibria and potential functions

An potential does not exist in general

Q: Weighted network congestion game: does it have a potential?

A: Not in general.

Two players N = {1, 2} with loads w1 = 1, w2 = 2.
Resource e has 2-wise linear delays:.

delay a when its total load is 1.
delay b when total load is 2.
delay c when total load is 3.

resource e

a / b / c

Theorem

There exist weighted network congestion games (even of 2 players) with
2-wise linear delays, for which there exists not even an ordinal potential
(and no PNE).

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 24 / 91

Network congestion games Pure Nash equilibria and potential functions

Weighted congestion games
A potential does not exist in general

Proof.

s

v
4

v
1

v
2

v
3

v
5

v
6

t

5/6/7

1/2/8

4/40/76
4/40/76

4/40/76

5/6/7

1/40/79

8/9/10 8/9/10

2/10/12

w
1
=1

w
2
=2

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 25 / 91

Network congestion games Pure Nash equilibria and potential functions

Weighted congestion games
A potential does not exist in general

Proof.

s

v
4

v
1

v
2

v
3

v
5

v
6

t

5/6/7

1/2/8

4/40/76
4/40/76

4/40/76

5/6/7

1/40/79

8/9/10 8/9/10

2/10/12

w
1
=1

w
2
=2

paths P
1
, P

2
, P

3
, P

4

The “cycle” γ = ((P3,P2), (P3,P4), (P1,P4), (P1,P2), (P3,P2)) is
an “improvement path”! (Each deviator moves to its new best
choice.) ⇒ No ordinal potential.

Any other configuration is either one or two best-choice moves away
from a configuration in γ ⇒ No sink. �

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 25 / 91

Network congestion games Pure Nash equilibria and potential functions

Weighted congestion games
A potential does not exist in general

Theorem

There exist weighted network congestion games with de(x) = x which do
not admit an exact potential.

Proof. Again (each link has de(x) = x)

s

v
4

v
1

v
2

v
3

v
5

v
6

t

w
1
=1

w
2
=2

paths P
1
, P

2
, P

3
, P

4

d
e
(x)=x for each link e

Consider the 4-cycle γ = ((P1,P3), (P2,P3), (P2,P1), (P1,P1), (P1,P3)).

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 26 / 91

Network congestion games Pure Nash equilibria and potential functions

Weighted congestion games
A potential does not exist in general

Proof (continued). Let

I (γ) =
4∑

k=1

[λik ($(k))− λik ($(k − 1))]

where ik is the unique deviator when we move from $(k − 1) to $(k) in
the 4-cycle γ.

Lemma (Monderer and Shapley, 1996)

Γ is an exact potential game ⇔ I (γ) = 0 for all closed simple paths γ of
length 4.

But our 4-cycle γ has I (γ) = −4. �

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 27 / 91

Network congestion games Pure Nash equilibria and potential functions

Existence of potentials and PNE

Are there families of weighted network congestion games that admit
potentials and possess PNE?

Let us consider linear resource delays de(x) = ae · x + be (where x is
the load on edge e)

Theorem

For any weighted (network) congestion game with linear (affine) resource
delays, there exists a b-potential (weighted potential), and thus a PNE
exists.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 28 / 91

Network congestion games Pure Nash equilibria and potential functions

Existence of potentials and PNE

Proof. Let $ be an arbitrary configuration. Define

Φ($) = C ($) + W ($)

where

C ($) =
∑
e∈E

de(θe($)) · θe($) =
∑
e∈E

(
aeθ

2
e($) + beθe($)

)
and

W ($) =
n∑

i=1

∑
e∈$i

de(wi) · wi =
n∑

i=1

∑
e∈$i

(
aew 2

i + bewi

)
.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 29 / 91

Network congestion games Pure Nash equilibria and potential functions

Existence of potentials and PNE

Proof (continued). Then Φ($) is a b-potential for bi = 1
2wi

:
Show that for player i , πi a path different from $i , and $′ = (πi , $−i),

a) C ($′)− C ($) =

2wi

(∑
e∈πi\$i

de(θe($′))−
∑

e∈$i\πi de(θe($))
)
− t

b) W ($′)−W ($) = t

⇒ Φ($′)− Φ($) = 2wi

(
λi ($

′)− λi ($)
)
.

�

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 30 / 91

Network congestion games Pure Nash equilibria and potential functions

Existence of potentials and PNE

Now let us consider the case of exponential delays:
de(θe($)) = exp(θe($)).

Theorem

Any weighted (network) congestion game with resource delays exponential
to their loads admits a b-potential (and thus a PNE):

Φ($) =
∑
e∈E

exp(θe($)) .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 31 / 91

Network congestion games Pure Nash equilibria and potential functions

Existence of potentials and PNE

Proof. Show:

a) λi ($
′)− λi ($)

= exp(wi)

 ∑
e∈πi\$i

exp(θe($−i))−
∑

e∈$i\πi

exp(θe($−i))

= exp(wi) · t

b) Φ($′)− Φ($) = (exp(wi)− 1) · t
⇒ Φ($′) is a b-potential with bi = exp(wi)

exp(wi)−1 . �

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 32 / 91

Network congestion games Pure Nash equilibria and potential functions

Existence of potentials and PNE

(PNE-)consistency: which types of delays guarantee existence of PNE

FIP-consistency: congestion games possessing the FIP (finite
improvement property)

Theorem (Harks and Klim, 2012)

For at least 3 players:

(a) For weighted congestion, consistency ≡ FIP-consistency.

(b) A set of continuous delay functions is consistent iff (b1) it is affine:
de(x) = aex + be , or (b2) it is exponential: de(x) = aeeξ·x + be

(where ξ same for all resources).

I.e., for |N| ≥ 3 players, linear-affine and exponential delays (as generalized
by Harks and Klim for de(x) = ae exp(ξx) + be) are the only possible cases!

Explains why many other “practical” delays (e.g., M/M/1) are unstable!

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 33 / 91

Selfish load balancing and the Price of Anarchy

1 Modeling network traffic using game theory

2 Network congestion games

3 Selfish load balancing and the Price of Anarchy
Selfish load balancing games
The price of anarchy
Pure equilibria on identical machines
Pure equilibria on uniformly related machines
Mixed equilibria on identical machines
Mixed equilibria on uniformly related machines
Summary and discussion

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 34 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Inefficiency of equilibria: the price of anarchy

The outcome of rational behavior by selfish players can be inferior to
a centrally designed outcome (recall the Prisoner’s Dilemma and
Braess’s paradox).

By how much?

The most popular measure of the inefficiency of equilibria is the price of
anarchy:

Definition

The price of anarchy of a game is defined as the ratio between the worst
objective function value of an equilibrium of the game and that of an
optimal outcome.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 35 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

The price of anarchy

Note that the price of anarchy of a game is defined with respect to a
choice of objective function and a choice of equilibrium concept.

We are interested in identifying games in which the price of anarchy is
close to 1; in these games, all equilibria are good approximations of
an optimal outcome.

We view selfish behavior as benign in such games.

We will study the price of anarchy in the context of load balancing games.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 36 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Selfish load balancing

A set of weighted tasks shall be assigned to a set of machines with
possibly different speeds such that the load is distributed evenly
among the machines.

In computer science, this problem is traditionally treated as an
optimization problem.

One of the classical objectives is to minimize the makespan, i.e., the
maximum load over all machines.

A natural game-theoretic variant of the problem is to assume that the
tasks are managed by selfish agents: each task has an agent that
aims at placing the task on the machine with smallest load.

We will study the Nash equilibria and the price of anarchy of this
game.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 37 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Load balancing

Load balancing is a fundamental problem to networks and distributed
systems. The most fundamental load balancing problem is makespan
scheduling on uniformly related machines:

There are m machines with speeds s1, . . . , sm and

n tasks with weights w1, . . . ,wn.

Let [n] = {1, . . . , n} denote the set of tasks and [m] = {1, . . . ,m} the
set of machines.

One seeks for an assignment A : [n]→ [m] of the tasks to the
machines that the assignment is as balanced as possible.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 38 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Load balancing

The load of machine j ∈ [m] under assignment A is defined as

`j =
∑

i :j=A(i)

wi

sj
.

The makespan is defined to be the maximum load over all machines.

The objective is to minimize the makespan.

If all machines have the same speed, then the problem is known as
makespan scheduling on identical machines, in which case we shall
assume s1 = s2 = · · · = sm = 1.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 39 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Load balancing games

We identify agents and tasks, i.e., task i ∈ [n] is managed by agent i .

Each agent can place its task on one of the machines.

In other words, the set of pure strategies for an agent is [m].

A combination of pure strategies, one for each task, yields an
assignment A : [n]→ [m].

We assume that the cost of agent i under the assignment A
corresponds to the load on machine A(i), i.e., its cost is `A(i).

The social cost of an assignment is denoted cost(A) and is defined to
be the makespan, i.e.,

cost(A) = max
j∈[m]

(`j) .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 40 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Load balancing games

Agents may use mixed strategies, i.e., probability distributions on the
set of pure strategies.

Let pj
i denote the probability that agent i assigns its task to machine

j , i.e.,
pj
i = Pr{A(i) = j} .

A strategy profile P = (pj
i), i ∈ [n], j ∈ [m] specifies the probabilities

for all agents and all machines.

For i ∈ [n], j ∈ [m], let x j
i be a random variable that takes the value 1

if A(i) = j and 0, otherwise.

The expected load of machine j under the strategy profile P is thus

E [`j] = E

∑
i∈[n]

wix
j
i

sj

 =
∑
i∈[n]

wiE [x j
i]

sj
=
∑
i∈[n]

wip
j
i

sj
.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 41 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Load balancing games

The social cost of a strategy profile P is defined as the expected
makespan, i.e.,

cost(P) = E [cost(A)] = E

[
max
j∈[m]

(`j)

]
.

We assume that every agent aims at minimizing its expected cost.

From the point of view of agent i , the expected cost on machine j ,
denoted by c j

i , is

c j
i = E [`j | A(i) = j] .

For any profile P,

c j
i =

wi +
∑

k 6=i wkpj
k

sj
= E [`j] + (1− pj

i) ·
wi

sj
.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 42 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Nash equilibria
Definition

In general, a strategy profile of a game is a Nash equilibrium if there
is no incentive for any agent to unilaterally change its strategy.

For the load balancing game, such a profile is characterized by the
property that every agent assigns positive probabilities only to those
machines that minimize its expected cost. This is formalized as
follows.

Definition

A strategy profile P is a Nash equilibrium if and only if, for all i ∈ [n], for
all j ∈ [m],

pj
i > 0 =⇒ c j

i ≤ ck
i ∀k ∈ [m] .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 43 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Nash equilibria
Existence

The existence of a Nash equilibrium (in mixed strategies) is
guaranteed by Nash’s theorem.

Is there a pure Nash equilibrium (PNE)?

Definition

An assignment A is a pure Nash equilibrium if and only if, for all i ∈ [n],

c
A(i)
i ≤ ck

i ∀k ∈ [m] .

In words, an assignment is a pure Nash equilibrium if and only if no
agent can improve its cost by unilaterally moving its task to another
machine.

Load balancing games always admit pure Nash equilibria.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 44 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Existence of PNE

Why do load balancing games admit PNE?

Observe that they are a special case of weighted network congestion
games with linear resource delays, so they admit a weighted potential,
so they have a PNE.

We will give an alternative proof of existence of a PNE, and in
particular of an optimal PNE, i.e., a PNE that minimizes the
makespan.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 45 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Proof of PNE existence

Theorem

Every instance of the load balancing game admits at least one pure Nash
equilibrium.

Proof.

An assignment A induces a sorted load vector (λ1, . . . , λm), where λj
denotes the load on the machine that has the jth highest load.

If an assignment is not a Nash equilibrium, then there exists an agent
i that can perform an improvement step, i.e., it can decrease its cost
by moving its task to another machine.

If we show that the sorted load vector an improvement step is
lexicographically smaller than the one preceding it, then a pure Nash
equilibrium is reached after a finite number of improvement steps.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 46 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Proof of PNE existence

Theorem

Every instance of the load balancing game admits at least one pure Nash
equilibrium.

Proof (continued).

Given any sorted load vector (λ1, . . . , λm), assume i performs an
improvement step and moves from machine j to k where the indices
are w.r.t. to the positions of the machines in the vector.

Clearly, k > j .

The improvement step decreases the load on machine j and it
increases the load on machine k .

The increased load on machine k is smaller than λj as, otherwise,
agent i would not decrease its cost.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 47 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Proof of PNE existence

Theorem

Every instance of the load balancing game admits at least one pure Nash
equilibrium.

Proof (continued).

Hence, the number of machines with load at least λj is decreasing.

The loads on all other machines are left unchanged.

Consequently, the improvement step yields a sorted load vector
lexicographically smaller than (λ1, . . . , λm).

�

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 48 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Optimal PNE

Thus improvement steps naturally lead to a pure Nash equilibrium.

This convergence result implies that there exists even a pure Nash
equilibrium that minimizes the makespan.

Given any optimal assignment, such an equilibrium can be found by
performing improvement steps until a Nash equilibrium is reached
because improvement steps do not increase the makespan.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 49 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Price of stability and price of anarchy

In the context of load balancing games with social cost equal to the
makespan:

The price of stability, i.e., the ratio between the social cost in a best
Nash equilibrium and the optimal social cost, is 1.

We are interested in the ratio between the social cost of the worst
Nash equilibrium and the optimal social cost, the so-called price of
anarchy.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 50 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Example of a load balancing game

Suppose that there are

two identical machines both of which have speed 1 and

four tasks, two small tasks of weight 1 and two large tasks of
weight 2.

An optimal assignment would map a small and a large task to each of the
machines so that the load on both machines is 3:

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 51 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Example of a load balancing game
Pure equilibria

Now consider an assignment A that maps the two large tasks to the first
machine and the two small tasks to the second machine:

The first machine has a load of 4 and the second machine has a load
of 2.

A small task cannot improve its cost by moving from the second to
the first machine.

A large task cannot improve its cost by moving from the first to the
second machine either as its cost would remain 4 if it does.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 52 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Example of a load balancing game
Pure equilibria

Thus this assignment A constitutes a pure Nash equilibrium with
cost(A) = 4.

All assignments that yield a larger makespan than 4 cannot be a Nash
equilibrium as, in this case, one of the machines has a load of at least
5 and the other has a load of at most 1 so that moving any task from
the former to the latter would decrease the cost of this task.

Thus, for this instance of the load balancing game, the social cost of
the worst pure Nash equilibrium is 4.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 53 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Example of a load balancing game
Mixed equilibria

Clearly, the worst mixed equilibrium cannot be better than the worst pure
equilibrium: the set of mixed equilibria is a superset of the set of pure
equilibria.
But can it really be worse?

Suppose that each task is assigned to each of the machines with
probability 1/2.

This corresponds to the strategy profile P = (pj
i) with pj

i = 1/2 for
1 ≤ i ≤ 4, 1 ≤ j ≤ 2.

The expected load on machine j is

E [`j] =
4∑

i=1

wip
j
i = 2 · 2 · 1

2
+ 2 · 1 · 1

2
= 3 .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 54 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Example of a load balancing game
Mixed equilibria

Clearly, the worst mixed equilibrium cannot be better than the worst pure
equilibrium: the set of mixed equilibria is a superset of the set of pure
equilibria.
But can it really be worse?

Suppose that each task is assigned to each of the machines with
probability 1/2.

This corresponds to the strategy profile P = (pj
i) with pj

i = 1/2 for
1 ≤ i ≤ 4, 1 ≤ j ≤ 2.

The expected load on machine j is

E [`j] =
4∑

i=1

wip
j
i = 2 · 2 · 1

2
+ 2 · 1 · 1

2
= 3 .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 54 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Example of a load balancing game
Mixed equilibria

Notice that the expected cost of a task on a machine is larger than the
expected load of the machine, unless the task is assigned with probability
1 to this machine:

If we assume that task 1 is a large task, then

c1
1 = E [`1] + (1− p1

1)w1 = 3 +
1

2
· 2 = 4 ,

and if task 3 is a small task, then

c1
3 = E [`1] + (1− p1

3)w3 = 3 +
1

2
· 1 = 3.5 .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 55 / 91

Selfish load balancing and the Price of Anarchy Selfish load balancing games

Example of a load balancing game
Mixed equilibria

For symmetry reasons, the expected cost of each task under profile P is
the same on both machines so that P is a Nash equilibrium.

The social cost of this NE, cost(P), is defined to be the expected
makespan, E [cost(A)], of the random assignment A induced by P.

The makespan, cost(A), is a random variable. This variable can
possibly take one of the four values 3, 4, 5, or 6.

There are 24 = 16 different assignments of four tasks to two
machines. The number of assignments that yield a makespan of 3 is
4, 4 is 6, 5 is 4, and 6 is 2.

Consequently, the social cost of the mixed Nash equilibrium is

cost(P) = E [cost(A)] =
1

16
(3 · 4 + 4 · 6 + 5 · 4 + 6 · 2) = 4.25 .

Thus mixed equilibria can, in fact, be worse than the worst pure
equilibrium.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 56 / 91

Selfish load balancing and the Price of Anarchy The price of anarchy

The Price of Anarchy: Definition

We are interested in the ratio between the social cost (makespan) of a
worst-case Nash equilibrium, and the social cost of an optimal assignment.

Definition (Price of anarchy)

For m ∈ N, let G(m) denote the set of all instances of load balancing
games with m machines.

For G ∈ G(m), let Nash(G) denote the set of all strategy profiles
being a Nash equilibrium for G , and let opt(G) denote the minimum
social cost over all assignments.

Then the price of anarchy is defined by

PoA(m) = max
G∈G(m)

max
P∈Nash(G)

cost(P)

opt(G)
.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 57 / 91

Selfish load balancing and the Price of Anarchy The price of anarchy

The price of anarchy in load balancing

We will study the PoA in load balancing games in four different variants,
based on two criteria:

1 games with identical and uniformly related machines;

2 pure Nash equilibria and mixed Nash equilibria.

When considering the PoA for games with identical machines then we
restrict the set G (m) to instances in which the m machines have all
the same speed.

When considering the PoA with respect to pure equilibria, we take
the maximum only among pure equilibrium assignments rather than
among possibly mixed equilibrium strategy profiles.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 58 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on identical machines

PoA for PNE on identical machines

Theorem

Consider an instance G of the load balancing game with n tasks of weight
w1, . . . ,wn and m identical machines. Let A : [n]→ [m] denote any Nash
equilibrium assignment. Then,

cost(A) ≤
(

2− 2

m + 1

)
opt(G) .

Proof.

Let j∗ be a machine with the highest load under assignment A.

Let i∗ be a task of smallest weight assigned to this machine.

W.l.o.g., there are at least two tasks assigned to machine j∗ as,
otherwise, cost(A) = opt(G) so that the theorem follows trivially.

Thus wi∗ ≤ 1
2 cost(A).

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 59 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on identical machines

PoA for PNE on identical machines

Proof (continued).

Suppose there is a machine j with load less than `j∗ − wi∗ .

Then moving the task i∗ from j∗ to j would decrease the cost for this
task.

Hence, as A is a Nash equilibrium, it holds

`j ≥ `j∗ − wi∗ ≥ cost(A)− 1

2
cost(A) =

1

2
cost(A) .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 60 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on identical machines

PoA for PNE on identical machines

Proof (continued). Now observe that the cost of an optimal assignment
cannot be smaller than the average load over all machines so that

opt(G) ≥
∑

i∈[n] wi

m
=

∑
j∈[m] `j

m

≥
cost(A) + 1

2 cost(A)(m − 1)

m

=
(m + 1)cost(A)

2m
,

implying that

cost(A) ≤ 2m

m + 1
opt(G) =

(
2− 2

m + 1

)
opt(G) .

�

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 61 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on identical machines

Convergence time of best responses

How may agents find or compute a Nash equilibrium efficiently?

The existence proof for pure equilibria implicitly shows that every
sequence of improvement steps by the agents leads to a Nash
equilibrium.

Do the players converge to an equilibrium in reasonable time?

How good is the finally reached equilibrium?

We will show that, in the case of identical machines, there is a short
sequence of improvement steps that leads from any given initial
assignment to a pure Nash equilibrium.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 62 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on identical machines

Convergence time of best responses

An agent is said to be satisfied if it cannot reduce its cost by
unilaterally moving its task to another machine.

The max-weight best response policy:

activates the agents one after the other, always activating an agent
with maximum weight among the unsatisfied agents;
an activated agent plays a best response; i.e., the agent moves its task
to the machine with minimum load.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 63 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on identical machines

Convergence time of best responses

Theorem

Let A : [n]→ [m] denote any assignment of n tasks to m identical
machines. Starting from A, the max-weight best response policy reaches a
pure Nash equilibrium after each agent was activated at most once.

Proof. We will show that, once an agent i ∈ [n] was activated and played
its best response, it never gets unsatisfied again.

An agent is satisfied if and only if its task is placed on a machine on
which the load due to the other tasks is minimal.

A best response never decreases the minimum load among the
machines.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 64 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on identical machines

Convergence time of best responses

Proof (continued). As a consequence, a satisfied agent can get
unsatisfied only for one reason: the load on the machine holding its task
increases because another agent moves its task to the same machine.

Suppose that agent k is activated after agent i , and it moves its task
to the machine holding task i .

Let j∗ be the machine on which i is placed and to which k is moved.

For j ∈ [m], let `j denote the load on machine j at the time
immediately after the best response of agent k.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 65 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on identical machines

Convergence time of best responses

Proof (continued).

Since the assignment of k to j∗ is a best response and as wk ≤ wi

because of the max-weight policy, it follows

`j∗ ≤ `j + wk ≤ `j + wi ∀j ∈ [m] .

Hence, after the best response of k , agent i remains satisfied on
machine j∗.

�

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 66 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

PoA for PNE on uniformly related machines

Theorem

Consider an instance G of the load balancing game with n tasks of weight
w1, . . . ,wn and m machines of speed s1, . . . , sm. Let A : [n]→ [m] denote
any Nash equilibrium assignment. Then, it holds that

cost(A) = O

(
log m

log log m

)
· opt(G) .

Proof.

Let c = bcost(A)/opt(G)c.
We will show that c ≤ Γ−1(m), where Γ−1 is the inverse of the
gamma function:

Γ(k) = (k − 1)!

Γ−1(k) = Θ

(
log k

log log k

)
.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 67 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

PoA for PNE on uniformly related machines

Proof (continued).

Assume s1 ≥ · · · ≥ sm and let L = [1, . . . ,m] denote the list of
machines in non-increasing order of speed.
For k ∈ {0, . . . , c − 1}, let Lk denote the maximum length prefix of L
such that the load of each server in Lk is at least k · opt(G):

c

c-2

c-3

c-1

Lc-1
Lc-2
Lc-3

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 68 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

PoA for PNE on uniformly related machines

Proof (continued). Assume Lc−1 is empty. Then:

The load of machine 1 is less than (c − 1) · opt(G) in the equilibrium
assignment A.

Let i be a task placed on a machine j with load at least c · opt(G).

Moving i to machine 1 reduces the cost of i to strictly less than

(c − 1) · opt(G) +
wi

s1
≤ (c − 1) · opt(G) + opt(G) = c · opt(G) ,

which contradicts the assumption that A is a Nash equilibrium.

Thus, we have shown that
|Lc−1| ≥ 1 .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 69 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

PoA for PNE on uniformly related machines

Proof (continued). Let A∗ be an optimal assignment. We will show that,
if i is a task with A(i) ∈ Lk+1 then A∗(i) ∈ Lk .

If L \ Lk = ∅ the claim follows trivially.

Let q be the smallest index in L \ Lk . Then `q < k · opt(G).

k-1

k+1

k

q

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 70 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

PoA for PNE on uniformly related machines

Proof (continued).

A(i) ∈ Lk+1 implies `A(i) ≥ (k + 1) · opt(G).

If wi ≤ sq · opt(G), then moving task i to q would reduce its cost to

`q +
wi

sq
< k · opt(G) + opt(G) ≤ `A(i) ,

contradicting the equilibrium.

Hence A(i) ∈ Lk+1 implies wi > sq · opt(G).

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 71 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

PoA for PNE on uniformly related machines

Proof (continued).

Now assume A∗(i) = j and j ∈ L \ Lk . Then the load on j under A∗

would be at least

wi

sj
>

sq · opt(G)

sj
≥ opt(G) ,

contradicting the optimality of A∗.

Hence, if i is a task with A(i) ∈ Lk+1 then A∗(i) ∈ Lk .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 72 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

PoA for PNE on uniformly related machines

Proof (continued). We will now show that |Lk | ≥ (k + 1) · |Lk+1| for all k
such that 0 ≤ k ≤ c − 2.

By definition of Lk+1, the sum of the weights that A assigns to a
machine j ∈ Lk+1 is at least (k + 1) · opt(G) · sj .
An optimal assignment has to assign all this weight to the machines
in Lk such that the load on each is at most opt(G). Therefore:∑

j∈Lk+1

(k + 1) · opt(G) · sj ≤
∑
j∈Lk

opt(G) · sj∑
j∈Lk+1

k · sj ≤
∑

j∈Lk\Lk+1

sj .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 73 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

PoA for PNE on uniformly related machines

Proof (continued).

Let s∗ = s|Lk+1| be the speed of the slowest machine in Lk+1. Then∑
j∈Lk+1

k · s∗ ≤
∑

j∈Lk\Lk+1

s∗ ,

which implies

|Lk+1| · k ≤ |Lk \ Lk+1| = |Lk | − |Lk+1|

and our claim that
|Lk | ≥ (k + 1) · |Lk+1|

follows.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 74 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

PoA for PNE on uniformly related machines

Proof (continued). We have shown the following recurrence:

|Lk | ≥ (k + 1) · |Lk+1| 0 ≤ k ≤ c − 2

|Lc−1| ≥ 1 .

Solving the recurrence yields |L0| ≥ (c − 1)! = Γ(c).
Observe that |L0| = m, so m ≥ Γ(c) and

c ≤ Γ−1(m)

which proves the theorem. �

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 75 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

Algorithms for computing pure equilibria

The proof of existence of PNE reveals that, starting from any initial
assignment, a PNE is reached after a finite number of improvement
steps.

We have seen that there exists a sequence of improvement steps of
length O(n) in case of identical machines and this sequence can be
computed efficiently.

For the case of uniformly related machines, it is not known whether
there always exists a short sequence of improvement steps and
whether such a sequence can be efficiently computed.

However, the well-known LPT (largest processing time) scheduling
algorithm allows us to efficiently compute a Nash equilibrium.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 76 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

Algorithms for computing pure equilibria

The LPT algorithm:

inserts the tasks in a nonincreasing order of weights;

each task is assigned to a machine that minimizes the cost of the task
at its insertion time.

Theorem

The LPT algorithm computes a PNE for load balancing games on
uniformly related machines.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 77 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

Algorithms for computing pure equilibria

Proof.

Let the tasks be numbered from 1 to n in the order of their insertion.

Let time t ∈ {0, . . . , n} denote the point of time after the first t tasks
have been inserted.

We will show by induction that the partial assignment A : [t]→ [m]
computed by LPT at time t is a Nash equilibrium.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 78 / 91

Selfish load balancing and the Price of Anarchy Pure equilibria on uniformly related machines

Algorithms for computing pure equilibria

Proof (continued).

By induction assumption tasks 1, . . . , t − 1 are satisfied at time t − 1:
none of these tasks can improve its cost by a unilateral deviation.

When task t is inserted, it might be mapped to a machine j∗ ∈ [m]
that holds already some other tasks. We only have to show that these
tasks do not get unsatisfied because of the increased load on j∗.

Let i < t be one of the tasks mapped to machine j∗. For j ∈ [m], let
`j denote the load on machine j at time t. Since the assignment of
task t to machine j∗ minimizes the cost of agent t and as wt ≤ wi ,

`j∗

sj∗
≤
`j + wt

sj
≤
`j + wi

sj
∀j ∈ [m] .

Hence, at time t, agent i is satisfied on machine j∗. �

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 79 / 91

Selfish load balancing and the Price of Anarchy Mixed equilibria on identical machines

PoA for (mixed) NE on identical machines

Theorem

Consider an instance G of the load balancing game with n tasks of weight
w1, . . . ,wn and m identical machines. Let P = (pj

i)i∈[n],j∈[m] denote any
Nash equilibrium strategy profile. Then, it holds that

cost(P) = O

(
log m

log log m

)
· opt(G) .

Proof. Recall that
cost(P) = E [max

j∈[m]
(`j)] .

We will start with proving an upper bound on the maximum expected load
instead of the expected maximum load.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 80 / 91

Selfish load balancing and the Price of Anarchy Mixed equilibria on identical machines

PoA for (mixed) NE on identical machines

Proof (continued). We will show that, for every j ∈ [m],

E [`j] ≤
(

2− 2

m + 1

)
· opt(G) .

The proof for this claim follows the course of the analysis for the PoA for
pure equilibria:

Instead of considering a smallest weight task i∗ placed on a maximum
load machine j∗, we define i∗ to be the smallest weight task with
positive probability on a machine j∗ maximizing the expected load.

Also in all other occurrences we consider the expected load instead of
the load.

We conclude that the maximum expected load is less than 2opt(G).

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 81 / 91

Selfish load balancing and the Price of Anarchy Mixed equilibria on identical machines

PoA for (mixed) NE on identical machines

Proof (continued).

Now we will show that the expected maximum load deviates at most
by a factor of O(log m

log log m) from the maximum expected load.

We use a weighted Chernoff bound to show that it is unlikely that
there is a machine that deviates by a large factor from its expectation.

Lemma (Weighted Chernoff bound)

Let X1, . . . ,XN be independent random variables with values in the
interval [0, z] for some z > 0, and let X =

∑N
i=1 Xi . Then for any t it

holds that Pr{X ≥ t} ≤ (e · E [X]/t)t/z .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 82 / 91

Selfish load balancing and the Price of Anarchy Mixed equilibria on identical machines

PoA for (mixed) NE on identical machines

Proof (continued). Fix j ∈ [m] and let w be the largest weight of any
task. Applying the Chernoff bound shows that, for any t,

Pr{`j ≥ t} ≤ min

{
1,

(
e · E [`l]

t

)t/w
}
≤
(

2e · opt(G)

t

)t/opt(G)

,

since E [`j] ≤ 2opt(G) and w ≤ opt(G).
Now, if we let τ = 2opt(G) lnm

ln lnm , we get for any x ≥ 0:

Pr{`j ≥ τ + x} ≤ m−1 · e−x/opt(G) .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 83 / 91

Selfish load balancing and the Price of Anarchy Mixed equilibria on identical machines

PoA for (mixed) NE on identical machines

Proof (continued). Recall that for every nonnegative random variable X ,
E [X] =

∫∞
0 Pr{X ≥ t}dt. So:

cost(P) = E [max
j∈[m]

`j] =

∫ ∞
0

Pr

{
max
j∈[m]

`j ≥ t

}
dt .

Substituting t by τ + x yields

cost(P) = τ +

∫ ∞
0

Pr

{
max
j∈[m]

`j ≥ τ + x

}
dx

≤ τ +

∫ ∞
0

∑
j∈[m]

Pr {`j ≥ τ + x} dx .

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 84 / 91

Selfish load balancing and the Price of Anarchy Mixed equilibria on identical machines

PoA for (mixed) NE on identical machines

Proof (continued). Finally we apply the tail bound derived above and
obtain

cost(P) ≤ τ +

∫ ∞
0

e−x/opt(G)dx = τ + opt(G)

which yields the theorem as τ = 2opt(G) lnm
ln lnm . �

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 85 / 91

Selfish load balancing and the Price of Anarchy Mixed equilibria on uniformly related machines

PoA for (mixed) NE on uniformly related machines

We come to the most general case of mixed equilibria on uniformly related
machines.

Theorem

Consider an instance G of the load balancing game with n tasks of weight
w1, . . . ,wn and m machines of speed s1, . . . , sm. Let P be any Nash
equilibrium strategy profile. Then, it holds that

cost(P) = O

(
log m

log log log m

)
· opt(G) .

I.e., the PoA for this case is only slightly larger than the one for mixed
equilibria on identical machines or pure equilibria on uniformly related
machines.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 86 / 91

Selfish load balancing and the Price of Anarchy Mixed equilibria on uniformly related machines

PoA for (mixed) NE on uniformly related machines

Sketch of proof. The analysis combines the methods from the cases of
mixed equilibria on identical machines and pure equilibria on uniformly
related machines.

First, we show that the maximum expected makespan is bounded by

O

(
log m

log log m

)
· opt(G)

using the same kind of arguments as in the analysis of the PoA for
PNE on uniformly related machines.
Then, as in the case of mixed equilibria on identical machines, we use
a Chernoff bound to show that the expected maximum load is not
much larger than the maximum expected load.
This results in an upper bound on the price of anarchy of

O

(
log m

log log log m

)
.

�
Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 87 / 91

Selfish load balancing and the Price of Anarchy Summary and discussion

Summary and discussion

Identical Uniformly related

Pure 2− 2
m+1 Θ

(
log m

log log m

)
Mixed Θ

(
log m

log log m

)
Θ
(

log m
log log log m

)
Note that all upper bounds on the PoA are tight (examples of
matching PoA exist).

In the case of PNE on identical machines, the PoA is bounded from
above by a small constant term.

In all other cases, the PoA is bounded from above by a slowly
growing, sublogarithmic function in the number of machines.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 88 / 91

Selfish load balancing and the Price of Anarchy Summary and discussion

Summary and discussion

Both the PoA for pure equilibria on uniformly related machines and the
PoA for mixed equilibria on identical machines are of order
log m/ log log m.

In the first case, equilibrium assignments correspond to local optima
with respect to moves of single tasks. That is, tasks are placed in a
suboptimal but nevertheless coordinated fashion.

In the second case, the increase in cost is due to collisions between
uncoordinated random decisions.

If one combines these two effects, then one loses only another very
small factor of order log log m/ log log log m, which results in a PoA of
order log m/ log log log m for mixed equilibria on uniformly related
machines.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 89 / 91

Selfish load balancing and the Price of Anarchy Summary and discussion

Summary and discussion

How do agents reach a Nash equilibrium?

Any sequence of improvement steps reaches a PNE after a finite
number of steps.

In case of identical machines the max-weight best-response policy
reaches an equilibrium in only O(n).

In case of uniformly related machines, it is open whether there exists
a short sequence of improvement steps that lead from any given
assignment to a pure Nash equilibrium.

Are improvement steps the only reasonable approach for the agents to
reach a Nash equilibrium in a distributed way? There might also be
other, possibly more strategic or more coordinated behavioral rules
that quickly converge to a Nash equilibrium or to an approximate
Nash equilibrium.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 90 / 91

Further reading

David Easley and Jon Kleinberg: Networks, Crowds, and Markets:
Reasoning About a Highly Connected World, Chapter 8. Cambridge
University Press, 2010.

Noam Nisan, Tim Roughgarden, Éva Tardos, and Vizay Vazirani
(eds): Algorithmic Game Theory, Chapter 20. Cambridge University
Press, 2007.

Dimitris Fotakis, Spyros Kontogiannis, and Paul Spirakis: Selfish
unsplittable flows. Theoretical Computer Science 348(2), 2005.

Paul G. Spirakis (U. Liverpool) Selfish Routing & Inefficiency of Equilibria 91 / 91

	Modeling network traffic using game theory
	Network traffic as a game
	Equilibrium traffic
	Braess's paradox

	Network congestion games
	Network congestion models
	Pure Nash equilibria and potential functions

	Selfish load balancing and the Price of Anarchy
	Selfish load balancing games
	The price of anarchy
	Pure equilibria on identical machines
	Pure equilibria on uniformly related machines
	Mixed equilibria on identical machines
	Mixed equilibria on uniformly related machines
	Summary and discussion

