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Abstract

Software development generally implies three phases, design, implementation,
and verification. As the separation of implementation and verification is time-
consuming and effortful, both phases can be replaced by an automated syn-
thesis development phase. The problem of distributed synthesis is to examine
whether for a specification and an architecture there exists an implementation
that meets the specification. ReaSyn is a tool, which examines for a given
architecture and specification whether the underlying distributed system is re-
alizable and creates an according program. Existing theoretical approaches
were implemented: ReaSyn constructs and solves distributed games [MW03]
in order to generate an optimized PROMELA program. Finally, ReaSyn is
evaluated with respect to experimental results and possible extensions are dis-
cussed.



Chapter 1

Introduction

Software development is a time-consuming task. Usually it follows three steps.
First, all components of the piece of software are designed and their behavior is
specified. The design phase is followed by the implementation of the system.
Only after the implementation is finished, it is possible to verify the system,
i.e., to prove that the implementation satisfies the specified behavior.

An alternative to the effortful tasks of implementation and subsequent verifi-
cation is to synthesize the implementation. Using a given specification and
architecture, synthesis combines implementation and verification in one auto-
mated development phase. The resulting program does not require an exten-
sive verification, because due to the synthesis process, the correctness of the
program is inherently given. Thus, given an architecture and a specification,
synthesis allows to directly create a program, which fulfills the specification.
The resulting implementation is defined as a set of finite state programs sat-
isfying the specification. If the given system is not limited to one, but entails
several processes, the synthesis is referred to as distributed synthesis. Besides
automation, synthesis has other advantages. Unrealizable specifications are
identified before time is wasted in the implementation process. Additionally,
the debugging cycles, which may not even terminate in cases of unrealizable
specifications, become obsolete.

The goal of this project was to develop a tool, ReaSyn, which examines
whether distributed systems are realizable. Additionally, if they are realiz-
able, a small implementation of the system should be generated. ReaSyn was
realized in cooperation with Maurer [Mau05].

So far, research has not provided an implementation of the theoretical aproaches
to distributed synthesis. Distributed synthesis is a problem with non-elementary
complexity. A second aim of this project was hence to evaluate whether dis-
tributed synthesis is possible at all. If so, the goal was to identify its boundary
conditions.
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1.1. History of System Synthesis

1.1 History of System Synthesis

Generally, it has been demonstrated that synthesis of reactive systems is pos-
sible, but so far, no implementation has been presented. Pnuelli and Ros-
ner [PR90] have shown that the Distributed Synthesis Problem in general is
not decidable. This insight was influenced by the work of Peterson and Reif
[PR79] who studied multi-player games with incomplete information. But
there are classes of architectures, for which the Distributed Synthesis Prob-
lem is proven to be decidable. Rosner [Ros92] approached the synthesis of
distributed asynchronous systems with LTL (linear temporal logic) specifi-
cations. The synthesis problem for a single process architecture was solved
for the specification logic CTL? (computational tree logic) [KV97, KV99] as
well as for the µ-calculus [KV00]. Two-way pipelines and one-way ring ar-
chitectures with CTL? specifications are proven to be decidable in [KV01].
Another approach to distributed synthesis was made by Madhusudan and Thi-
agarajan [MT01, MT02a, ?]. They solved the synthesis problem for LTL in an
asynchronous setting. Furthermore, Finkbeiner and Schewe found a criterion
[FS05] by which one can efficiently decide whether for a given architecture
the distributed synthesis problem is decidable.

There are several approaches to solve the Distributed Synthesis Problem. [PR90]
synthesize a program for a single process architecture and subsequently de-
compose this program into distinct programs for all processes of the architec-
ture. The algorithms of [FS05, KV01] use an automata-based construction.
It starts with an automaton equivalent to the specification. In the following,
the architecture is incorporated into this automaton. There exists an imple-
mentation if and only if the language of the resulting automaton is not empty.
A game-theoretic approach is proposed in [MW03]. Here, the specification
and the architectures are first encoded into two-player games of player versus
environment. In an iterative procedure, the specification game and an archi-
tecture game are combined into a new game. The result is a single, solvable
two-player game [GTW02]. If and only if there exists a winning strategy for
the player, there also exists an implementation that satisfies the specification.

1.2 Our Approach

Even though the literature offers the aforementioned theoretical solutions, none
of them has been actually implemented. Therefore, ReaSyn was created as a
tool to solve instances of the Distributed Synthesis Problem. The problem of
distributed synthesis is to examine whether for a specification ϕ and an archi-
tecture A there exists an implementation for A that satisfies ϕ.

A Distributed Synthesis Problem is constituted of an architecture and a spec-
ification. Architectures model the structure and the internal communication
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CHAPTER 1. Introduction

Distributed Games for Reactive Systems 
Tobias Maurer [Mau05]

Architecture Transformations
Formula− and Architecture Encoding

Code generation

FIGURE 1.1 Interaction between the two theses

of the distributed system, while the specification defines its desired behavior.
The efford needed to solve the Distributed Synthesis Problem depends on the
sizes of the architecture and the specification. Finkbeiner and Schewe [FS05]
introduced the “Information Fork” criterion, which identifies architectures for
which the Distributed Synthesis Problem is decidable. For this decidable sub-
class, ReaSyn decides whether the distributed systems are realizable, given a
specification in linear temporal logic (LTL).

In order to solve such instances of the Distributed Synthesis Problem ReaSyn
takes a distributed games approach as proposed by Mohalik and Walukiewicz
[MW03]. Due to the restrictions a distributed game imposes on the archi-
tectures, the architecture provided by the user is transformed into a pipeline
architecture. Therefore, the transformations discussed in [FS05], which trans-
form every architecture without an information fork into a strictly hierarchi-
cal acyclic architecture, are used. Finally, the architectures are converted into
pipeline architectures. From the solution of the Distributed Synthesis Problem
on pipeline architectures a solution for the originally provided architectures is
derived.

Additionally, a transformation chain is introduced to convert the LTL specifi-
cation provided by the user into a deterministic automaton. The transformation
of the LTL specification uses the tool LTL2BA by Gastin and Oddoux [GO01]
to convert the specification into a Büchi automaton. In order to reduce the
size of the specification part in the distributed game, the Büchi automaton is
optimized before further transformations. Finally, a two-player game simu-
lating the deterministic automaton is used to construct the distributed game.
Subsequently, the distributed game is step-wise reduced to a two-player game
of Player versus Environment. If the Player wins the game, he has a winning
strategy and the distributed system is realizable. The winning strategy is used
to create a finite transition system for each process of the original architecture.
It is represented as a PROMELA program.
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1.2. Our Approach

ReaSyn was developed in cooperation with Maurer [Mau05]. He focused on
the distributed games including the datastructures and algorithms to reduce
and solve the distributed games. The present work covers architecture and
specification transformations as well as the decomposition and optimization
of strategies and the code generation. Additionally, it introduces an automata
based transformation of winning conditions. Figure 1.1 gives an overview
of ReaSyn’s structure. The first part (Chapters 2 - 7) covers the underlying
theory of the architecture and specification transformations. Next, ReaSyn
and its implementation are introduced in detail (Chapters 8 - 10). Finally, the
work is evaluated with respect to experimental results and possible extensions
are discussed.
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Part I

Theory
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The following chapters formally define the Distributed Synthesis Problem and
its components architecture and specification. The architectures describe the
structure of the distributed system under consideration. They can be consid-
ered as a directed labled graph, where the processes are represented as nodes
and the signals, by which the processes communicate, are the edges between
the nodes. In every architecture there is a designated process, which simu-
lates the environment in which the distributed system is executed. In fact, in
a distributed system every process interacts with a different environment, but
as a simplification all these different environment processes are combined. In
context of ReaSyn the communication via the signals happens without delay.
In a single atomic step of the system, all processes of the architecture read
input from incoming signals and produce their output. Additionally, ReaSyn
assumes that the processes of an architecture can be ordered according to their
knowledge of the distributed system. Processes, which receive input directly
from the environment process are the best informed processes. The less in-
formed processes read their input from the processes with greater knowledge.
The specification defines the desired behavior of the distributed system. It is
given as an LTL formula. Generally, the behavior of a system is represented
as a tree, where different branches denote different behaviors of the system.
The different behaviors arouse due to varying input values on the signals un-
der environment control. In order to check whether such a tree satisfies an LTL
formula, the LTL formula is tested on every possible path of the tree represent-
ing the behavior of the distributed system.

In order to combine both the architecture and the specification into a distributed
game [MW03] they have to be converted into two player parity games. If pos-
sible, the architecture is first transformed into a pipeline architecture. The
resulting pipeline architecture is subsequently encoded into a parity game for
each process of the pipeline. One player simulates the process’ behavior; the
other player chooses the input of the process. The transformation of the specifi-
cation is more complex. It involves several automata and conversions between
them. In the end, the specification is transformed into a deterministic par-
ity automaton, which is encoded into a game simulating the automaton. One
player chooses a letter from the automaton’s alphabet, the other chooses the
transition the automaton would take. In the distributed game, the architecture
games are used to generate a behavior pattern of the distributed system and the
specification game is used to check whether the generated pattern fulfills the
specification.

Games are introduced in Chapter 3. The transformations used to convert an ar-
chitecture into a set of two-player games are presented in Chapter 4, while the
specification transformations are presented in Chapters 5 and 6. The following
chapter covers the formal definition of the Distributed Synthesis Problem and
its components.

7



Chapter 2

Preliminaries

2.1 Architectures

Architectures structure the way processes communicate with each other. The
communication media are called signals. Signals can be written to and read
by processes. Interpreting processes as nodes and signals as connecting edges
allows to think of an architecture as a directed labled graph.

Definition 1: Architecture

An Architecture is given as a tuple A = (P, S,ES , penv , I, O)
where P is the set of processes and penv ∈ P is the designated
environment process, S is the set of signals (variables). I : P →
2S is a function that maps a process to the set of its input signals
and analogously O : P → 2S is a function that maps a process

to its set of output signals. Furthermore, S =
.
⋃

p∈P O(p); ES ⊆
P × S × P is the set of edges labeled with signals. Additionally,
(p, s, q) ∈ ES ⇔ s ∈ O(p) ∧ s ∈ I(q).

In addition to the definition, the following notation is used: Architecture A
is called acyclic if (P,ES) is acyclic. A signal’s domain dom(s), s ∈ S is
the set of values s can hold. A process p ∈ P is called idle if O(p) = ∅.
P− = {p ∈ P \ {penv} | O(p) 6= ∅} is the set of non idle processes. In
order to avoid inconsistencies, we also assume that the sets O(p) are pairwise
disjoint (∀p1, p2 ∈ P.p1 6= p2 ⇒ O(p1) ∩ O(p2) = ∅). This means that
each signal can only be written to by a single process. However, there is no
restriction on how many processes can read a signal. The set O(p, q) = {s ∈
S | (p, s, q) ∈ ES} is the set of signals, which label the edges between p
and q. READ : S → 2P returns the set of processes reading the given
signal. The corresponding function WRITE : S → 2P returns the set of
processes, which are writing to the specified signal. Note that in our setup

8



2.2. Syntax and Semantics of LTL

WRITE(s) is always a singleton set to avoid inconsistencies. Furthermore,
the setD(S ′) = dom(s1)×· · ·×dom(sn) is defined to be the cartesian product
of signal domains, where S ′ = {s1, . . . , sn} ⊆ S.

2.2 Syntax and Semantics of LTL

LTL formulas are used to describe the execution properties of a system. The
set atom of atomic propositions contains all properties that can be valid in
a given state of the system. Using the boolean operators (∨,∧,¬), one can
express static properties. The temporal operators next (X), until (U), eventually
(3) and henceforth (2) provide the possibility to state dynamic properties.

Definition 2: Syntax of LTL Formulas [GO01]

The set of LTL formulas on the set atom of atomic Propositions
is defined by

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

| X ϕ | 3ϕ | 2ϕ | ϕ1 U ϕ2

where p ∈ atom.

An LTL formula can be interpreted regarding different types of systems. Usu-
ally, it is interpreted with respect to a linear structure but it can be interpreted
with regard to a tree-like structure as well. In a tree, every path resembles an
execution behavior of the system. The LTL formula is interpreted over every
possible path in the tree. A linear model can be seen as a unary tree. In case of
a linear system one speaks of word semantics of LTL. The semantics, which
interpret LTL formulas over arbitrary trees, are called tree semantics of LTL.

Definition 3: Σ-labeled Υ-tree

A (full) tree is given as the set Υ? of all finite words over a set of
directions Υ. Every non-empty node x ·v, x ∈ Υ?, v ∈ Υ, has the
direction dir(x · v) = v and the empty word ε has a designated
root direction dir(ε) = v0 ∈ Υ. Given the finite sets Σ and Υ, the
Σ-labeled Υ-tree is a pair 〈Υ?, l〉, where l : Υ? → Σ is a labeling
function, which maps a node from Υ? to a letter of Σ.

Definition 4: Run of a System

A run σ = σ1σ2 · · · ∈ Σω of a system is a infinite sequence
of system states. This sequence resembles a single execution of

9



CHAPTER 2. Preliminaries

the system. Each σi contains the valid atomic propositions of the
system state.

The word semantics of LTL define whether or not a run σ of a given system
satisfies a given formula ϕ. The semantics depend on the atomic propositions
that are valid in the states of σ.

Definition 5: Word Semantics of LTL Formulas [GO01]

Let σ = σ0σ1... be a word in Σω with Σ = 2atom and ϕ an
LTL formula. atom is the set of atomic propositions. The relation
σ |= ϕ (σ models ϕ) is defined as follows:

- σ |= p iff p ∈ σ0,

- σ |= ¬ϕ iff σ 6|= ϕ,

- σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2,

- σ |= Xϕ iff σ1σ2... |= ϕ,

- σ |= ϕ1 U ϕ2 iff ∃k ≥ 0.σkσk+1... |= ϕ2 and ∀0 ≤ i <
k.σiσi+1... |= ϕ1.

The additional operators are derived from the basic ones. They are defined by:

• true
def
= p ∨ ¬p

• false
def
= ¬ true

• ϕ1 ∧ ϕ2
def
= ¬(¬ϕ1 ∨ ¬ϕ2)

• 3ϕ
def
= true U ϕ

• 2ϕ
def
= ¬3(¬ϕ)

The size of an LTL formula ϕ is defined as the number of subformulas of ϕ.

Definition 6: Tree Semantics of LTL Formulas

Let π = υ1υ2 · · · ∈ Υω, υi ∈ Υ? be a path through the Σ-labeled
Υ-tree 〈Υ?, l〉. The relation |= is defined by:

〈Υ?, l〉 |= ϕ
def.
⇐⇒ ∀υ1υ2 · · · ∈ Υω.l(υ1)l(υ2) · · · |= ϕ.

10



2.3. Partition of the Distributed Synthesis Problem

2.3 Partition of the Distributed Synthesis Problem

Given the above mentioned definitions, one can formally define the Distributed
Synthesis Problem:

Definition 7: Distributed Synthesis Problem

For a given architecture A and an LTL formula ϕ, the Distributed
Synthesis Problem (A, ϕ) is the problem to decide, whether there
exists an implementation for A, which satisfies ϕ. Additionally,
if there exists such an implementation, the problem extends to
finding one of them.

ReaSyn addresses the Distributed Synthesis Problem in three parts:

1. Part one, covered in this thesis, handles the transformations needed to
convert the specification and the architecture into games. Furthermore,
it provides functionality to convert the “all-path parity” condition (cf.
Chapter 7) into a parity condition.

2. The second part, covered in [Mau05], is concerned with solving a dis-
tributed game [MW03].

3. Finally, the third part covers the optimization and generation of PROMELA
code for the distributed system. It is also covered in this thesis.

A solution to an instance of the Distributed Synthesis Problem is a tree, which
satisfies the specification and represents an implementation of the architec-
ture processes. The external input values of the system span this tree; every
path starting at the root constitutes a run of the system. Part two creates these
trees by combining the architecture games and the specification game. These
games are constructed by the first part. The specification game is used to check
whether every path in the tree fulfills the specification, while the architecture
games create the branches of the tree. Finally, the third part chooses a tree,
which solves the given instance of the Distributed Synthesis Problem and gen-
erates a PROMELA program induced by the tree.

In order to formalize the interaction of these parts with each other and the
user, there are two interfaces. The parts of ReaSyn covered by this thesis
interact with two parties, namely, the user and the part described in [Mau05].
The interface controlling the interaction with the user is covered in Chapter 8,
while Chapter 9 describes the interface between parts one and two and parts
two and three.

11



Chapter 3

Games

This chapter gives a short introduction to infinite two-player games on directed
graphs. One player is called Player, the other is called Environment.

3.1 Infinite Games

A game consists of an arena and a winning condition.

Definition 8: Arenas [GTW02]

An arena is a triple
�

= (Vplayer, Venv, E), where Vplayer is a
finite set of nodes belonging to the Player. Venv is the finite set
of Environment nodes. The set of all nodes is denoted by V =
Vplayer

.
∪ Venv. E ⊆ V × V is the transition relation.

In addition, let vE = {v′ ∈ V | (v, v′) ∈ E} be the set of successors of v.
For a player σ ∈ {Player ,Environment}, σ̄ determines the remaining player.
A bipartite game is a game where Player and Environment nodes alternate on
every path through (V,E) (∀v ∈ Vσ.vE ⊆ Vσ̄).

One play of a game can be visualised as follows. A token is placed on an
initial node v0. If v0 is a Player node, then the Player moves the token from
v0 to a successor node v′ ∈ v0E. Analogously, if v0 is an Environment node,
the environment moves the token to a successor. Formally, if v ∈ V is a
σ ∈ {Player ,Environment} node then σ chooses one successor v ′ ∈ vE.
This procedure is carried out until the token reaches a dead end, i.e., a node v
with vE = ∅.

12



3.1. Infinite Games

Definition 9: Play [GTW02]

A play in the Arena
�

is defined either as

• an infinite path π = v0v1v2 · · · ∈ V ω (infinite play)

• or a finite path π = v0v1v2 . . . vn ∈ V + (finite play)

with ∀i ∈ � .vi+1 ∈ viE in case of an infinite play or vnE =
∅ ∧ ∀0 ≤ i < n.vi+1 ∈ viE in case of a finite play. For an infinite
play π the infinity set Inf(π) is defined to be the set of nodes that
occur infinitly often in π

Winning conditions for games are the same as the winning conditions for au-
tomata. Although there are many more, in the case of ReaSyn, Büchi-, Rabin-
, parity, and “all-path” parity winning conditions, as defined below, are ap-
plicable. The other mentionend winning conditions appear in the context of
LTL2BA [GO01] and will be discussed below. In analogy to the winning con-
ditions for automata, parity winning conditions rely on a coloring function to
categorize the existing nodes: let χ : V → C be a coloring function that maps
a node to a color. The coloring of a play χ(π) is defined as χ(v0)χ(v1) . . . .

Definition 10: Winning Condition

Let ACC be an arbitrary winning condition. By W (ACC) we
denote the set of all infinite plays π, such that π is accepted by
ACC . We define the following winning conditions [GTW02]:

• Büchi condition ACC = F ⊆ V : π ∈ W (ACC) if and
only if Inf(π) ∩ F 6= ∅

• co-Büchi condition ACC ⊆ V : π ∈ W (ACC) if and only
if Inf(π) ∩ACC = ∅

• Rabin conditionACC = {(G0, R0), (G1, R1), . . . (Gn, Rn)}:
π ∈W (ACC) if and only if ∃0 ≤ k ≤ n such that Inf(π)∩
Ek = ∅ ∧ Inf(π) ∩ Fk 6= ∅.

• minimal parity condition (χ : V → � ): π ∈W (ACC) ⇔
min(Inf(χ(π))) is even.

• generalized Büchi [GO01]: ACC = T ⊆ V × Σ × V .
π ∈ W (ACC) ⇔ ∃vσv′ ∈ T that appears infinitly often in
π. In other words, some transitions from T are taken infinitly
often.

In anology to mininmal parity conditions there also is a maximal parity condi-
tion. There, the maximal parity occuring infinitly often has to be even. Dur-
ing the reduction of the distributed game another winning condition appears,

13
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Env Node Player Node

a

b c d f

g

e

2

3 4

1

3 4

2

FIGURE 3.1 Colored Arena;
1,2,3,4 are colors

which is called an “all-path parity” condition. It is introduced in Chapter 7 as
some additional definitions are needed.

Finally, a game can be defined:

Definition 11: Game [GTW02]

Let
�

be an arena as above and Win ⊆ V ω. The pair

G = (
�
,Win)

is called a game. A Tuple (G, v0) is called an initialized game, if
every play π begins with v0. The Player is declared the winner of
a play, if and only if

• π = v0v1 . . . vn is a finite play and vn is an Environment
node with vnE = ∅ or

• π = v0v1 . . . is an infinte play and π ∈ Win .

The Environment wins π, if the Player does not win π. If the
Player wins an initialized game, he is called winner of the game.

3.2 Strategies and Trees

Having defined the possible winning conditions, one needs to examine, whether
a player (Player or Environment) can win the game from a given node, regard-
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less of how the other moves. This possibility is given if a player has a strategy
leading him through the game in a way that he will win it. Consider the game
in Figure 3.1 under the assumption of a min parity winning condition. From
node b, Player can only move to node a. The Environment can only move the
token back to b. In this cycle the Player wins with the strategy “If I’m in b
then I’ll move the token to node a”. If the game starts in a different node, the
Environment will win every play with the strategy: ”Whenever the token is in
node c, I’ll move it to node d and if it is in node f, I’ll move it towards node g”.
If the Environment moves the token from c to b instead of d, it will loose the
play because then the Player “can” always stay in {a, b}. Furthermore, if the
Environment moves the token from f to e instead of g, Player wins the min
parity game. Formally, a strategy is:

Definition 12: Strategy [GTW02]

A strategy for player σ ∈ {Player ,Environment} is function
fσ : V ?Vσ → V , which determines a successor for player σ re-
specting the history of already visited nodes.

In the strategy, the choice of a successor may depend on the already visited
nodes. If the strategy for a player σ does not depend on the history of visited
nodes, the strategy is called a memoryless strategy.

Definition 13: Memoryless Strategy [GTW02]

A memoryless strategy for player σ is a function fσ : Vσ → V ,
where ∀v ∈ Vσ : fσ(v) ∈ vE. The choice of the successor
depends only on the current node. In bipartite games one can even
write: fσ : Vσ → Vσ̄ .

A winning memoryless strategy for player σ is a strategy that produces only
winning plays for player σ. The winning region for a player is the set of game
nodes from which he will win the game. A game is called determined, if the
winning regions partition the set of nodes V . The following theorem is proven
in [GTW02].

Theorem 1: Memoryless Determinacy of Parity Games [GTW02]

Every parity game is determined. Whenever a player σ wins a
play, he has a memoryless winning strategy.
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Chapter 4

Architecture Transformations

In order to categorize the Distributed Synthesis Problem, Finkbeiner and Schewe
[FS05] found a criterion to determine whether or not an instance of the Dis-
tributed Synthesis Problem belongs to the decidable subclass.

This criterion is called Information Fork. Additionally, they introduced archi-
tecture transformations, which transform every architecture without an Infor-
mation Fork into a strictly hierarchical architecture. Distributed games can
handle pipeline architectures only. In order to be able to handle all strictly hi-
erarchical architectures, a transformation is introduced, which converts every
strictly hierarchical architecture into a pipeline architecture. In general, it is
impossible to transform every strictly hierarchical architecture into a pipeline,
but ReaSyn assumes no communication delay. This setup renders the later de-
fined transformation possible. Pipeline architectures can be used to construct
a distributed game, which is used to find an implementation for an instance of
the Distributed Synthesis Problem.

The below defined transformations all share the following property. The Dis-
tributed Synthesis Problem (A, ϕ) is realizable, if and only if the transformed
problem (A′, ϕ′) is realizable. An implementation for the original problem
can be constructed from an implementation of the transformed problem.

4.1 Information Forks

An instance of the Distributed Synthesis Problem is decidable if and only if
it has no information fork [FS05]. An information fork in an architecture is a
situation, where two processes receive incomparable information in a way that
the information received by either process cannot be completely deduced from
the other one.
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FIGURE 4.1 Architectures with Information Fork

Definition 14: Information Fork [FS05]

An information fork is a tuple F = (P ′, S′, p, p′) where P ′ is a
subset of P , S ′ is a subset of the signals disjoint from I(p)∪ I(p′)
and p, p′ ∈ P ′ are two different processes. F is an information
fork if and only if P ′ together with the edges of ES labeled with
elements of S ′ form a subgraph, which is rooted in penv , and there
exist two nodes q1, q2 ∈ P ′ that have edges to p, p′, respectively,
such that O(q1, p) 6⊆ I(p′) and O(q2, p

′) 6⊆ I(p).

Figure 4.1 shows two architectures with an information fork. The architec-
ture A0 contains the information fork ({penv}, ∅, A,B). In Architecture A0,
A and B have incomparable levels of information, both directly receiving
different input from the environment. However, neither process A nor B
have any knowledge of the other’s information. In Figure 4.1 on the right,
({penv , A,B,E}, {a, b}, C,D) is an information fork of the two-way ring
with five processes. The environment can send information to C via a, b, and
c and to D via a, b, and f . In this case, C and D have different information
available, which cannot be deduced from the other process.

4.2 Finding Information Forks

[FS05] provide an algorithm to decide whether a given architecture has an
information fork. It is based on the observation that every architecture without
an information fork can be ordered according to the relative knowlegde of the
processes. To define this order, a number of preliminary definitions are needed:
Let Ep = {s ∈ S | s /∈ I(p)} be the set of edges that carry information
invisible to p. Up is defined as the set {q ∈ P | there is no path from penv to q
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in (P,Ep)}.

Definition 15: Preorder � [FS05]

Let p, p′ ∈ B then the following holds: p � p′ ⇔ p′ ∈ Up

The existence of an information fork in A is not examined on A itself, but on
a related architecture A′. A′ is obtained by eliminating idle processes from A,
i.e., processes p ∈ P. O(p) 6= ∅. The architecture A′ is called:

Definition 16: idlefree(A) [FS05]

The related idle-free Architecture A′ to an architecture A is de-
fined as follows:

• P ′ = P− ∪ {penv}

• E′
S = ES ∩ P ′ × S × P ′

• S′ = S

• I ′ = I |P ′

• O′ = O |P ′

Definition 17: Order [FS05]

An architecture A is called ordered by a surjective function f :
P → � n for some n ∈ � , if {penv} is the preimage of 1 and
∀p, p′ ∈ P.f(p) ≤ f(p′) ⇔ p � p′. If f is bijective, A is called
strictly ordered. A is called weakly ordered, if idlefree(A) is
ordered.

The algorithm to determine wheter or not A has an information fork functions
as follows:

1. compute idlefree(A)

2. compute �

3. If ∀p1, p2 ∈ P. p1 � p2 ∨ p2 � p1, then A does not contain an informa-
tion fork; otherwise it does.

The transformations described in this section turn every architecture that does
not contain an information fork into a strictly ordered acyclic architecture. The
transformations are introduced in [FS05].
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FIGURE 4.2 Elimination of Idle Processes

4.3 Elimination of Idle Processes

The definition of the related architecture without idle processes is given in
Definition 16.

Figure 4.2 shows an architecture before and after the elimination of idle pro-
cesses. Process S has no outgoing signals. The calculations of process S hence
have no influence over the behavior of the system. Therefore, it is removed.
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4.4 Quotient Architecture

In a quotient architecture, processes with the same level of information are
clustered and treated as one single process. This transformation is based on
the observation that equally informed processes can simulate each other. In
the following the notion of “equally informed” is formally defined.

Definition 18: Equally Informed Processes [FS05]

Two processes p, p′ ∈ P are equally informed (p ∼ p′) if and only
if p � p′ ∧ p � p′.

The quotient architecture is then defined as A′ = A/∼:

Definition 19: Quotient Architecture [FS05]

Let g : P− → (P−/∼) be the function, which maps a process p to
its equivalence class with respect to∼. The pseudo inverse func-

tion g−1 : 2P ′

→ 2P is given as g−1(p̃)
def
= {p ∈ P | g(p) ∈ p̃}.

Then, the architecture A′ = A/∼ is called the quotient architec-
ture of A with respect to ∼ if, and only if

• P ′ = (P−/∼) ∪ {penv}

• E′
S =

⋃

(p,s,p′)∈ES
{(g(p), s, g(p′)) | g(p) 6= g(p′)}

• S′ = S

• I ′(p′) =
⋃

p∈g−1(p′) I(p)

• O′(p′) =
⋃

p∈g−1(p′)O(p)

Figure 4.3 shows an architecture before and after building the quotient archi-
tecture. The processes P and Q have the same information available, as they
both can only receive information through signals a and b. Therefore, they are
collapsed into the node P̄ , which simluates both original nodes. This implies
that P̄ receives all input sent to P and Q and produces all output, which P and
Q would have produced.

4.5 Elimination of Feedback Edges

The last transformation removes all feedback edges. Feedback edges are edges
leading from a process p to a better informed process p′, in other words p′ � p.
These edges can be removed, since the better informed process can predict the
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feedback from the less informed process. Formally, the related architecture
without feedback edges A′ = acycle(A) is defined as:

Definition 20: acycle(A) [FS05]

Let A be a strictly ordered architecture. Then acylce(A)
def
=

• P ′ = P

• S′ = S

• E′
S′ = {(p, s, p′) ∈ E | p � p′}

• I ′(p) = {s ∈ I(p) | ∀q ∈ WRITE (s) : q � p}

• O′ = O

Figure 4.4 shows the elimination of feedback edges. Before the transformation,
the processes are ordered according to their level of information (decreasing
from left to right). Thus, having strictly more information, process P̄ can
foresee the output of R. The feedback edge from R to P̄ is hence superfluous
and is removed.

4.6 Pipeline Encoding

In addition to the transformations proposed by [FS05], ReaSyn transforms the
resulting strictly hierarchical acyclic architecture into a pipeline architecture.
The transformation is necessary to enable ReaSyn to handle all strictly hierar-
chical architectures. In order to meet the assumptions from [Mau05, MW03],
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who expect pipeline architectures, ReaSyn aligns all processes of a strictly hi-
erarchical architecture into a pipeline according to their relative knowledge
using the relation �. They are consecutively numbered according to their
position in the pipeline. ReaSyn then adds new signals to pass informa-
tion through the pipeline to less informed processes. Additionally the spec-
ification is modified to ensure that the values of the added signals equal the
original ones. As mentioned before, the transformation is possible, because
ReaSynassumes no communication delay. In an asynchronous setting, this
transformation would yield two unequal architectures. Formally, the pipeline
architecture A′ = pipe(A) is defined by:

Definition 21: pipe(A)

The number np = |{q ∈ P | q � p}| is the number of processes,
which are better informed than p. At the same time, it is the po-
sition of the process in the pipeline. For a signal s ∈ S let sI be
defined as sI = {si | s ∈ S ∧min{np | p ∈WRITE(s)} < i ≤
max{np | p ∈ READ(s)}}.

Then pipe(A)
def
=

• P ′ = P

• S′ = S ∪
⋃

s∈S sI

• E′
S′ ={(p, s, q) ∈ ES | np + 1 = nq}

∪ {(p, s(np−nr), q) | r ∈WRITE(s), np + 1 = nq}

• I ′(p) =(I(p) \ {s ∈ S | w ∈WRITE(s)nw + 1 6= np})
∪

⋃

s∈S{s(nq−nr) | q ∈ P, r ∈WRITE(s), nq +1 =
np}

• O′(p) = O(p) ∪
⋃

s∈S{s(np−nr) | r ∈WRITE(s)}

Additionally, the specification for the architecture has to be mod-
ified:

ϕ′ = ϕ ∧

|sI |
∧

s∈S, i=1

2(s = si)

Recall that the set WRITE(s) for a signal s ∈ S is always a singleton set.
Figure 4.5 shows a strictly hierarchical acyclic architecture before and after
the transformation into a pipeline architecture. Process P is better informed
than process Q, hence the information from signal b has to be passed to Q in
the pipeline architecture. This is achieved by adding the signal b1 with writer
P and reader Q. In order to ensure the equality of the values of b and b1, the
specification is extended to ϕ′ = ϕ ∧ 2(b=b1).
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FIGURE 4.5 Pipeline Transformation of a Strictly Hierarchical Acyclic Architec-
ture. The modified specification is ϕ′ = ϕ ∧ 2(b = b1)

4.7 Game Encoding

The construction of the architecture games is introduced in [MW03]. Given a
strictly hierarchical acyclic architecture A = (P, S,E, penv , O, I) one obtains
a bipartite two-player game arena

�
p = (VP layer, VEnv, E) for a process p ∈

P through the following construction:

• VP layer = D(I(p))

• VEnv = (D(I(p)) → D(O(p))) that is the set of functions from
D(I(p)) to D(O(p)).

• E = {(v, v′), (v′, v) | v ∈ VP layer, v
′ ∈ VEnv}

This encoding provides a bipartite two-player game, in which the Player chooses
the behavior of the process and the Environment chooses the input of the pro-
cess. A game obtained by the above transformation simulates all possible be-
haviors of a process and has thus no winning condition.
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Automata

Definition 22: Automata

A non-deterministic word automaton A is given through a tuple
A = (Σ, V, δ, v0, ACC). Σ is the alphabet of the automaton, V is
a finite set of nodes. δ ∈ V × Σ → 2V is the transition function.
v0 is a designated initial node and ACC a winning condition as in
Definition 10.

In analogy to games, automata with Büchi (Rabin, parity) winning conditions
are called Büchi (Rabin, parity) automata. An automaton is called determinis-
tic, if ∀q ∈ Q,σ ∈ Σ : |δ(q, σ)| ≤ 1. In addition to the classic definition of
automata, a very weak alternating automaton is defined. Alternating automata
are introduced by Müller and Schupp [MS84, MS87, MS95]. Rhode [Rho97]
introduced the very weak alternating automata to handle transfinite words.
However, the slightly modified definition of Gastin and Oddoux [GO01] is
used:

Definition 23: Very Weak Alternating Automata [GO01]

A five tuple A = (Σ, V, δ, v0, ACC) is called a very weak alter-
nating automaton, if and only if Σ and V are defined as above
δ ∈ Q → 2Σ×Q′

, where Q′ denotes the set of conjunctions of
elements of Q. The empty conjunction is denoted by >. Addi-
tionally, v0 ∈ Q′ is the initial node and ACC ⊆ Q is a winning
condition as in Definition 10. Finally, there exists a partial order
≺ on Q such that ∀q ∈ Q,σ ∈ Σ : ∀q′ ∈ δ(σ, q) : q ≺ q′.

In order to adapt the definition of winning conditions for automata, a “play of
a game” in Definition 10 has to be replaced by a run of an automaton. Using
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VWAA GBA BA det. RA det. PA

non−det. PA

FIGURE 5.1 The two transformation chains. The first begins with a very weak al-
ternating co-Büchi automaton and follows the solid arrows; the second
starts with a non-deterministic parity automaton and follows the dashed
arrows.

the following definition of a run of an automaton instead of a play, the winning
conditions from Definition 10 apply to automata as well.

Definition 24: Run

A run π of a (non-)deterministic word automaton A is defined as
follows:

• π = vσ0

0 vσ1

1 vσ2

2 . . . (infinite run)

• π = vσ0

0 . . . vn (finite run)

where vi ∈ V and σi ∈ Σ. Furthermore, π has the following
property: vi+1 ∈ δ(vi, σi).

A run of a very weak alternating automaton on a tree 〈T, l〉 is
a tree 〈Tr, r〉, where the root is labeled with the initial node of
the automaton and every other node is labeled by an element of
Υ? × V . Each node v in Tr corresponds to a node in T and v
is labeled by (x, q) describing that a copy of the automaton is
reading a node x from T in state q.

A non-deterministic automaton A accepts a sequence s = σ1σ2 . . . , if and
only if there exists an accpeting run π = vσ1

1 vσ2

2 . . . of A. A run 〈Tr, r〉 of a
very weak alternating automaton is accepting, if all its infinite paths satisfy the
acceptance condition.

ReaSyn uses the below mentioned transformations on two occasions. First,
the specification of the Distributed Synthesis Problem is transformed into a
very weak alternating co-Büchi automaton. Subsequently, it is transformed
into a generalized Büchi automaton, a Büchi automaton, a deterministic Rabin
automaton, and finally a deterministic Parity automaton. The second trans-
formation chains starts with a non-deterministic Parity automaton which is
converted into an equivalent Büchi automaton. Subsequently, the Büchi au-
tomaton is transformed into a deterministic parity automaton as before. Figure
5.1 shows the two transformation chains used by ReaSyn. The chain follow-
ing the solid arrows is used to convert the specification into a parity game,
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while the second is deployed to transform games with the “all-path” winning
condition into a parity games.

5.1 Very Weak Alternating Automaton to Generalized
Büchi Automata

The first transformation converts a very weak alternating co-Büchi automa-
ton into a generalized Büchi automaton. This transformation is nescessary,
because the Büchi automaton, which is obtained from a direct transformation
from the very weak alternating automaton, is usually significantly too large
[GO01]. A prior transformation to a generalized Büchi automaton reduces this
growth of theautomaton. A generalized Büchi automaton is a Büchi automaton
with an acceptance condition on transitions instead of nodes. The generalized
Büchi automaton GBAϕ = (Σ, V, δ, v0, ACC) is obtained from the very weak
alternating automaton Aϕ = (Σ′, V ′, δ′, v′0, ACC) by the following transfor-
mation:

• Σ = Σ′

• V = 2V ′

(the conjunctions of nodes of V ′)

• v0 = v′0

• ACC = {Tf | f ∈ ACC ′ where Tf = {(e, α, e′) | f 6∈ e′ or ∃(β, e′′) ∈
δ′(f) : α ⊆ β and f 6∈ e′′ ⊆ e′}

• δ̃(q1 ∧ · · · ∧ qn)
def
=

⊗n
i=1 qi

• δ is the set of �-minimal transitions of δ̃ where � is defined by: t′ �
t ⇔ t = (e, α, e′), t′ = (e, α′, e′′), α ⊆ α′, e′′ ⊆ e′ and ∀T ∈ ACC :
t ∈ T ⇒ t′ ∈ T.

5.2 Generalized Büchi Automata to Büchi Automata

The transformation from a generalized Büchi automaton to a Büchi automaton
is well known [GO01]. The Büchi automaton Bϕ = (Σ, V, δ, v0, ACC) is
obtained as the result of the transformation of the generalized Büchi automaton
GBAϕ = (Σ′, V ′, δ′, v′0, ACC

′) with ACC = {T1, . . . , Tr} as follows:

• Σ = Σ′

• V = V ′ × {0, . . . , r}
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• v0 = (v′0, 0)

• ACC = V ′ × {r}

• δ((q, j), α) = {(q′, j′) | q′ ∈ δ′(q, α) and j ′ = next(j, (q, α, q′)}

where next(j, t)
def
=

{

max{j ≤ i ≤ r | ∀j < k ≤ i : t ∈ Tk} if j 6= r
max{0 ≤ i ≤ r | ∀0 < k ≤ i : t ∈ Tk} if j = r

Theorem 2: Transformation Correctness

1. L(Aϕ) = L(GBAϕ)

2. L(GBAϕ) = L(Bϕ)

A proof of the theorem can be found in [GO01].

5.3 Non-deterministic Büchi Automaton to Determin-
istic Rabin Automaton

The determinization of a non-deterministic Büchi automaton results in a deter-
ministic Rabin automaton and was introduced by Safra [Saf88]. The algorithm
presented here is taken from [THB95]. A proof of correctness can be found in
[Saf88]. The complexity of this procedure is at least 2O(n log n), where n is the
number of nodes of the non-deterministic Büchi automaton.

A node in the Rabin automaton represents the nodes of the Büchi automaton
that can occur on a non-deterministic run. Therefore, each node of the Rabin
automaton is a labeled ordered tree with the following properties:

i: Every node of the tree has a color. It is either white or green.

ii: There exits a complete ordering on the children of each node. The or-
dering resembles the age of the children. (i.e., if a and b are children of
the same node, either a is older than b or vice versa).

iii: The label of each node of the tree is a subset of the nodes of the Büchi
Automaton with the following restrictions: First, the union of the labels
of the children is a proper subset of the label of the parent node. Second,
two nodes neither of which is an ancestor of the other must have disjoint
sets as their labels.

iv: Each node has a distinct name, which is a number between 1 and twice
the number of nodes of the Büchi automaton (n). This is always possible
because of the previous property, where a tree has at most n nodes.
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1 1

P Qb

FIGURE 5.2 Büchi automaton for the formula 3b generated by
LTL2BA[GO01]

A node a in a labeled ordered tree is said to be right to a node b, if either a is
older than b or an ancestor of a is an older sibling of an ancestor of b.

For a given non-deterministic Büchi automaton B = (Σ, V, δ, v0, F ) the deter-
ministic Rabin automaton R = (Σ, V ′, δ′, v′0, C) is obtained from the follow-
ing inductive algorithm [THB95]:

• v′0 is a node, which contains a white colored single node tree. The label
is the set {v0} containing the initial node of the Büchi automaton. The
name of the node is set to 1.

• Given a node v and an element σ ∈ Σ, the successor v ′ = δ(v, σ) is
obtained as follows:

1. The tree of v′ is copied from the tree of v.

2. set the color of all nodes in the tree of v ′ to white.

3. For every node in the tree of v′ replace its label L with δ(L, σ).

4. For every node in the tree of v′, if its label L contains any accepting
nodes from F , create a new “youngest” child labeled with F ∩ L.
(all final nodes in the label L.)

the tree obtained by steps 2-4 may violate the above assumptions
(i - iv) that are made on the tree. Therefore, the remaining steps
restore the premises.

5. For every node q ∈ V appearing in the label of a node t of the tree,
remove q from every label of nodes right to t.

6. Remove all nodes with empty labels.

7. For every node t, whose label L is equal to the union of the label of
its children, remove all descendants of t and set its color to green.

8. Give every newly created node in the tree a new name between 1
and 2∗n = 2∗|V |, which was not used in the tree. All other nodes
keep their names.

Beginning with the initial node q0, it is now possible to inductively define the
set of nodes V ′ and the transition function δ, respectively, of the determin-
istic Rabin automaton. Following this procedure, one only computes nodes
reachable from the initial node. In order to define the acceptance pairs of
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FIGURE 5.3 Successor of a node v in the Determinization of the Automaton from
Figure 5.2

the Rabin automata, let Gi ⊆ V ′ be the set of nodes, whose trees have a
green node named i. Additionally, let Ri ⊆ V ′ be the set of nodes, whose
trees do not have a node named i. The acceptance pairs are then defined as
ACC = {(Gi, Ri) | 1 ≤ i ≤ 2n}.

A pair (∅, Ri) is irrelevant, because it will never accept a run of the automa-
ton and can therefore be removed from C . This is an important simplification,
since the following transformation into a parity automaton depends exponen-
tially (O(n!)) in the number n of acceptance pairs in the Rabin automaton. Ad-
ditionally, all pairs (Gi, ∅)i∈I can be combined into a single pair (

⋃

i∈I Gi, ∅).

Figure 5.3 illustrates the eight steps of the presented algorithm. It computes the
successor of the node v with σ = b. The underlying Büchi automaton is shown
in Figure 5.2. In the first two steps, the tree is simply copied and colored white.
Next, the labels L are replaced with the set of successors δ(L, b). Hence, {Q}
is replaced with {Q} and {P,Q} with {Q,P}. This results in the same tree.
In step four, new children are created for every final node in the label of a
node. These new nodes do not have a name. If necessary, they will receive
names in the last step after restoring the properties that must hold for every
tree. Step five then removes all nodes from labels that already appear right of
the processed node. In this case, Q is removed from the label of the new child
of node 1. Step six causes the new child of node 1 to be deleted, while in the
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FIGURE 5.4 Counter example for Safra algorithm with only n tree node names.
Green tree nodes are shaded. Nodes 1 and P are initial nodes.

next step, the descendants of node 2 are removed. Node 2 becomes green. In
the final step, new nodes, which do not have a name, get a new name. As there
are no new nodes left, nothing is to be done.

Remark: Our algorithm uses at most 2n tree node names, where n is the
number of nodes of the non-deterministic Büchi automaton. The algorithm
presented in [THB95] uses only n tree node names. This may lead to a situa-
tion where a name for a deleted tree node is reused directly. Figure 5.4 shows
such an example. Observe, that the languages of the automata are different as
the deterministic Rabin automaton accepts the word (ab)ω , which the Büchi
automaton does not. However, dropping the limitation to n tree node names
corrects the algorithm.
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CHAPTER 5. Automata

5.4 Rabin Automaton to Parity Automaton

The translation of the deterministic Rabin automaton into a deterministic parity
automaton is almost the same as the construction given in [FS05] for Streett
to parity automata. Due to the complementarity of Streett and Rabin automata
only the definition of the coloring function has to be complemented. This leads
to the following construction:

Given a deterministic Rabin automaton R = (Σ, V, δ, v0, (Gi, Ri)i∈I), one can
construct an equivalent deterministic max parity automaton P = (Σ, V ′, δ′, v′0, α)
as follows:

• V ′ = V × perm(I) × I × I where perm(i) denotes the set of permuta-
tions of I

• v′0 = (v0, idI , 0, 0)

• (q′, π′, r′, g′) ∈ δ′((q, π, r, g), σ) iff

– (q′) ∈ δ(q, σ),

– π′ = (p1, p2, . . . , pk) is obtained from π = (j1, j2, . . . , jk) by
shifting all numbers jl with qv ∈ Rjl

to the left,

– r′ is the greatest number such that q ∈ Rjr′
(or 0 if q is in no red

set) and

– g′ is the greatest number such that q ∈ Gjg′
(or 0 if q is in no green

set)

• α : (q, π, r, g) 7→ 2g if and only if g > r and

• α : (q, π, r, g) 7→ (2r) + 1 otherwise

The correctness of this transformation follows from the correctness of the con-
struction in [FS05] taking into account that the winning condition is “inverted”.
The min parity automaton needed for the game encoding is obtained by a sim-
ple parity inversion of the automaton nodes:

Let m be the maximal parity occuring in the deterministic max parity au-
tomaton P = (Σ, V, δ, v0, α). An equivalent min parity automaton P ′ =
(Σ, V, δ, v0, α

′) is obtained by the following definition:

α′(v)
def
= dme − α(v)

where dme is the smallest even natural number that is greater than or equal to
m.
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5.5 Parity Automaton to Büchi Automaton

The transformation described in this section is used to convert an “all-path par-
ity condition”, which is a ω-regular winning condition, into a parity condition.
The transformation is described in detail in Chapter 7.

The non-deterministic min parity automaton P = (Σ, V, δ, v0, α) can be con-
verted into an equivalent non-deterministic Büchi automaton B = (Σ, V ′, δ′, v0, F )
by the following transformation:

Let S = {α(v) | v ∈ V } ∩ 2 · � be the set of the even parities appearing in P

• V ′ = V ∪
⋃

i∈S{(v, i, j) | v ∈ V, α(v) = j, i ≤ j}

• δ′(v, σ) =







































δ(v, σ)∪
{(v′, i, i) | v′ ∈ δ(v, σ)

∧ α(v′) = i
∧ i is even} , v ∈ V

{(w, i, j) | α(w) = j ∧ i ≤ j
∧ w ∈ δ(v′, σ)} , v = (v′, i, j) ∈ V ′ \ V

• F = {(v, i, i) | v ∈ V }

Theorem 3:

L(P) = L(B)

Proof:

“⊆” Let s = σ1σ2 · · · ∈ Σω be a word in L(P) and π = v1v2 . . .
the run of P , which accepts s. Additionally, let pmin be the min-
imal parity from the infinity set Inf(χ(π)). pmin is even, because
the run π is an accepting run. Then, there is a k ∈ � , such
that α(vk) = pmin ∧ ∀l ≥ k : α(l) ≥ pmin . The run π′ =
v1v2 . . . vk−1(vk, pmin, pmin)(vk+1, pmin, α(vk+1)) . . . , vi ∈ π is
a run of the Büchi automaton B. Since pmin occurs infinitly often
as parity of a node in π some nodes (vi, pmin, pmin) occur infinitly
often in π′. Hence, π′ is a accepting run of B and s ∈ L(B).

“⊇” Let s ∈ Σω be a word in L(B). Therefore, there is a run
π = v1 . . . vk(vk+1,m,m)(vk+2,m, n) . . . of B, which accepts s
meaning, there is a node (vi,m,m) ∈ Inf(π). The third com-
ponent equals the parity of node vi interpreted as node of the
parity automaton. Additionally, the third component is always
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CHAPTER 5. Automata

greater than or equal to the second component. The sequence
π′ = v1 . . . vkvk+1vk+2 . . . thus states a run of the parity automa-
ton P , where m = min{Inf(χ(π′))} is even. Hence, π′ is an
accepting run and s ∈ L(P). 2

5.6 State Space Reduction of Büchi Automata

As proposed by Etessami, Wilke, and Schuller [EWS01] the state space of
Büchi automata is reduced by delayed simulation. It yields better results than
direct simulation in the state space reduction. The state space reduction is
achieved by computing an equivalence relation ∼ on the states of the Büchi
automaton and subsequently building the quotient automaton with respect to
∼. The equivalence relation ∼ is computed by a two-player parity game of
the players Spoiler and Duplicator. In order to check whether a node v ′ can
simulate a node v the Spoiler places a red pebble on v, while the Duplicator
places a blue pebble on v′. The Spoiler then chooses a successor of v and
moves the red pebble to it using a transition labelled with a. The Duplicator
has to copy this move beginning from v ′. If he cannot duplicate the move
from Spoiler, v′ cannot simulate v. In case of an infinite play the parity condi-
tion encodes whether the Duplicator can simulate an accepting run presented
by Spoiler. Given a Büchi automaton B = (Σ, Q, δ, v0, F ), the parity game
Gdelayed = ((Vduplicator , Vspoiler , E), χ) determing the delayed simulation re-
lation ∼ is defined by:

• Vduplicator ={(b, q, q′, a) | q, q′ ∈ Q ∧ a ∈ Σ ∧ b ∈ {0, 1} ∧ ∃q′′ ∈ Q :
q ∈ δ(q′′, a)}

• Vspoiler ={(b, q, q′) | q, q′ ∈ Q ∧ b ∈ {0, 1} ∧ (q′ ∈ F → b = 0)}

• E ={((b, q1, q
′
1, a), (b, q1, q

′
2) | q

′
2 ∈ δ(q′1, a) ∧ q

′
2 6∈ F}

∪ {((b, q1, q
′
1, a), (0, q1, q

′
2)) | q

′
2 ∈ δ(q′1, a) ∧ q

′
2 ∈ F}

∪ {((b, q1, q
′
1), (b, q2, q

′
1, a) | q2 ∈ δ(q1, a) ∧ q2 6∈ F}

∪ {((b, q1, q
′
1), (1, q2, q

′
1, a)) | q2 ∈ δ(q1, a) ∧ q2 ∈ F}

• χ(v) =

{

b , v = (b, q, q′)
2 , v = (b, q, q′, a)

A Spoiler node has parity 1 to signify that the red pebble encountered an un-
matched accepting states. Two nodes q ′, q ∈ Q can simulate each other, if
and only if Duplicator has a winning strategy from (b, q, q ′) and (b, q′, q) in
Gdelayed . Let Wduplicator be the winning region of Duplicator in Gdelayed. It
can be determined by the algorithm presented in [GTW02, Mau05]. Hence,

q ∼ q′ ⇔ ((b, q, q′) ∈Wduplicator ∧ (b, q′, q) ∈Wduplicator )
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5.6. State Space Reduction of Büchi Automata

for an arbitrary b ∈ {0, 1}.

Definition 25: Quotient Automaton [EWS01]

For a Büchi automaton B = (Σ, Q, δ, v0, F ) and an equivalence
relation ∼ the quotient automaton is defined as:

B/∼= (Σ, Q/∼, δ∼, [v0], F/∼),

where [q] represents the equivalence class of q with respect to ∼
and δ∼ is defined by δ∼([q], a) = {[q′] | ∃(q0 ∈ [q] ∧ q′0 ∈ [q′]) :
q′0 ∈ δ(q0, a)}

Theorem 4: Language Equality [EWS01]

For any Büchi automaton B : L(B) = L(B/∼)

The theorem allows to reduce the state space of any Büchi automaton using
the quotient automaton with respect to delayed simulation.
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Chapter 6

Specification Transformation

In order to transform an LTL formula into a two player parity game several
intermediate steps are needed. First, the formula is converted into a very weak
alternating co-Büchi automaton. The language of the automaton is empty, if
and only if the LTL formula is not satisfiable. Subsequently the very weak
alternating automaton is first commuted into a generalized Büchi automaton
(Section 5.1). It is followed by the transformation into a Büchi automaton
(Section 5.2), a state space reduction of the Büchi automaton (Section 5.6),
the determinization of the Büchi automaton (Section 5.3), and the conversion
of the resulting deterministic Rabin automaton into a deterministic minimal
parity automaton (Section 5.4). Finally, the deterministic parity automaton
can be encoded as a minimal parity two-player game. The following sections
describe the transformation of an LTL formula into a very weak alternating
automaton and the game encoding for deterministic automata.

6.1 LTL to Very Weak Alternating Automaton

The transformation of an LTL formula over a set atom of atomic propositions
is introduced by Gastin and Oddoux [GO01]. The size of the resulting au-
tomaton is at most the size of the LTL formula. The following abbreviations
are used in the transformation:

Definition 26:

J1 ⊗ J2
def
= {(a1 ∩ a2, e1 ∧ e2) | (ai, ei) ∈ Ji, J1, J2 ∈ 2Σ,Q′

}

ψ
def
=







{ψ} , ψ is a temporal formula

{e1 ∧ e2 | e1 ∈ ψ1, e2 ∈ ψ2} , ψ = ψ1 ∧ ψ2

ψ1 ∪ ψ2 , ψ = ψ1 ∨ ψ2
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For an LTL formula ϕ over a set atom of atomic propositions the equivalent
very weak alternating co-Büchi automaton (VWAA)Aϕ = (Σ, V, δ, v0, ACC)
is defined by:

• Σ = 2atom,

• V is the set of temporal subformulas of ϕ,

• v0 = ϕ̄,

• ACC is the set of until subformulas of ϕ (such as ψ1 U ψ2),

• δ is defined as follows: (∆ extends δ to all subformulas of ϕ)

δ(ϕ)
def
=















































{(Σ,>)} , ϕ = >
{(Σp,>)} , ϕ = p ∈ atom,

Σp = {a ∈ Σ | p ∈ a}
{(Σ¬p,>)} , ϕ = ¬p, p ∈ atom,

Σ¬p = Σ \ Σp

{(Σ, e) | e ∈ ψ̄} , ϕ =Xψ
∆(ψ2) ∪ (∆(ψ1) ⊗ {(Σ, ψ1Uψ2)}) , ϕ = ψ1Uψ2

∆(ψ2) ⊗ (∆(ψ1) ∪ {(Σ, ψ1Uψ2)}) , ϕ = ψ1Rψ2

∆(ψ)
def
=







δ(ψ) , ψ is a temporal formula
∆(ψ1) ∪ ∆(ψ2) , ψ = ψ1 ∨ ψ2

∆(ψ1) ⊗ ∆(ψ2) , ψ = ψ1 ∧ ψ2

Using the order “subformula of” completes the automaton to be a very weak
alternating co-Büchi automaton Aϕ.

Theorem 5: Transformation Correctness [GO01]

L(Aϕ) = {u ∈ Σω | u |= ϕ}

6.2 Games for Automata

Finally, the automata can be transformed into games. The corresponding parity
game is used to simulate the automaton in the distributed game. The distributed
game resembles the computation trees of the architecture. The task of the
specification game in this setting is to ensure that every path in a computation
tree satisfies the specification. The encoded game does not consider that some
elements of Σ may be under control of the player in the Distributed Synthesis
Problem. This issue is solved by forcing the Environment to set the signal
values according to the functions chosen by the player and the signal values of
the external signals.
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There are two transformations. They transform a deterministic parity automa-
ton and a deterministic Büchi automaton, likewise, into a bipartite two-player
parity game.

6.2.1 Deterministic Parity Automaton

Let P = (Σ, V, δ, v0, α) be a deterministic Parity automaton. The bipartite
two-player parity game G = ((Vplayer, Venv, E), χ) results from the following
transformation:

• Vplayer = V × Σ

• Venv = V

• E = {(ve, vp), (vp, v
′
e) | vp = (ve, σ) ∧ δ(ve, σ) = v′e}

• χ(v) =

{

α(v) , v ∈ Venv

α(v′) , v = (v′, σ) ∈ Vplayer

The game is an initialized game starting at node v0 ⊆ Venv .

In G the Environment chooses sequences of atomic propositions, while the
Player chooses a successor state in the automaton. The Player wins the game,
if and only if the sequence s = σ1σ2 · · · ∈ L(P).

6.2.2 Deterministic Büchi Automaton

Let B = (Σ, V, δ, v0.F ) be a deterministic Büchi automaton. The correspond-
ing game G = ((Vplayer, Venv, E), χ) is obtained by the following transfor-
mation:

• Vplayer = V × Σ

• Venv = V

• E = {(ve, vp), (vp, v
′
e) | vp = (ve, σ) ∧ δ(ve, σ) = v′e}

• χ(v) =

{

0 , v ∈ F
1 , v 6∈ F ∨ v ∈ Vplayer

The game is an initialized game with the initial node v0.

As before, the Player wins the game, if and only if the Environment chooses a
sequence s = σ1σ2 · · · ∈ L(B).
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Winning Condition
Transformation

This chapter presents a transformation, which converts an “all-path parity”
winning condition into a standard parity winning condition. The “all-path
parity” winning conditions are ω-regular winning conditions and appear in
ReaSyn whenever a distributed game is glued [MW03, Mau05]. Glueing a
game Gorig = ((Vplayer , Venv , E), χ) leads to a game Gglue = ((V g

player , V
g
env ,

Eg),ACC ), where the nodes are sets of node pairs and the pair components
are from the original game. For Player nodes the first pair component is a En-
vironment node, while the second is a Player node from the original game. For
Environment nodes this order is reversed. The first component refers to the
predecessor of the second component in a play of the original game.

Definition 27: threads(~u)

Let ~u = u1u2 · · · ∈ (V g
player · V g

env )ω be a sequence of sets of
pairs in Gglue . A thread in ~u is any sequence v1v2 · · · ∈ (Vplayer ·
Venv )

ω , such that (vi, vi+1) ∈ u2i−1 for i ∈ � . The set threads(~u)
is defined to be the set of all threads in u.

Finally, the winning condition ACC for the glued game is defined as follows:

Definition 28: “all-path parity” Condition

A run ~u of the glued game Gglue as above is accepted (~u ∈ ACC ),
if and only if every t ∈ threads(~u) is accepted by the parity
condition χ of the original game Gorig = (

�
, χ).

According to [MW03] this winning condition is a regular winning condition
meaning that there is a deterministic parity automaton recognizing sequences
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over (V g
player · V g

env ) with this property. However, they do not provide a con-
struction of the deterministic parity automaton. The construction used by
ReaSyn first constructs a non-deterministic parity automaton, which accepts
such a sequence, if there is a thread that does not satisfy the parity condi-
tion. This automaton is then converted into an equivalent non-deterministic
Büchi automaton (Section 5.5), which is subsequently minimized using the
state space reduction from Section 5.6. Thereafter, it is transformed into a
deterministic Rabin automaton (Section 5.3) and finally into a equivalent de-
terministic parity automaton (Section 5.4). In a last step, the parity automaton
is complemented to accept all sequences that do not contain a thread, which is
not accepted by the original parity condition. Finally, this parity automaton is
combined with the glued game yielding a new parity game.

7.1 Non-deterministic Parity Automaton

Given a initialized parity game (Gorig , v0) and the glued game Gglue as above.
Additionally, let Vglue = V g

player ∪ V
g
env be the set of all games nodes from the

glued game. A non-deterministic mininmal parity automaton P = (Σ, V, δ, v ′0, α)
accepting all sequences u over V g, which contain at least one thread t ∈
threads(~u) not accepted by the parity condition of Gorig , is constructed as
follows:

• V = Vplayer ∪ Venv

• Σ = Vglue

• δ(v, σ) = {v′ ∈ V | (v, v′) ∈ σ}

• v′0 = v0

• α(v) = χ(v) + 1

7.2 Parity Game

Let G = ((Vplayer, Venv, E), χ) be a game and Gglue = ((V g
player, V

g
env, Eg),

ACC ) the corresponding glued game with the initial node vg
0 . Given a de-

terministic minimal parity automaton P = (Σ, V, δ, v0, α), which accepts all
plays ~u of Gglue that contain at least one t ∈ threads(~u), which is not accepted
by χ one can construct a minimal parity game Geq = ((V eq

player, V
eq
env, Eeq), χeq)

equivalent to Gglue using the following construction:

• V eq
player = V × V g

player
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7.2. Parity Game

• V eq
env = V × V g

env

• Eeq = {((v, σ1), (v
′, σ2)) | (σ1, σ2) ∈ Eg ∧ δ(v, σ1) = {v′}}

• χeq((v, σ)) = α(v) + 1

The initial node of the game is (v0, v
g
0), where q0 is the initial node of the

deterministic parity automaton and vg
0 is the initial node of the glued game.

Note, that the parity condition is implicitly inverted to accept runs ~u of the
glued game, where all t ∈ threads(~u) are accepted by χ.
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ReaSyn
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ReaSyn is a tool, which tests instances of the Distributed Synthesis Problem
for realizability. It expects the user to provide an architecture and an LTL
specification. Subsequently, ReaSyn checks whether the Distributed Synthe-
sis Problem is decidable for the given architecture. In case it is decidable,
ReaSyn decides wheter or not the instance of the Distributed Synthesis Prob-
lem is realizable and, in case of realizability, it generates a small finite state
program.

The given architecture and the specification are first transformed into two-
player parity games of Player versus Environment. They are combined into
a distributed game [MW03, Mau05]. The purpose of the architecture games
in the distributed game is to generate behaviors of the distributed system,
while the specification game ensures that the behavior satisfies the specifi-
cation. Subsequently, the distributed game is transformed into a two-player
game [MW03, Mau05], which is solved yielding a winning region and a non-
deterministic strategy for both players. If the winning region for player con-
tains the initial node of the distributed game, the given instance of the Dis-
tributed Synthesis Problem is realizable and a minimized implementation is
generated.

There are several optimizations to the occuring automata and games. The
Büchi automata are reduced using delayed simulation. [Mau05] describes two
optimizations to reduce the size of a distributed game. Additionally, during the
transformation into a two player game, the parity condition of the distributed
game can be approximated. The approximation can be done without growth
of the distributed game, while the correct transformation described in Chapter
7 involves exponential growth of the distributed game. This approximation
will not produce invalid implementations. However, ReaSyn may find some
instances of the Distributed Synthesis Problem unrealizable which are in fact
realizable. The correct transformation is avaiable as a commandline option.
Finally, during the code generation, the generated non-deterministic strategy
is examined to find a strategy that will produce a small finite state program.
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User Interface

ReaSyn is a program designed to solve instances of the Distributed Synthe-
sis Problem. It accepts LTL specifications and architecture descriptions and
produces an implementation for the architecture satisfying the specification.
The implementation is realized as a finite state PROMELA program. ReaSyn
is currently availabe as a commandline tool for LINUX systems only. The
source code can be found at:

http://www.ReaSyn.org/

The architecture and specification can be provided as seperate input files. The
syntax for architecture declarations is introduced in the following section. Sec-
tion 8.2 gives an overview on the Syntax of the specification file. In case
ReaSyn is invoked without the declaration files, it prompts the user for the
declarations during runtime. The generated program is written to stdout.
Section 8.3 describes the avaiable commandline options.

8.1 Architecture Syntax

An architecture consists of processes and signals. The processes communi-
cate through these signals. An architecture can therefore be represented as a
directed graph with processes as nodes and signals as edges. An architecture
definition consists of two parts, the declaration of all processes and signals and
the definition of their connections.

8.1.1 Process and Signal Declaration

First, the processes and signals are declared. As can be seen in Figure 8.1,
the Process statement declares a new process with the given name. Signals
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Declaration:
Process <name>;
Signal <name> <min> <max>;

Connecting Processes:
Input <process_name> <signal_name>;
Output <process_name> <signal_name>;

Comments:
All text between // and the end of the current line will be treated as
comment.

FIGURE 8.1 Architecture Syntax

are declared by the Signal statement. In addition to their name, signals also
have a finite integer domain of possible values. This domain is limited by min
and max, respectively.

8.1.2 Connecting Processes

After all signals and processes have been declared, it is necessary to define,
which process reads or writes to which signal. The Output statement in-
dicates that the process writes values from the signal domain to the signal.
To avoid inconsistancy, a signal can be the output signal of only one process.
The number of output signals of a process, i.e. the number of signals a pro-
cess writes to, is not limited. Similarly, the Input statement defines that
the process reads information from the specified signal. The number of sig-
nals a process can read is not limited neither is the number of processes that
read a single signal. Figure 8.2 illustrates the declaration of a four process
pipeline architecture. First, the four processes A,B,C,D are declared using
the Process statement. The signals a,b,c,d,e are declared to be binary
signals. Finally, the processes are connected to the signals, e.g. ’Input A
a’ defines that process A reads the signal a and ’Output C d’ indicates that
process C writes information to signal d.
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a b c d eC DBA

// 4 process pipeline with binary signals
Process A;
Process B;
Process C;
Process D;

Signal a 0 1;
Signal b 0 1;
Signal c 0 1;
Signal d 0 1;
Signal e 0 1;

Input A a;
Output A b;
Input B b;
Output B c;
Input C c;
Output C d;
Input D d;
Output D e;

FIGURE 8.2 4-Pipeline with binary signals
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ARITHMETIC OPERATORS:

arith_op ::= + | - | * | / | %

RELATIONAL OPERATORS:

rel_op ::= = | > | < | >= | <=

ARITHMETIC EXPRESSIONS:

arith ::= <signal name>

| <integer value>

| arith arith_op arith

| ( arith )

FIGURE 8.3 Arithmetic Expressions

8.2 Specification Syntax

8.2.1 LTL formula

Arithmetic Expressions

Arithmetic expressions provide means to relate the specification to the archi-
tecture. Signal names (c.f. section 8.1), which can be used as integer vari-
ables and integer values are arithmetic expressions. An arithmetic expression
is given as an arbitrary composition of arithmetic operators, such as + for ad-
dition, - for subtraction, * for multiplication, / for integer division, or % for
the remainder of integer division (modulo), or of relational operators, such
as =, >, <, >= and <=. Figure 8.3 shows a complete grammar of arithmetic
expressions.

Atomic Propositions

Atomic propositions are system properties, which are either true or false.
Alternatively, they can be defined as an arithmetic expression (see Figure 8.3).
Any non-zero value of an arithmetic expression is interpreted as true while
zero is regarded as false. Furthermore, it is possible to compose an atomic
proposition of one or two atomic propositions, respectively, and any of the
boolean connectives. An overview of atomic propositions is given in Figure
8.4.

Temporal Formulas

Temporal formulas define temporal relationships between system properties.
They are composed of boolean expressions and any of the following temporal
connectives: [] (always), <> (eventually), U (until), R (release) and X (next).
Additionally, boolean connectives can be used to combine temporal formulas.
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BOOLEAN OPERATORS:

bool_op ::= ->

| <->

| &&

| ||

u_bool_op ::= !

ATOMIC PROPOSITIONS:

atom ::= true | false

| "arith" | "arith rel_op arith"

BOOLEAN EXPRESSIONS:

bool_exp ::= atom

| bool_exp bool_op bool_exp

| u_bool_op bool_exp

| ( bool_exp )

FIGURE 8.4 Boolean Expressions

TEMPORAL OPERATORS:

b_t_op ::= U (until)

u_t_op ::= [] (always)

| <> (eventually)

| X (next)

TEMPORAL FORMULAS:

formula ::= bool_exp

| ( formula )

| u_t_op formula

| u_bool_op formula

| formula b_t_op formula

| formula bool_op formula

FIGURE 8.5 Temporal Formulas

Figure 8.5 contains a complete overview of the syntax of temporal formulas.

8.2.2 Büchi Automata

Büchi automata are another possibility to pass the specification to ReaSyn.
The user may choose to pass a Büchi automaton to ReaSyn instead of an LTL
formula. In case the Büchi automaton is deterministic, the transformation into
a parity game is much faster than passing an LTL formula to ReaSyn.

In the following, the syntax for the automaton file is defined. A complete
grammar is given in Figure 8.6. A Büchi automaton is described by a sequence
of state declarations followed by the definition of the alphabet Σ (sigma) of the
automaton. The states are declared using the State statement. Sigma is used
to define the alphabet of the automaton. The initial state of the automaton init
follows. It is defined using the Init statement. Subsequently the set accept,
of accepting states is defined (Accept). Finally, the definition of the transition
function δ (delta) is given. The Edge statement defines a transition from id1
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id ::= [0 − 9a− zA− Z_]+

id_list ::= { id , id }

state ::= State id ; [state ]

| State id_list ;

sigma ::= Sigma id_list ;

init ::= Init id ;

accept ::= Accept id ; [accept ]

| Accept id_list ;

delta ::= Edge id1id2id3 ; [delta ]

| Edge id1id_listid3 ; [delta ]

automaton ::= state sigma init accept delta

FIGURE 8.6 Syntax for Büchi Automata

y

y
{} {}

accept_allinitial

State initial;
State accept_all;
Sigma y;
Init initial;
Accept accept_all;
Edge initial y accept_all;
Edge initial {} initial;
Edge accept_all {y} accept_all;
Edge accept_all {} accept_all;

FIGURE 8.7 Declaration of a Deterministic Büchi Automaton for the
Formula 3y
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to id3. id2 and id_list, respectively, represent the label of the edge. Figure 8.7
shows the declaration of a deterministic Büchi automaton for the formula 3y.

8.3 Options

There are two different ways to pass the specification-architecture pair to ReaSyn.
The architecture definition file, as described in section 8.1, is preceeded by the
-a option. The specification can be passed either as an LTL formula (-f op-
tion, c.f section 8.2) or as a deterministic Büchi automaton (-b option, c.f
section 8.2.2).

# ./ReaSyn [options] -a <architecture file> -f <for-
mula file>

# ./ReaSyn [options] -a <architecture file> -b <au-
tomaton file>

If ReaSyn is run without an architecture definition or a specification it will ask
the user to provide the missing parts during runtime. There are several options,
which could be used with ReaSyn:

• --optimize1 enables the dead end optimization for distributed games
[Mau05].

• --optimize2 enables the winning region optimization for distributed
games [Mau05].

• --no-code disables the code generation.

• --no-buchi-reduction disables the reduction of the used Büchi
automata.

• --gdl enables the graph output for the used games. The descrip-
tions are written into .gdl files which could be displayed using AiSee
[aAIG].

• --no-parity-approximationenables the correct transformations
of the “all-path parity” winning condition into a parity winning condi-
tion.

• --lazy-approximationenables the approximation of the “all-path
parity” condition expecting the worst case for the Environment. By de-
fault the best case for the Environment is taken as approximation.

• --no-winning-region-optimization disables the reduction
of the winning region using simulation.
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ARCHITECTURE:

// -x-> |P| -y-> |Q| -z->

Process P;
Process Q;

Signal x 0 1;
Signal y 0 1;
Signal z 0 1;

Input P x;
Input Q y;

Output P y;
Output Q z;

FORMULA:

[]((x && y)->z)

FIGURE 8.8 A Simple Problem

• --random-strategy Disables the mimization of the generated fi-
nite state program. Instead a strategy is picked randomly to generate the
finite state program. It is faster than finding a minimal strategy but may
yield bigger programs.

8.4 Code Output

The primary goal of ReaSyn is to generate a minimized program, which satis-
fies a given specification. Formally, the output is a deterministic finite state
transition system for each process of the architecture. It is represented as
PROMELA program.

An example of a simple problem is given in Figure 8.8. As can be seen, the ar-
chitecture is a three-process pipeline with the requirement (LTL specification)
that: ”It is always the case that whenever x and y equal 1 at the same time,
then a does too”. Figure 8.9 contains the program generated by ReaSyn. The
signals are implemented as channels with capacity one. Channels with capac-
ity one can hold at most one value. The value has to be read from the channel,
before a new value can be assigned. Generally, the capacity of a channel equals
the number of its readers.
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GENERATED PROGRAM:
chan xChan = [1] of { int };
chan yChan = [1] of { int };
chan zChan = [1] of { int };

int x = 0;
int y = 0;
int z = 0;
bit check = 0;

active proctype P() {
byte state = 0;
bit xRead = 0;
do
:: (state == 0) ->

xRead = 0;
do
:: xChan?x -> xRead = 1;
:: (xRead) -> break;
od;
if
:: ((x == 0)) ->

yChan!1;
state = 0;

:: ((x == 1)) ->
yChan!0;
state = 0;

fi;
od
}

active proctype Q() {
byte state = 0;
bit yRead = 0;
do
:: (state == 0) ->

yRead = 0;
do
:: yChan?y -> yRead = 1;
:: (yRead) -> break;
od;
if
:: ((y == 0)) ->

zChan!1;
state = 0;

:: ((y == 1)) ->
zChan!0;
state = 0;

fi;
od
}

active proctype env() {
do
:: xChan!1; zChan?z; check = 1; check = 0;
:: xChan!0; zChan?z; check = 1; check = 0;
od
}

FIGURE 8.9 Output of the simple problem
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PROMELA was chosen as output language because it is well known and widely
spread. During the validation phase of ReaSyn the SPIN (simple PRO-MELA
interpreter) model checker was used to prove that the generated programs
where correct. SPIN can be used to prove that a PROMELA program satis-
fies arbitrary LTL formulas.

However, some limitations are acknowledged. SPIN is a model checker for
asynchronous PROMELA programs. ReaSyn, in contrast, produces a finite
state PROMELA program, which is meant to be a synchronous model. It as-
sumes that all processes compute their output in one atomic step. In order to
adapt the formula to the asynchronous setting, a formula translator was created
during the validation phase of ReaSyn. The generated program incorporates
a flag check, which is true, if and only if all processes have finished their
computations and are awaiting new input. The following rules define how to
adapt the property to the synchronous setting of the generated program.

Original property Adapted property
2ϕ 2(check→ ϕ)

3ϕ 3(check→ ϕ)

ϕ1Uϕ2 (check→ ϕ1) U(check→ ϕ2)

ϕ1 → ϕ2 (check ∧ϕ1) → ϕ2

ϕ1 ∨ ϕ2 check→ (ϕ1 ∧ ϕ2)

ϕ1 ∧ ϕ2 check→ (ϕ1 ∧ ϕ2)

¬ϕ check→ ¬ϕ

Note that any LTL property containing the X (next) operator cannot be easily
proven using the SPIN model checker. SPIN provides no support for the X
operator. In order to prove properties containing a X operator, the program
has to be adapted with toggle variables for every next operator. A validation
of the generated program is not nescessary. Its correctness follows from its
construction. Therefore, the complicated construction needed to incorporate
the next operator is omitted.
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Internal Interfaces

As aforementioned, ReaSyn is composed of four parts. The first part is con-
cerned with translating formulas and architectures into games. Before archi-
tectures are encoded as games, they are transformed, if possible, into pipeline
architectures. These transformations are necessary, as the algorithm presented
in [MW03] was designed only for this class of architectures. In the second part
of ReaSyn, as described in [Mau05], the games for formula and architecture
are combined into one distributed game. This part therefore includes the algo-
rithms used to simplify and to solve these distributed games. It is supported
by the third part, which provides functionality to convert the “all-path parity”
condition into an ordinary parity winning condition. This part is also covered
by the present work. The parts two and three are closely related. However, part
three uses the automata transformations introduced to transform the specifica-
tion. Therefore, the transformation of winning conditions was spilted off from
part two. The winning strategies and winning regions produced by the second
part are then passed to the fourth part of ReaSyn. There, the strategies are used
to generate PROMELA code, which fulfills the specification-architecture pair.
The design of ReaSyn follows the layer design pattern (see Figure 9.1). The
first layer covers the parts one and three. The remaining parts two and four
each represent a layer. Layer one first reads the architecture and the specifica-
tion provided by the user. After transforming them into two-player games, it
passes the games to the second layer. Additionally, it provides functionality to
the second layer to transform a game with the “all-path parity” winning condi-
tion into an ordinary parity game. In the second layer, the games are combined
into a distributed game [MW03]. If the given problem has a solution, layer
two will create a winning strategy for Player, which is passed on to the next
layer. Finally, the third layer creates a PROMELA program implementing the
architecture and satisfying the specification.

As this thesis covers layers one and three, there are two different parties the
layers communicate with. The user interface was already described in chapter
8. The interface to the second layer is defined in the remainder of this chapter.
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It defines the properties of the data exchanged between the three layers.

• Architecture Games: The architecture games are bipartite two-player
games of Player versus Environment. The architecture has to be a strictly
hierarchical architecture without an information fork. Each of the games
simulates a single process p of the architecture. The Player chooses the
function fp : D(I(p)) → D(O(p)), while the Environment chooses the
input value x ∈ D(I(p)) of the process. The games only simulate the
architecture and therefore have no winning conditions.

• Specification Game: The specification game is a two-player parity game
of Player versus Environment simulating a deterministic parity automa-
ton, which accepts all sequences that fulfill the specification. In the
game, the Environment chooses the valid atomic propositions while the
player chooses the transition the automaton would take. Since the au-
tomaton is a deterministic one, the Player moves are determined.

• Winning Region: The winning region contains all nodes of the reduced
distributed game from which every play is winning for Player. The re-
duced distributed game is a two-player game.

• Strategie: The strategy is a non-deterministic memoryless Strategy s :
node → 2node, which maps every Player node of the Players’ winning
region of the reduced distributed game to a set of successors. Every play
π = n0, n1, n2, . . . with ni ∈ s(ni−1) and the initial node n0 of the
distributed game is winning for Player.

• Winning Condition Transformation: The winning condition transfor-
mation expects as intput an initialized “all-path parity” game and the
initialized parity game, which is referred to by the “all-path parity” con-
dition. It returns a two-player parity game which has a winning strategy
for Player from the initial node, if and only if Player has a winning strat-
egy from the initial node of the “all-path parity” game.
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Implementation

10.1 Specification Transformations

In ReaSyn the specification is transformed into a game. The purpose of the
specification game is to ensure that the system behavior generated by the ar-
chitecture games satisfies the specification. If the user has provided a deter-
ministic Büchi automaton, the automaton is directly transformed into a game
satisfying the requirements of the interface to [Mau05] using the transforma-
tion from section 6.2. In case the user has provided an LTL formula, the spec-
ification is first transformed into a very weak alternating automaton, then into
a generalized Büchi automaton, and finally into a Büchi automaton. These
transformations are done by the tool LTL2BA [GO01]. If the resulting Büchi
automaton is deterministic, the above mentioned tranformation into a game fol-
lows. Otherwise, the non-deterministic Büchi automaton is first transformed
into a deterministic Rabin automaton, which is subsequently converted into a
deterministic parity automaton. The parity automaton is then encoded into a
two-player parity game using the transformation from Section 6.2.

1 1

P Qb

FIGURE 10.1 Büchi automaton for the formula 3b generated by
LTL2BA[GO01]
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10.1.1 Fast LTL to Büchi Automata

The first three transformations, namely LTL to very weak alternating automa-
ton to generalized Büchi automaton to Büchi automaton, are performed by the
tool LTL2BA [GO01]. It provides an efficient implementation that produces
optimized Büchi automata. In the present work, LTL2BA has been slightly
modified to accept arithmetic expressions as atomic propositions and to create
the Büchi automaton as an instance of the ReaSyn datastructures. Figure 10.1
shows the non-deterministic Büchi automaton for the formula 3b, generated
by LTL2BA. Gastin and Oddoux [GO01] optimize the automata by removing
transitions, which are implied by other transitions and by merging equivalent
states of the automata.

• A transition t1 = (q, σ1, q1) implies a transition t2 = (q, σ2, q2), if

In a VWAA σ2 ⊆ σ1 ∧ q1 ⊆ q2
In a GBA σ2 ⊆ σ1 ∧ q1 = q2 ∧ ∀T ∈ ACC : t2 ∈ T ⇒ t1 ∈ T

In a BA σ2 ⊆ σ1 ∧ q1 = q2

• Two states q1 and q2 are equivalent, if

In a VWAA δ(q1) = δ(q2) ∧ q1 ∈ ACC ⇔ q2 ∈ ACC

In a GBA δ(q1) = δ(q2) ∧ ∀(σ, q′) ∈ δ(q1), T ∈ ACC :
(q1, σ, q

′) ∈ T ⇔ (q2, σ, q
′) ∈ T

In a BA δ(q1) = δ(q2) ∧ q1 ∈ ACC ⇔ q2 ∈ ACC

Although these reductions are performed by LTL2BA, ReaSyn additionally
reduces the Büchi automaton using delayed simulation [EWS01]. State space
reduction through delayed simulation is more efficient in decreasing the state
space of a Büchi automaton than the reductions used in LTL2BA. Experimental
results have shown that even a single node can have an enormous influence on
the size of the transformed automata.

The implementation of the remaining transformations, that is the determiniza-
tion of the Büchi automaton and the conversion of the resulting deterministic
Rabin automaton into a deterministic parity automaton, follow the same idea.
Begining with the starting nodes, all possible successors are computed. The
successors are added to the automaton and then the successors of the newly
added nodes are determined etc. This algorithm computes the reachable sub-
graph rooted in the initial nodes.

10.1.2 Game Encoding

The encoding of an automaton into a parity game follows from the construction
from Section 6.2. First, the Environment nodes are created. For each transition
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P = (V,Σ, δ, v0, α)
G = ((Vplayer , Venv , E), χ)

for v ∈ V do
Venv->add(v)
χ(v) := α(v)

done

for (v, σ, w) with δ(v, σ) = w do
Vplayer->add((v, σ))
χ((v, σ)) := α(v)
E->setTransition((v, (v, σ)))
E->setTransition(((v, σ), w))

done

initialize the game with the node v0 ∈ Venv

FIGURE 10.2 Specification to Game Encoding Algorithm. P is a parity automaton,
G the created parity game.

t = (q, σ, q′) from a node q to q′ labeled with σ, a new Player node e = (q, σ)
is created. Furthermore, transitions from q to e and from e to q ′ are added. The
parity condition is updated every time a new node is added to the game. Figure
10.2 shows the algorithm used for the transformation of a parity automaton.
The algorithm for Büchi automata works alike except for the definition of χ.
For a deterministic Büchi automaton B = (V,Σ, δ, v0, F ), a node v has parity
0, if v ∈ F otherwise it has parity 1. This definition extends to player nodes as
in the algorithm introduced in Figure 10.2.

10.2 Architecture Transformations

In order to obtain the architecture games, the architecture has to be transformed
into a strictly hierarchical acyclic architecture without an information fork.
The algorithms used in [Mau05] can be applied to this class of architectures
only. Finkbeiner and Schewe [FS05] introduced transformations, which result
in such an architecture. The transformations consist of removing idle pro-
cesses, clustering equally informed processes, and removing feedback edges.
They were introduced in detail in Section 5.1. Additionally, a transformation
that encodes strictly hierarchical architectures into pipeline architectures was
introduced.

Once transformed, the architecture processes can be encoded as games. First,
the domains of the input signals are combined into a single domain by building
the cartesian product of the input domains. The output domains are combined
likewise. Every element of the combined input domain is added as a new
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Player node to the process game. Second, all total functions from the combined
input domain to the combined output domain are added as new Environment
nodes. Finally, all possible transitions between Player and Environment nodes
are added. The resulting game is bipartite and simulates all possible behaviors
of the process. The Player chooses the behavior of the process, while the
Environment determines the input of the process. This encoding meets the
assumptions of the interface (c.f. Chapter 9).

10.3 Code Generation

Code generation is covered in the third part of ReaSyn (c.f. Section 2.3). As
mentionend before, Maurer [Mau05] creates a distributed game [MW03] from
the architecture and specification games and solves it. Provided that the Player
wins the distributed game, he passes on a non-deterministic winning strategy
and the winning region for the Player. Formally, the non-deterministic strategy
is represented as a function F : V → 2V that maps a node to a set of possible
successor nodes. Winning a distributed game stands for having a winning strat-
egy for the initial node of the distributed game. Using this non-deterministic
strategy, one can construct a subgraph of winning region for Player. It is con-
structed using the transitions for Environment nodes as in the distributed game,
but reducing the possible successors of a Player node v to F (v), where F is the
non-deterministic winning strategy. The problem of generating code from this
winning region and the non-deterministic strategy is divided into two parts.
First, one has to determine the strategy. As before, the strategy identifies a
subgraph of the winning region containing the initial node of the distributed
game, in which the Player moves are determined. The second part of the code
generation is to create PROMELA code from a given strategy. In fact, the
code is generated using both the Player and the Environment nodes. The latter
represent the functions computed by individual processes of the architecture
and are therefore equal to the number of states in the finite state program. The
Player nodes serve to designate the successor states of the generated finite state
programs (one for each process of the architecture) depending on the input of
the process.

In order to minimize the number of states in the generated program one can
use two starting points for optimizations. First, one tries to reduce the winning
region by merging equivalent nodes. Second, the determinization of the non-
deterministic strategy offers possibilities to minimize the number of states in
the generated program.
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10.3.1 Optimization of the Winning Region

ReaSyn is sought to generate an optimized program for each process of the
architecture. As mentioned before, the number of Environment processes oc-
curing in the subgame represented by a strategy, is equal to the number of
states in the finite state programs. The size of the resulting programs can there-
fore be reduced by minimzing the number of nodes in the winning region. In
the distributed game, nodes of the Environment player represent the functions
computed by the architecture processes. The Player nodes represent the in-
put values chosen by the Environment. The winning region can be reduced by
merging equivalent nodes. Obviously, Player nodes cannot be merged with En-
vironment nodes and vice versa. The resulting winning region is the quotient
winning region with respect to the equivalence relation

p ∼ q ⇔

{

p ∼p q , p, q are Player nodes
p ∼e q , p, q are Environment nodes

,

which is composed of an equivalence relation ∼p for Player nodes and ∼e for
Environment nodes, respectively.

The equivalence realtion ∼p for Player nodes is defined using ordinary simu-
lation [EWS01]. In general, ordinary simulation does not maintain the winner
of a game, but since every path in the winning region is winning for the Player,
it is sufficient for the node space reduction of the winning region.

In order to determine whether a node q can simulate a node q ′, a parity game
with players Spoiler and Duplicator is played. At round zero, two pebbles (red,
blue) are placed on q and q′, respectively. The Spoiler moves the red pebble,
while the Duplicator moves the blue pebble. At round i, let red be on qi and
blue on node q′i. The moves of the players are as follows:

1. Spoiler chooses a triple (qi, ei, qi+1) with ei ∈ F (qi) ∧ qi+1 ∈ F (ei)
and puts red on qi+1.

2. The Duplicator has to respond by choosing a triple (q ′i, e
′
i, q

′
i+1) with

(e′i ∈ F (q′i) ∧ q
′
i+q ∈ F (e′i)). Additionally, ei and e′i have to represent

the same functions. If no such triple exists the game halts and Spoiler
wins.

Formally, the game Go = ((VDuplicator , VSpoiler , E), χ) is constructed from
the winning region W and the set of winning strategies F as described in
[EWS01]:

• VDuplicator = {(q, q′, e) | q, q′ are Player nodes and e is an Environ-
ment node ∧ q ∈ F (e)}

61



CHAPTER 10. Implementation

• VSpoiler = {(q, q′) | q, q′ ∈W and both are Player nodes }

• E = {((q1, q
′
1, e), (q1, q

′
2)) | ∃e

′.e, e′ represent the same functions
∧ e′ ∈ F (q′1) ∧ q

′
2 ∈ F (e′)}

∪ {((q1, q
′
1), (q2, q

′
1, e)) | e ∈ F (q1) ∧ q2 ∈ F (e)}

• χ(v) = 0, v ∈ (VDuplicator ∪ VSpoiler )

This game is easily solved. For Spoiler, the only way to win the game is to
move into a dead end for Duplicator. The algorithm used for finding the win-
ning regions and strategies for both players is described in detail in [Mau05].
The above mentioned construction leads to a game, in which the Duplicator
has a winning strategy from a node (q, q ′), if and only if q′ can simulate q.
Given the winning region W for Duplicator, the equivalence relation ∼p is
defined as follows:

q ∼p q
′ ⇔ ((q, q′) ∈W ∧ (q′, q) ∈W )

The equivalence relation ∼e for Environment nodes is much simpler. Two
Environment nodes e1 and e2 are equal, if and only if

1. e1 and e2 represent the same functions,

2. F (e1) = F (e2).

The reduction itself is obtained by building the quotient winning region of the
distributed game with respect to ∼. Figure 10.3 shows the algorithm used
by ReaSyn to optimize the winning region of the Player in the distributed
game. The Player nodes are merged first, because it yields a better reduction
for Environment nodes.

10.3.2 Strategy Determinization

A strategy for Player is a function fPlayer : VPlayer → V that maps a Player
node to a successor. It defines the behavior of the underlying distributed sys-
tem. Different strategies lead to different implementations. ReaSyn is inter-
ested in finding a small program in terms of number of states of the finite state
program. A first step to reduce the size of the generated program was presented
in the previous section. This section covers the algorithm used by ReaSyn to
find a strategy for Player that involves the smallest possible number of En-
vironment nodes. The problem of choosing a strategy fPlayer from a set of
strategies F : V → 2V is to pick a designated successor for every Player node
v from F (v). A strategy for Player identifies a subgraph of the winning region
for Player in the distributed game in which the Players’ moves are determined.
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Let WPlayer and F be the winning region for Player and the set of
strategies, respectively. [v]∼ denotes the equivalence class of v with
respect to ∼. Vσ are the σ-nodes from the distributed game (σ ∈
{Environment ,Player}. W [x := y] denotes a substitution of x by y
in W .)

Go := constructGame(W,F)
WDuplicator := solve(Go)

∼p := obtainPlayerRelation(WDuplicator)
for v ∈WPlayer ∩ VPlayer do

WPlayer [v := [v]∼p ]
F ′(v) :=

⋃

v′∈[v]∼p
F (v′)

done

∼e := obtainEnvRelation(WPlayer)
for v ∈WPlayer ∩ VEnvironment do

F ′(v) :=
⋃

v′∈[v]∼e
F (v′)

done

FIGURE 10.3 Algorithm used by ReaSyn to optimize the size of the winning re-
gion

F is a strategy, init is the initial node of the distributed game.

maxNumber = 1
S = ∅

while true do
// pick a new SubGraph with maxNumber
// Envnodes initialized with init.
S = nextSubGraph(maxNumber, init)
if hasNoDeadEnds(S, F)

then break
if noMoreSubGraphs(maxNumber, init)

then maxNumber++
done

f := obtainStrategy(S)

FIGURE 10.4 Breadth-first search algorithm used by ReaSyn to find a small sub-
game and the related strategy.
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ReaSyn realizes the strategy determination with a breadth-first search algo-
rithm. Initially, it starts with an empty subgame. Every play has to begin at
the initial node of the distributed game. Hence, the initial node is added to
the subgame. It then enumerates all subgames with one Environment node.
One by one, every successor of the initial node is added to the subgame, as
well as all its successors. Subsequently, the subgame is checked for dead
ends. If a dead end is found, the Environment node and its successors are
removed from the subgame and the next Environment node is tested as de-
scribed above. If no subgame without dead ends exists, the number of pos-
sible Environment nodes in the subgame is increased and the procedure is
repeated. Figure 10.4 shows the algorithm used in ReaSyn to determine a
strategy. The function nextSubGame(maxNumber, init) enumerates
all subgames with maxNumber Environment nodes that are initialized with
init. hasNoDeadEnds(S,F) returns true, if S contains no dead ends
with respect to F , while noMoreSubGames(maxNumber, init) returns
true, if nextSubGame has enumerated all subgames with size maxNumber
that are rooted in init. If a subgame is found, it corresponds to a strategy
fPlayer . This strategy is used to generate the finite state PROMELA program.

The algorithm presented above will produce a strategy with the smallest num-
ber of Environment nodes possible. This may take a lot of time. Therefore,
ReaSyn provides a commandline option to skip the breath-first search for a
best strategy. Instead, beginning with the initial node of the distributed game
a successor is randomly chosen and added to the subgraph until no dead ends
are left. This procedure is much faster but will produce bigger programs than
the breath-first search.

10.3.3 Generating Code

Before describing the code generation in detail, some preliminary properties
of distributed game nodes need to be clarified.

Distributed Game Nodes

The distributed game is constructed from the architecture and specification
games, so-called local games. The distributed game assumes that the Envi-
ronment has complete information. Hence, a distributed game with n local
games is a game of n+ 1 players. The distributed game plays all local games,
simultaneously. For a detailed construction refer to [MW03, Mau05]. Due to
the “divide” and “glue” operations, the distributed game of n + 1 players is
transformed into a two-player game. The “divide” operation merges two lo-
cal games, while the “glue” operation combines nodes of the first local game
in order to establish determinism for Environment positions. During the “di-
vide” operation nodes of the first and the n-th local game are merged into a
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PairNode, which is a pair of two nodes; the first component of which rep-
resents a node from the first local game and the second a node from the n-th
local game. The “glue” operation combines successors of Environment nodes
into a SetNode. As indicated by its name, a SetNode represents a set of
nodes of the first local game. Every member of the set is a pair. The second
component of the pair states the current node, while the first component is a
reference to the predecessor of the node. In order to find a representative of
every SetNode in a “glued” game, one picks a pair from every set in a way
that for every two consecutive pairs p1, p2 in a play of the game the first com-
ponent of p2 matches the second component of p1. As “divide” and “glue” are
excecuted several times, SetNodes and PairNodes can be arbitrarily com-
posed. But in a distributed game of n local games, there are n−1 PairNodes
and at most n− 2 SetNodes nested.

Code Generation

After a minimized strategy is found, the code can be generated. As mentionend
before, Environment nodes represent the functions chosen by the player, while
Player nodes represent the different input values chosen by the Environment.

The number of states of the program is given by the number of Environment
nodes in the subgraph represented by the strategy. Therefore, the Environment
nodes are numbered. The initial state of the generated finite state program is
represented by the successor of the initial node of the distributed game. Recall,
that in the subgraph identified by the chosen strategy, all Player moves are de-
termined. In the following, an implementation is generated for every process
from the original architecture. For a state, which is an Environment node v,
the functions gi are extracted. The functions are the Environment nodes from
the local architecture games. They are represented as nested PairNodes and
SetNodes. In order to create an implementation for a process, a component
matching the process’s signature has to be identified. Due to the architecture
transformation, none of the functions need to exactly match the incoming or
the outgoing signals of the process. In order to find a matching function, the
output domain of the process has to be part of the output domain of the func-
tion. In other words, the function computes at least the values for the signals
of the process output domain. Signals that occur in the input domain of the
process but not in the input domain of the function are feedback signals. The
function is used to create the implementation for the process. In the generated
program, the process first reads the information of all its input signals except
for the feedback signals. It then creates the output for its output signals ac-
cording to the before determined function. Depending on the input value, a
successor state in the finite state program is determined. Environment nodes
have a successor for every input value. The successor state in the finite state
program for an input value i corresponds to the successor of the Player node
corresponding to the input value i. After processing the input, the feedback
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zyx P2P1

FIGURE 10.5 Four process two-way ring architecture before and after transforma-
tion

signals are read. This procedure is repeated until every process has an im-
plementation for every Environment node of the subgame. Finally, the imple-
mentation for the environment process is generated. The environment process
non-deterministically chooses values for the signals under its control.

Figure 10.5 shows a two process pipeline. Together with the specification
(x→ 2(¬z)) ∧ (¬x→ 2z) the Distributed Synthesis Problem is solved. Af-
ter optimization of the winning region the subgraph in Figure 10.7 is obtained.
The subgraph contains three Environment nodes, therefore the generated pro-
gram has three states. It is shown in Figure 10.6. The function used to create
the implementation of the process P1 is f4. As can be seen in the example,
P1 only implements one function in all three states of the program. It indicates
that optimizations on the process level would further reduce the generated pro-
gram. However, this optimization is not covered by the present work. In the
example displayed in Figure 10.7 there are only two possible threads for the
first component. The function f4 is used to implement P1’s behavior in all
of the three states. The second component is used to implement the program
for P2. In order to determine the successor state in the finite state program
the Player nodes are used. Each player node represents an input value. The
successor state for an Environment node v and an input value i is the successor
of a successor of v representing i.

In the generated PROMELA program the signals are represented by channels
(chan). They have a limited capacity indicating how many values the channel
can hold at a time. Every time a value is written to the channel (! operator),
the number of values on the channel increases. Reading from the channel (?
operator) decreases the number of values on the channel. If the channel is
empty, the reading process will pause its execution until a value is written to
the channel. In ReaSyn, multiple processes can read a signal, therefore the
capacity of the corresponding channel is set to the number of readers n and
every value written to the channel is copied n times. The channel declarations
are followed by variable declarations. The variable check is true whenever
a computation cylcle of the distributed system is completed (cf. Chapter 8).
Additionally, variables for every signal are declared to ease the access to the
channel values in the SPIN model checker. Subsequently, the processes are
defined (proctype). For every state of the finite state program all input chan-
nels – except for the feedback channels – are read. Subsequently, the output
values are computed according to the matching function. Finally, the feedback
channels are read. For a complete introduction to PROMELA refer to [Hol03].
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chan xChan = [1] of {int};
chan yChan = [1] of {int};
chan zChan = [1] of {int};

int x = 0;
int y = 0;
int z = 0;
bit check = 0;

active proctype P1() {
byte state = 0;
bit xRead = 0;
do
:: (state == 0) ->

xRead = 0;
do
:: xChan?x -> xRead = 1;
:: (xRead) -> break;
od;
if
:: ((x == 0)) ->

yChan!1;
state = 2;

:: ((x == 1)) ->
yChan!0;
state = 1;

fi;
:: (state == 1) ->

xRead = 0;
do
:: xChan?x -> xRead = 1;
:: (xRead) -> break;
od;
if
:: ((x == 0)) ->

yChan!1;
state = 1;

:: ((x == 1)) ->
yChan!0;
state = 1;

fi;
:: (state == 2) ->

xRead = 0;
do
:: xChan?x -> xRead = 1;
:: (xRead) -> break;
od;
if
:: ((x == 0)) ->

yChan!1;
state = 2;

:: ((x == 1)) ->
yChan!0;
state = 2;

fi;
od
}

active proctype P2() {
byte state = 0;
bit yRead = 0;
do
:: (state == 0) ->

yRead = 0;
do
:: yChan?y -> yRead = 1;
:: (yRead) -> break;
od;
if
:: ((y == 0)) ->

zChan!0;
state = 1;

:: ((y == 1)) ->
zChan!1;
state = 2;

fi;
:: (state == 1) ->

yRead = 0;
do
:: yChan?y -> yRead = 1;
:: (yRead) -> break;
od;
if
:: ((y == 0)) ->

zChan!0;
state = 1;

:: ((y == 1)) ->
zChan!0;
state = 1;

fi;
:: (state == 2) ->

yRead = 0;
do
:: yChan?y -> yRead = 1;
:: (yRead) -> break;
od;
if
:: ((y == 0)) ->

zChan!1;
state = 2;

:: ((y == 1)) ->
zChan!1;
state = 2;

fi;
od
}

active proctype env() {
do
:: xChan!1; zChan?z; check = 1;

check = 0;
:: xChan!0; zChan?z; check = 1;

check = 0;
od
}

FIGURE 10.6 Code output for the Distributed Synthesis Problem with the architec-
ture from Figure 10.5 and the specification:

(x → 2(¬z)) ∧ (¬x → 2z)

67



CHAPTER 10. Implementation

({((1, f4), (1.x=1:z, x:1))}, y:0)

({((1.x=0:z, x:0), (1, f4)), ((1.x=1:z, x:1), (1, f4))}, f1)

({((1, f4), (1.x=0:z, x:0))}, y:1) ({((0, f4), (0.x=1:!z, x:1))}, y:0)

({((0.x=0:!z, x:0), (0, f4)), ((0.x=1:!z, x:1), (0, f4))}, f2)

({((0, f4), (0.x=0:!z, x:0))}, y:1)

({((1, x:0), (1, f4))}, f3)

({(−−, (1, x:0))}, y:0)

FIGURE 10.7 The optimized subgraph for the architecture from Figure 10.5 and
the specification (x → 2(¬z)) ∧ (¬x → 2z). Player nodes are
rectangular, Environment nodes are elliptic.
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ReaSyn in Numbers

As ReaSyn is a first approach to solve the Distributed Synthesis Problem,
there are no programs to compare ReaSyn to. Nevertheless, there are sev-
eral subproblems, which have been realized by other programs. The program
LTL2BA [GO01] is used by ReaSyn to transform the specification into a
non-deterministic Büchi automaton. In order to create a game, a determin-
istic automaton is needed. ReaSyn uses Safra’s [Saf88] construction for the
determinization of the Büchi automaton. It implements the algorithm from
[THB95], which is also used in HSIS [A A94].

11.1 Optimization of Büchi Automata

The specification of the Dining Philosophers Problem is a ilustrative exam-
ple for the implications of the state space reduction for Büchi automata. In
the Dining Philosphers Problem a number of philosophers sit on a round ta-
ble. Only one chopstick is placed between two philosophers. A philosopher

Implications of Büchi Automata Reduction

BA opt. BA Time opt. Game opt.Game
Size Size Time Size Size

DP2 5 4 <1s <1s 1107 99
DP3 6 5 0:0:09 0:0:01 24288 1683
DP4 7 6 0:01:10 0:0:06 125388 8385
DP5 8 7 0:54:07 0:0:41 645867 43092
DP6 9 8 6:31:51 2:48 1576450 103525

TABLE 11.1 Times are measured in hours:min:sec. Game size is the size of the
specification game. The opt. colums show results with enabled
Büchi automata reduction
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FIGURE 11.1 Eight Dining Philosophers

controls the chopstick on his right side. He can eat if he can access two chop-
sticks. This can happen, if the philosopher on his left side decides not to eat.
The Dining Philosophers Problem is to find a behaviour for the philosophers,
which allows every philosopher to eat eventually. Figure 11.1 shows the situa-
tion of the Dining Philosophers Problem with eight philosophers. For ReaSyn
one of the philosophers is controlled by the Environment. The specification
of the Dining Philosophers Problem there are two boolean variables for each
philosopher. The first determines whether the philosopher is eating, the second
determines whether the philosopher uses the chopstick under his control. The
specification then states: If the Environment philosopher infinitly often releases
his chopstick, all philosophers will eat infinitly often. The LTL formula for n
philosophers looks like:

23(¬chenv) →
∧

1≤i≤n

(2(eatphili → (¬chphili−1
∧ chphii)) ∧ 23(eatphili))

eatphil states that phil is eating while chphil is true, if phil uses his chop-
stick. The Environment philosopher is phil0. Table 11.1 shows the results
for the transformation of the specification with and without the state space re-
duction of Büchi automata using delayed simulation. DPi is the specification
for i philosophers. Although delayed simulation reduces the Büchi automata
by only one node, the implications for the following transformations are enor-
mous. The game mentionend in Table 11.1 is the specification game. The size
of the game is its number of nodes.
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0,1,...,n 0,1,...,n 0,1,...,n

1

2

n

1 2 n0

FIGURE 11.2 Transition Graph of the Büchi automaton Mn

Determinization Efficiency

ReaSyn OmegaDet
Büchi Automaton

states pairs states pairs

M1 4 1 7 1
M2 20 2 33 2
M3 283 5 385 5
M4 13598 6 13601 7
M5 † 1059057 9

TABLE 11.2 The Table compares the number of states and Rabin pairs produced
by ReaSyn and OmegaDet. †: memory exceeded

11.2 Determinization of Büchi Automata

Another approach to automata determinization is the program OmegaDet [ATW05].
The table below compares the performance of the determinization procedure
of ReaSyn and OmegaDet. Mn is a Büchi automaton with n + 1 states, the
alphabet Σ = {0, . . . , n}, and the transition graph shown in Figure 11.2. The
size mentionend in the table represents the number of nodes of the determin-
istic Rabin automaton, while pairs stand for the number of Rabin pairs in the
winning condition of the automaton. As can be seen, the resulting Rabin au-
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FIGURE 11.3 The architecture A2

4
with binary signals
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Architecture Transformations

Architecture Size Time

A2
1 6 <1s

A2
2 12 <1s

A2
3 24 <1s

A3
3 726 <1s

A4
3 65800 37s

A6
3 †

A2
4 44 <1s

A2
5 ††

TABLE 11.3 Size of the architecture games and the generation time.
†: memory exceeded, ††: information fork

tomata produced by ReaSyn are much smaller than the automata generated by
OmegaDet.

11.3 Size of Architecture Games

The size of the architecture games is directly related to the size of the dis-
tributed game used to solve the instance of the Distributed Synthesis Problem.
The size of a game for process p is in O(oi) where o is the size of the output
domain and i the size of the input domain. The architectures displayed in the
table below are two-way ring architectures. An

m has m processes plus the En-
vironment process and n-ary signals. Figure 11.3 shows the architecture A2

4.
The size mentioned in the table is the summarized size of all process games.

11.4 Simple Alternating Bit Protocol

The alternating bit protocol is a connection-less protocol for uni-directional
message transfer between two entities. It enhances the message with an addi-
tional bit that is flipped every time a new message is sent. The receiver answers
upon reception of the message with the flipped received bit. This protocol was
designed to detect corrupted messages on lossy channels. Nonetheless, a sim-
ple version of the alternating bit protocol can be synthesized by ReaSyn using
the specification in Figure 11.4. Using the dead end optimization [Mau05]
the problem is solved in 17 seconds. Without dead end optimization it took
45 seconds to generate the simple alternating bit protocol. During the code
generation the winning region is reduced from 33 nodes to 21 nodes yielding
a PROMELA program with two states. Without optimization of the winning
region the program would have had three states.
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ARCHITECTURE:
a

n

x P Q

m

SPECIFICATION:

2((a→X(¬a)) ∧ (¬a→ (Xa)) ∧ ”n = 1 − a” ∧ ”x = m”)

FIGURE 11.4 Alternating Bit Protocol. x contains an arbitrary message, a and m
resemble the “enhanced” message send from P to Q, n contains the
acknowledgement.
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Chapter 12

Evaluation

ReaSyn extends the existing theoretical works by demonstrating that distributed
synthesis is possible in practice. Incorporating recent research results [MW03,
FS05], ReaSyn is an insightful proof of concept, as it is the first software tool
to tackle distributed synthesis. While many earlier works used an automaton-
based approach to handle distributed synthesis (e.g. [KV01, MT02b]), ReaSyn
applied a game theoretic approach. Primarily, the theoretical framework sug-
gested by [MW03] was adopted and successfully altered to accommodate for
LTL specifications. ReaSyn hence offers a novel starting point for both, an
improved implementation and new theoretical developments.

12.1 Issues of System Size

The results presented in Chapter 11 indicate that ReaSyn performs slightly
better than other implementations in determinizing automata. Nevertheless,
the size of the distributed game depends on the sizes of the involved architec-
ture and specification games. A reduction of these games therefore enables
ReaSyn to solve theoretically more complex problems.

Overall, however, ReaSyn will most likely be restricted to demonstrating how
abstract concepts are (un-)realizable on certain architectures, while the actual
generation of complex programs is (so far) beyond ReaSyn’s potential.

12.1.1 Architecture Games

Generally, the implementation of ReaSyn went beyond a mere proof of con-
cept. While binary communication signals would have been sufficient to con-
firm the feasibility of the theoretical solutions to the Distributed Synthesis
Problem, real-life problems are likely to require the transfer of data larger than
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one bit. ReaSyn therefore attempted to offer a more sophisticated proof of
concept, incorporating the option to use a finite interval of integers as signal
domains, thereby investigating the effect a signal’s domain size would have on
ReaSyn’s behavior. As one might have expected, the synthesis works reason-
ably well for smaller problems (for examples see Table 11.3 and [Mau05]).
However, the architecture games simulate all possible functions and the num-
ber of possible functions is exponential in the size of the functions’ domain
sizes. Therefore, already the three-process two-way ring architecture, whose
signals can hold six different values causes the synthesis to collapse (see Ta-
ble 11.3). If ReaSyn is nevertheless to be used as a tool to synthesize a more
complex system, the user should be aware of the exponential dependency. By
cautiously abstracting the problem to be solved to the basic underlying con-
cepts, the domain sizes of the involved signals can be significantly reduced in
many cases.

12.1.2 Specification Games

Besides the size of the architecture games, the applicability of ReaSyn further
depends on the size of the specification game. The more details are given in
the specification, the more complex and the larger is the specification game.
ReaSyn offers two possibilities to deal with this challenge. First, instead
of specifying an LTL formula, the user has the option to enter a determinis-
tic Büchi automaton. This option is obviously only reasonable, if the Büchi
automaton entered by the user has fewer states than the one ReaSyn would
have created. Second, ReaSyn attempts to overcome the described problem
by employing a delayed simulation optimization [EWS01]. This optimization
additionally significantly affects the size of the automata the Büchi automa-
ton is transformed to. A similar optimization for the architecture games is not
possible without loosing information that may be nescessary to synthesize the
distributed system. Since an architecture game simulates all possible behav-
iors of a process, optimizing it in terms of reducing the number of transitions
and/or states would also reduce the number of behaviors of the process. Thus,
such an optimization could potentially eliminate the only way to synthesize a
correct program.
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Future Directions

ReaSyn has shown that the theoretical approaches to distributed synthesis are
generally feasible. Most solutions were directly adopted in the implementation
of ReaSyn. While some minor changes and extensions have been introduced
in the design of ReaSyn, other aspects allow for further extensions and opti-
mizations.

13.1 Further Improvements and Optimizations

13.1.1 CTL

So far, ReaSyn accepts specifications given as LTL formula or as Büchi au-
tomaton. During the design of ReaSyn, the decision was made to use LTL
rather than CTL(?) as the specification logic, because there already exists an
efficient implementation [GO01] for parts of the automata transformations. A
further extension to ReaSyn could be the integration of CTL? as specification
language.

13.1.2 Partial Functions

Architecture games in ReaSynmodel all possible behaviors of a process. This
is necessary, because the processes have to anticipate the Environment’s deci-
sion for an input value. Reversing the order of decision (i.e. the Environment
first determines the input value of a process and only then the process decides
how to react) would allow ReaSyn to reduce the size of architecture games
by using partial functions instead of total ones. Here, the partial functions are
only defined on one input value, which is earlier determined by the Environ-
ment. An initial test of such an extension has shown that it could constitute a
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fast approximation to the solution of the Distributed Synthesis Problem.

13.1.3 Optimization for Automata

In addition to the use of partial functions, the execution time of ReaSyn could
be further reduced by optimizing the Rabin- and parity automata involved in
the specification transformation. In the present implementation only Büchi
automata are optimized.

13.1.4 Whiteboxes

ReaSyn provides support for architectures with so called blackbox processes.
A blackbox process is a process, whose implementation is unknown. During
the implementation phase of a software tool, some components may be fin-
ished before the completion of the entire project. As the development process
progresses, these components could be continuously integrated into ReaSyn’s
architecture description as whitebox processes. These are processes, whose be-
havior has previously been determined and is known. An extension of ReaSyn
to include the possibility of whitebox processes would enable it to contribute
to the software development process also at more advanced stages.

13.2 Applications

ReaSyn is the first attempt to implement a tool to synthesize distributed sys-
tems. As such, it poses a valuable contribution to the progress of theory and
practice of distributed synthesis. The above described possibilities of exten-
sion illustrate, however, that much work remains to be done. Nevertheless,
possible applications for a tool like ReaSyn are conceivable. For example,
any software application for which the adherence to the specification is criti-
cal, such as controllers for cars, satellites, or communication protocols, could
significantly benefit from a tool like ReaSyn.
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