
A formalisation of argumentation schemes for
legal case-based reasoning in ASPIC+

Henry Prakken1, Adam Wyner2∗, Trevor Bench-Capon3, and Katie Atkinson3

1University of Utrecht, Department of Information and Computing Sciences
and University of Groningen, Faculty of Law

2University of Aberdeen, Department of Computing Science
3University of Liverpool, Department of Computer Science

May 2, 2013

Abstract

In this paper we offer a formal account of reasoning with legal cases in terms of
argumentation schemes. These schemes, and undercutting attacks associated with
them, are formalised as defeasible rules of inference within the ASPIC+ frame-
work. We begin by modelling the style of reasoning with cases developed by
Aleven and Ashley in the CATO project, which describes cases using factors, and
then extend the account to accommodate the dimensions used in Rissland and Ash-
ley’s earlier HYPO project. Some additional scope for argumentation is then iden-
tified and formalised.

Keywords: argumentation, legal case based reasoning

1 Introduction
Legal case-based reasoning (LCBR) has long been a topic of interest in AI and Law,
and a variety of approaches have evolved. One important line of work on LCBR be-
gan with HYPO [2], developed by Edwina Rissland and her student, Kevin Ashley at
Amherst. HYPO represented reasoning with legal cases as the exchange of arguments
and counter arguments based on dimensions, legally significant aspects of the cases.
Subsequently the ideas of HYPO were further developed by Ashley at Pittsburgh where
he worked with his student, Vincent Aleven, on CATO [1], which introduced the no-
tions of factors and a factor hierarchy, and with another student, Steffi Brüninghaus,
on IBP [10] which attempted to predict case outcomes instead of simply identifying
the arguments for the two sides. Like HYPO these systems were applied to US Trade

∗Corresponding author. Email: adam@wyner.info. Postal address: Department of Computing Science,
University of Aberdeen, Meston Building, Meston Walk, Aberdeen, AB24 3UE, United Kingdom.

1



Secrets law. Meanwhile Rissland stayed at Amherst where she worked with her stu-
dent, David Skalak, on CABARET [26], which was based on Home Office Deduction
cases and embedded the case based reasoning within a structure of rules modelling the
relevant legislation, and with Skalak and Timur Friedman on BankXX [24], which gen-
erated arguments about Home Office Deduction through heuristic search. The model
of case based reasoning used in this paper is largely based on the model developed in
CATO, although we shall also draw on these other systems where convenient. More
theoretically-oriented research related to this general approach appears in [22], [4],
and [7]. In all these approaches, a current undecided case is decided by comparing and
contrasting features in the current case against precedent cases in a case-base that have
similar features. The decision in the “best” precedent case is then taken as the decision
into the current case following the legal reasoning principle of stare decisis1.

In [28], a number of novel argumentation schemes designed to reflect reasoning
with factors as in Aleven and Ashley’s CATO [1] were described, where the focus is to
determine how and in what way a precedent case does (or does not) argue in support of
a determination in the current case. However, the presentation in [28] was semi-formal
and not set in an analytic framework which supports reasoning about these schemes. A
simplified version of the schemes of [28] was modelled in Carneades [15] and included
(along with many other schemes) in the semi-formal presentation of Argumentation
Schemes for legal reasoning in [17]. In that paper the six schemes of [28] were re-
duced to three, and this resulted in distinctions that are arguably important being lost.
Improved versions of the schemes of [28] were presented in [29]. In this paper, we
reanalyse and formalise these legal case-based argumentation schemes in terms of the
formal argumentation framework of ASPIC+ [21]. Formalising these schemes clari-
fies them and makes them more precise, while formalising them in ASPIC+ makes the
metatheory of the ASPIC+ framework available for our account. In particular, we shall
use its metatheory to prove that our specification satisfies the rationality postulates of
[12]. A formalisation in ASPIC+ also illustrates the potential of that framework for
formalising reasoning with argumentation schemes. This paper thus represents a sub-
stantially rewritten, revised and extended version which improves on both the formal
representation and the analysis of [28], [17] and [29].

The current paper advances the state of the art in several respects: legal case-based
reasoning with factors is clarified, defeasible legal case-based reasoning is represented
and formalised in argumentation schemes, the arguments are compatible with and eval-
uated in a formally defined argumentation framework, and the analysis presents a well-
developed and justified instantiation of defeasible argumentation schemes in a formal
framework. Furthermore, the analysis provides a uniform representation language into
which various alternative proposals for LCBR can be cast, compared, integrated, and
reasoned with. Finally, the paper as a whole provides a demonstration of how an as-
pect of domain expertise, in this case reasoning with legal precedents, can be fruitfully
captured and represented as a set of argumentation schemes, and the specific domain
conceptualisation required to support them. This technique is generally applicable to
expertise which comprises the ability to reason in a particular way.

1Literally “let the decision stand”. This is the legal principle by which previous legal decisions are
binding of courts of an equal or inferior status.

2



The organisation of the paper is as follows. We first set out elements of the formal
framework for argumentation that we are assuming. In section 3, we discuss case-based
reasoning as in CATO. We introduce our running example and the elements of the
language we need for the argumentation schemes before presenting CATO style argu-
mentation schemes in the formal framework. In section 4, issues concerning reasoning
about dimensions, the relationship between facts and factors, and factor incompatibility
are identified and discussed. Section 5 offers some additional discussion.

2 The Formal Setting
We first briefly summarise the formal frameworks used in this paper. An abstract
argument framework, as introduced by Dung, [14] is a pair AF = 〈A, defeat〉, where
A is a set of arguments and defeat a binary relation onA. A subset B ofA is said to be
conflict-free if no argument in B defeats an argument in B and it is said to be admissible
if it is both conflict-free and also defends itself against any attack, i.e., if an argument
A1 is in B and some argument A2 inA but not in B defeats A1, then some argument in
B defeats A2. A preferred extension is then a maximal (with respect to set inclusion)
admissible set. Dung defines several other types of extensions but they are not used in
our model.

Dung’s arguments are entirely abstract, with no features other than the defeat rela-
tion. A general framework for giving structure to arguments is the ASPIC framework,
most fully defined as ASPIC+ in [21, 20]. The ASPIC+ framework first defines the
notion of an argumentation system, which consists of a logical language L with a bi-
nary contrariness relation − and two sets of inference rules Rs and Rd of strict and
defeasible inference rules defined over L, written as ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn

⇒ ϕ. Informally, that an inference rule is strict means that if its antecedents are ac-
cepted, then its consequent must be accepted no matter what, while that an inference
rule is defeasible means that if its antecedents are accepted, then its consequent must
be accepted if there are no good reasons not to accept it. An argumentation system
also contains a function n which for each defeasible rule inRd returns a formula in L.
Informally, n(r) is a wff in L which says that the defeasible rule r ∈ R is applicable.

In the present paper we use an argumentation system in which L is a first-order
language with equality further specified in the coming sections, its contrariness relation
corresponds to classical negation, the strict rules Rs are all valid first-order inferences
over L and the defeasible rulesRd are as specified in the coming sections.

Arguments are in ASPIC+ constructed from a knowledge base K, which contains
two disjoint kinds of formulae: the axioms Kn and the ordinary premises Kp. The
formal definition of an argument is as follows (here, for a given argument, the function
Prem returns all the formulae of K (called premises) used to build the argument, Conc
returns its conclusion, Sub returns all its sub-arguments, and TopRule returns the last
inference rule used in the argument):

Definition 2.1 [Argument] An argument A on the basis of a knowledge base K in an
argumentation system (L,−,Rs,Rd, n) is:

3



P1 P2

P3
(A1)

P4
C1

(A2)

Figure 1: An argument

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; TopRule(A)
= undefined.

2. A1, . . . An →/⇒ ψ if A1, . . . , An are arguments such that there exists a strict or
a defeasible rule Conc(A1), . . . , Conc(An)→/⇒ ψ inRs/Rd.
Prem(A) = Prem(A1)∪ . . .∪ Prem(An); Conc(A) = ψ; Sub(A) = Sub(A1)∪
. . . ∪ Sub(An) ∪ {A}; TopRule(A) = Conc(A1), . . . , Conc(An)→/⇒ ψ.

An argument is strict if all its inference rules are strict and defeasible otherwise,
and it is firm if all its premises are in Kn and plausible otherwise.

Arguments can be displayed as inference trees. An example argument,A2, is shown
in Figure 1. A2 has premises P1, P2, P4, and conclusion C1. A single and double
bar stand for, respectively, a strict and defeasible inference. Argument A2 has four
subarguments, namely A1, which has premises P1 and P2 and conclusion P3, and the
formulae P1, P2 and P4 as atomic subarguments.

An argumentation system and a knowledge base are combined with an argument
ordering into an argumentation theory. The argument ordering could be defined in any
way, for example, in terms of orderings onRd and Kp.

Definition 2.2 [Argumentation theories] An argumentation theory is a triple AT =
(AS ,K,�) where AS is an argumentation system, K is a knowledge base in AS and
� is an ordering on the set of all arguments that can be constructed on the basis of K
in AS .

Arguments can be attacked in three ways: attacking a conclusion of a defeasible infer-
ence, attacking the defeasible inference itself, or attacking a premise. To define how a
defeasible inference can be attacked, the function n of an AS can be used, which as-
signs to each element of Rd a well-formed formula in L. Recall that informally, n(r)
(where r ∈ Rd) means that r is applicable. For our argumentation system, ASPIC+’s
definitions of attack can be simplified as follows:2

Definition 2.3 [attacks] A attacks B iff A undercuts, rebuts or undermines B, where:

• A undercuts argument B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B)
such that B′’s top rule r is defeasible.

• A rebuts argument B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the
form B′′1 , . . . , B

′′
n ⇒ ϕ.

• ArgumentA underminesB (on ϕ) iff Conc(A) = −ϕ for some ordinary premise
ϕ of B.

2In the definitions below, −¬ϕ denotes ϕ, while if ϕ does not start with a negation, −ϕ denotes ¬ϕ.

4



In Figure 1, argument A2 can only be rebutted or undercut on its defeasible subargu-
ment A1.

Undercuts and attacks that are combined with the preferences defined by an ar-
gument ordering yield three ways in which an argument may be defeated: undercut
(which is independent of preferences), successful undermining and successful rebuttal
(both of which do depend on preferences).

Definition 2.4 [Successful rebuttal, successful undermining and defeat]

• A successfully rebuts B if A rebuts B on B′ and A 6≺ B′.

• A successfully undermines B if A undermines B on ϕ and A 6≺ ϕ.

• A defeats B iff A undercuts or successfully rebuts or successfully undermines
B.

The success of rebutting and undermining attacks thus involves comparing the conflict-
ing arguments at the points where they conflict. The definition of successful undermin-
ing exploits the fact that an argument premise is also a subargument. For undercutting
attack no preferences are needed to make it succeed, since undercutters state exceptions
to the rule they attack.

ASPIC+ thus defines a set of arguments with a binary relation of defeat, that is, it
defines abstract argumentation frameworks in the sense of [14]. Formally:

Definition 2.5 [Argumentation framework] An abstract argumentation framework (AF )
corresponding to an argumentation theory AT is a pair < A, Def> such that:

• A is the set of arguments on the basis of AT as defined by Definition 2.1,

• Def is the relation on A given by Definition 2.4.

Thus any semantics for abstract argumentation can be applied to ASPIC+.

3 CATO Argumentation Schemes
In this section, formal argumentation schemes for CATO style case-based reasoning
are provided. We give a brief overview of CBR as represented in CATO in section
3.1, introduce our running example in section 3.2, present elements of the language
in section 3.3, formalise the argumentation schemes in 3.4, and report the results with
respect to our example in 3.5. In section 3.6 we prove that our ASPIC+ argumentation
theories satisfy [12]’s rationality postulates of strict closure and consistency.

3.1 Case-based Reasoning as in CATO
CATO [1], which we focus on in this section, analyses cases in terms of factors, where
a factor is a prototypical fact situation that predisposes the decision in favour of one
party or the other in the case; for trade secret law, the domain CATO is designed for, the
factors concern trade secret misappropriation and are derived from Restatement of Torts

5



First, Sec. 757 and the Uniform Trade Secret Act (see [2, 1]). As different precedents
have different distributions of factors, finding and reasoning about precedents with
respect to a current case requires one to examine the combinations of and counter-
balancing between, factors in the cases. In addition to the factors themselves, there
is a factor hierarchy in which an abstract factor has factors as children; in reasoning
with the abstract factors and the factors of a case, differences between the cases can
sometimes be reconciled. The argumentation schemes discussed in this paper make
such reasoning patterns explicit and formal.

A case comparison method for LCBR was introduced in [4], where cases are anal-
ysed in terms of partitions of case factors. Various distributions of factors amongst the
partitions can be used to support or undermine the plaintiff’s argument that the cur-
rent case should be decided in the plaintiff’s favour. [28] provided some informally
expressed argumentation schemes for this partition method, where the schemes are de-
feasible reasoning patterns and the partitions are sets of CATO factors and the factor
hierarchy is used. This paper formalises, articulates, and extends this line of research
on LCBR.

3.2 Running Example
To clarify the discussion, we provide a running example using Mason v Jack Daniels
Distillery (indicated with Mason) and M. Bryce and Associates v Gladstone (indicated
with Bryce) as analysed in CATO, based on the factors and factor hierarchy in [1].

Mason v Jack Daniels Distillery3, is a well known case, so well known that an
episode of the Simpsons4 was based on it. A bartender, Tony Mason, invented a cock-
tail, Lynchburgh Lemonade comprising Jack Daniel’s whiskey, Triple Sec, sweet and
sour mix, and 7-Up. It proved surprisingly popular. Mason met Winston Randle, a
sales representative for Jack Daniel Distillery, and they talked about the drink, and its
possible use in a promotion. Approximately one year later the defendants were devel-
oping a national promotion campaign for Lynchburg Lemonade. Mason claimed that
he had parted with the recipe because he had been told that his band would be used in
the promotion. In fact Mason received nothing. The jury found for the plaintiff, but
awarded only a dollar in damages. Here we will treat Mason as the current case under
consideration.

In M. Bryce and Associates v Gladstone5 Bryce was a software company with a
product bearing the registered trademark “Pride”. “Pride” is a complete methodology
for the design, development and implementation of an information system. Bryce made
a presentation of “Pride” to the defendants, hoping to make a sale, after which the
defendants designed and implemented a manual that duplicated its procedures, forms
and standards. Bryce thus also involves disclosure in negotiations and was found for
the plaintiff, and so can serve as a possible precedent.

We give the factors for each case, as used in CATO, (the factor identifiers, F1
and so on are those used in [1] and adopted in other work discussing CATO). We also
indicate the side favoured by the factors:

3518 So.2d 130, 1987 Ala. Civ. App.
4Flaming Moe’s, the tenth episode of the third season.
5107 Wis. 2d 241

6



• Mason

– F1 Disclosure-In-Negotiations (d)

– F6 Security-Measures (p)

– F15 Unique-Product (p)

– F16 Info-Reverse-Engineerable (d)

– F21 Knew-Info-Confidential (p)

• Bryce

– F1 Disclosure-In-Negotiations (d)

– F4 Agreed-Not-To-Disclose (p)

– F6 Security-Measures (p)

– F18 Identical-Products (p)

– F21 Knew-Info-Confidential (p)

In subsequent sections, we illustrate the formalism with this example.

3.3 Elements of a Language
We begin by defining the language that we shall use to talk about our cases and which
will be used in our underlying knowledge base. We assume a many-sorted first-order
language with sorts for parties, cases (with subsorts for current cases and precedents),
factors and factor sets. We trust that the types of the terms and predicate and function
symbols will be clear from the context and wording.

We first discuss some preliminaries. To correctly represent and reason with set-
theoretic expressions, the following definitions are assumed to be in Kn:

1. ∀s, s′.(s ⊆ s′ ≡ ∀x(x ∈ s =⇒ x ∈ s′))6

2. ∀x, s, s′.(x ∈ s ∩ s′ ≡ (x ∈ s ∧ x ∈ s′))

3. ∀x, s, s′.(x ∈ s ∪ s′ ≡ (x ∈ s ∨ x ∈ s′))

4. ∀x, s, s′.(x ∈ s \ s′ ≡ (x ∈ s ∧ x 6∈ s′))

In expressions like pFactors(Mason) = {F6 ,F15 ,F21} the brackets { and } are
together a function symbol operating on the terms F6 , F15 and F21 . To preserve the
meaning of the function symbol the following axiom is added to Kn:

5. ∀s, x1, . . . , xn.s = {x1, . . . , xn} ≡ ∀y(y ∈ s ≡ (y = x1 ∨ . . . ∨ y = xn))

Here the variable s ranges over sets. This definition assumes that sets are finite, which
in our domain is a safe assumption.

Factors are in Kp declared to be either pro-plaintiff or pro-defendant, with:

6In this paper the long double arrow =⇒ denotes the material implication.

7



• pFactor(factor), meaning that factor is a pro-plaintiff factor;

• dFactor(factor), meaning that factor is a pro-defendant factor.

In our running example we have at least the following formulae in Kp:

• pFactor(F4 )

• pFactor(F6 )

• pFactor(F15 )

• pFactor(F18 )

• pFactor(F21 )

• dFactor(F1 )

• dFactor(F16 )

No factor can be both pro-plaintiff and pro-defendant, expressed by adding to Kn:

6. ∀factor¬(pFactor(factor) ∧ dFactor(factor))

We next turn to the representation of cases. We will not talk about cases directly, but
instead refer to cases as analysed for use by the CATO system, which is the system
that provides the paradigm on which our argumentation will be based. For CATO, a
case has a name, a set of factors in favour of the plaintiff, a set of factors in favour of
the defendant, and (if the case is a precedent) an outcome, which is one of plaintiff or
defendant. We describe cases as follows. First for each case the sets of (plaintiff and
defendant) factors in the case are specified with the following predicates:

• hasFactor(case, factor), meaning that factor is a factor in case .

• hasPfactor(case, factor), meaning that factor is a plaintiff factor in case.

• hasDfactor(case, factor), meaning that factor is a defendant factor in case.

Moreover, the following definitions are added to Kn.

7. ∀case, factor .hasPfactor(case, factor) ≡ hasFactor(case, factor) ∧
pFactor(factor)

8. ∀case, factor .hasDfactor(case, factor) ≡ hasFactor(case, factor) ∧
dFactor(factor)

The idea is that hasFactor(case, factor) statements are added to Kp and that they to-
gether with the specifications of the types of factors in Kp give rise to strict arguments
for hasPfactor(case, factor) and hasDfactor(case, factor) conclusions. In our run-
ning example we thus have strict arguments for the following conclusions:

• hasPfactor(Mason,F6 )

8



• hasPfactor(Mason,F15 )

• hasPfactor(Mason,F21 )

• hasDfactor(Mason,F1 )

• hasDfactor(Mason,F16 )

• hasPfactor(Bryce,F4 )

• hasPfactor(Bryce,F6 )

• hasPfactor(Bryce,F18 )

• hasPfactor(Bryce,F21 )

• hasDfactor(Bryce,F1 )

To ensure that a factor belongs to a case if and only if specified as such, the predicate
completions of the predicate hasFactor and the unique-names and domain-closure ax-
ioms for objects satisfying these predicates are added to Kn. This makes, for example,
the following pairs of formulae mutually inconsistent:

• pFactors(Mason) = {F6 ,F15 ,F21} and pFactors(Mason) = {F4 ,F21}

• pFactors(Mason) = {F6 ,F15 ,F21} and hasPfactors(Mason,F4 )

In our running example the predicate completion formulae are as follows:

• ∀case, factor .hasFactor(case, factor) ≡
((case = Mason ∧ (factor = F1 ∨ factor = F6 ∨ factor = F15 ∨ factor =
F1 ∨ factor = F21 ))∨
(case = Bryce ∧ (factor = F1 ∨ factor = F4 ∨ factor = F6 ∨ factor =
F18 ∨ factor = F21 )))

The unique-names and domain closure axioms are:

• ∀case.case = Mason ∨ case = Bryce

• Mason 6= Bryce

• ∀factor .factor = F1 ∨ . . . ∨ factor = F115

• F1 6= . . . 6= F115

The following three function expressions are used to denote a case’s sets of pro-
plaintiff and pro-defendant factors and its outcome:

• pFactors(case) = setOfFactors .

• dFactors(case) = setOfFactors .

• outcome(case) = party .

9



We then add the following axioms toKn to link expressions with the hasPfactor , hasDfactor
and hasFactor predicates to expressions with the ∈ symbol. It is these axioms that en-
able set-theoretic operations on factors and factor sets.

9. ∀case, f.f ∈ Factors(case) ≡ hasFactor(case, factor)

10. ∀case, f.f ∈ pFactors(case) ≡ hasFactor(case, factor) ∧ pFactor(factor)

11. ∀case, f.f ∈ dFactors(case) ≡ hasFactor(case, factor) ∧ dFactor(factor)

With respect to our running example, we then have strict arguments for the follow-
ing conclusions:

• pFactors(Mason) = {F6 ,F15 ,F21}

• dFactors(Mason) = {F1 ,F16}

• pFactors(Bryce) = {F4 ,F6 ,F18 ,F21}

• dFactors(Bryce) = {F1}

We also have in Kp:

• outcome(Bryce) = Plaintiff

Additionally a feature of CATO is that factors are organised into a factor hierarchy,
with factors being the children of more abstract factors. Thus for every factor we can
have relations of the form:

• parentFactor(factor , abstractFactor)

While CATO has some intermediate layers in the factor hierarchy, we omit some of
them for our current purposes as well as the label of these higher level factors. The
abstract factors are also associated with a side, with the following formulae in Kp:

• pFactor(F102 )

• pFactor(F115 )

• dFactor(F105 )

Note that cases are described only in terms of base level factors: thus pFactors(case)
and dFactors(case) do not return any abstract factors. Similarly hasFactor does
not have any associated abstract factors. The factor hierarchy was originally built by
Aleven starting from the base level factors, and in principle it would be possible to
construct different factor hierarchies, using different abstract factors and/or different
parentFactor relations, in which case paternity could even be the subject of dispute,
and parentFactor(factor , abstractFactor) would need to be the conclusion of some
rule, rather than a premise. We will, however, consider the factor hierarchy to be fixed
to that used in [1], and use parentFactor only as it is defined there.

• parentFactor(F1 ,F102 )

10



• parentFactor(F4 ,F102 )

• parentFactor(F4 ,F115 )

• parentFactor(F6 ,F102 )

• parentFactor(F15 ,F105 )

• parentFactor(F16 ,F105 )

• parentFactor(F21 ,F115 )

A factor hierarchy can be specified by adding a formula of the following form to Kp:

• ∀factor1 , factor2 .parentFactor(factor1 , factor2 ) ≡ (factor1 = Fi1 ∧
factor2 = Fj1 ) ∨ . . . ∨ (factor1 = Fin ∧ factor2 = Fjn)

If desired, axioms can be added to Kn to exclude cycles in the factor hierarchy, but
multiple parents must be allowed to represent the hierarchy of [1].

Cases are compared with one another in terms of their factors. This gives rise to a
further six functions of the following type:

commonPfactors : currentcases × precedents −→ 2 factors

The six functions are defined as follows as elements of Kn.

∀f, curr , prec:

12. commonPfactors(curr , prec) = pFactors(curr) ∩ pFactors(prec)

13. commonDfactors(curr , prec) = dFactors(curr) ∩ dFactors(prec)

14. currPfactors(curr , prec) = pFactors(curr) \ commonPfactors(curr , prec)

15. currDfactors(curr , prec) = dFactors(curr) \ commonDfactors(curr , prec)

16. precPfactors(curr , prec) = pFactors(prec) \ commonPfactors(curr , prec)

17. precDfactors(curr , prec) = dFactors(prec) \ commonDfactors(curr , prec)

With respect to our running example, we have:

• commonPfactors(Mason,Bryce) = {F6 ,F21}

• commonDfactors(Mason,Bryce) = {F1}

• currPfactors(Mason,Bryce) = {F15}

• currDfactors(Mason,Bryce) = {F16}

• precPfactors(Mason,Bryce) = {F4 ,F18}

• precDfactors(Mason,Bryce) = ∅

11



These relations are the building blocks for our arguments. The first two are the basis
for a comparison and represent what is common between the two cases. The remaining
four represent differences, and their effect will depend on the outcome of the previous
case and the side for which we are arguing. Suppose we are arguing for the plaintiff:
then we can only use precedents with the outcome plaintiff. For such cases, currP-
factors and precDfactors will strengthen the plaintiff’s position, since they represent,
respectively, plaintiff reasons in curr not available in the prec and defendant reasons in
the prec which are not available in curr. On the other hand, currDfactors and precP-
factors weaken the plaintiff’s position in curr. Similarly, if arguing for the defendant in
the curr, currDfactors and precPfactors strengthen the position and currPfactors and
precDfactors weaken it. The precise nature of the strengthening and weakening will
be made clear when we consider the argumentation schemes based on these different
partitions.

Next we need to express that one set of factors, factorSet1, is preferred over another,
factorSet2.

• preferred(factorSet1,factorSet2).

In our analysis, the preference is the claim of a defeasible argumentation scheme CS2,
which only appears later. We cannot, then, straightforwardly provide the preference in
our running example until section 3.4.

Finally, we need another relation between factors. If factors for a given party share
the same ancestor, then both factors get their force from the fact that the same abstract
factor is present in the case. This means that, if they favour the same party to the
case, it may be possible to substitute one for another. Similarly if they favour different
parties, they may cancel each other out so as to remove the abstract factor from the
case. Therefore we have two additional predicates:

• substitutes(factor1 , factor2 )

• cancels(factor1 , factor2 )

To define these predicates, the following definition of the ancestor relation between
factors is added to Kn:

18. ∀f1, f2.ancestor(f1, f2) ≡ parentFactor(f1, f2) ∨ ∃f3(ancestor(f1, f3) ∧
parentFactor(f3, f2))

We define substitution and cancellation of factors that would benefit the plaintiff as
follows, where substitutions apply between cases and cancellations apply within cases.
Substitutions and cancellations for the defendant would be similar, though switching
the predicates (and factor sets). The following definitions are in Kn:

19. ∀f1, f2.substitutes(f1, f2) ≡
((pFactor(f1) ∧ pFactor(f2)) ∨ (dFactor(f1) ∧ dFactor(f2))) ∧
∃f3(ancestor(f1, f3) ∧ ancestor(f2, f3))

20. ∀f1, f2.cancels(f1, f2) ≡
((pFactor(f1) ∧ dFactor(f2)) ∨ (dFactor(f1) ∧ pFactor(f2))) ∧
∃f3(ancestor(f1, f3) ∧ ancestor(f2, f3))

12



In our running example, we have:

• substitutes(F4 ,F6 ) since precPfactors(Mason,Bryce) = {F4 ,F18} and
F4 ∈ {F4 ,F18} and pFactors(Mason) = {F6 ,F15 ,F21} and
F6 ∈ {F6 ,F15 ,F21} and parentFactor(F4 ,F102 ) and
parentFactor(F6 ,F102 ).

• cancels(F15 ,F16 ) since currPfactors(Mason,Bryce) = {F15} and F15 ∈
{F15} and dFactors(Mason) = {F1 ,F16} and F16 ∈ {FF1 ,F16} and
parentFactor(F15 ,F105 ) and parentFactor(F16 ,F105 ).

Intuitively, we want to argue that we should decide Mason for the plaintiff on the
basis of Bryce. The argument will be that Mason and Bryce share several factors (both
for plaintiff and defendant), and so, since Bryce was decided for the plaintiff, so too
should Mason be decided, provided that any differences between them can be argued
away by substitution and cancellation.

In the next section we will present the argumentation schemes built from this lan-
guage.

3.4 CATO style Argumentation Schemes
In this section we specify the defeasible inference rules Rd of our ASPIC+ argumen-
tation system. For readability we will not specify them with the rule symbol⇒ but as
argumentation schemes, i.e., with a double horizontal inference bar. Rule schemes will
be named by expressions Name(x1, . . . , xn) where the predicate Name stands for the
informal name of the rule and x1, . . . , xn are all free variables occurring in the scheme.
These variables are replaced by ground terms for each instance of the scheme, resulting
in closed formulae that are the names of the scheme instances according to the function
n mentioned just before Definition 2.3.

In this section we will always suppose that we wish to argue the curr for the plain-
tiff. Arguments for the defendant are similar, except that the strengthening and weak-
ening factor partitions are reversed as discussed above. The argument is that the curr
should be decided for the plaintiff because the common p factors were preferred to the
common d factors in the prec.7

CS1(curr , prec, p, d):

commonPfactors(curr , prec) = p,
commonDfactors(curr , prec) = d,

preferred(p, d)

outcome(curr) = Plaintiff

Instantiating CS1, where our curr is Mason and our prec is Bryce, we have the follow-
ing argument, indicated with Mason(Bryce)A1:

Mason(Bryce)A1
7Note that CS1 uses only a subset of the factors from the precedent: this is because CS2 also encapsulates

the rule broadening move as discussed in [26], which is necessary to adapt the prec so as to match the curr.

13



commonPfactors(Mason,Bryce) = {F6 ,F21},
commonDfactors(Mason,Bryce) = {F1},

preferred({F6 ,F21}, {F1})
outcome(Mason) = Plaintiff

Note that strictly speaking some of these premises are derived fromKn∪Kp. However,
to keep the arguments reasonably readable we will leave strict derivations from the
knowledge base implicit.

We will assume at this point that the information about cases in our KB is correct,
or at least beyond dispute; this is relaxed in section 4.2. In ASPIC+ terms this makes
the case facts axioms and so the first two premises cannot be questioned. The third,
however, needs to be established, and this will be done using CS2, which we will
describe after considering undercutters to CS1.

There may, of course, be rebuttals, using a variety of argumentation schemes, but
we need to recognise that even if such a preference has been established in the prec, it
may not be applicable to the curr, because the defendant has arguments in the curr that
were not available in the prec. We therefore have the undercutting attack for arguments
using CS1.

U1.1(cur , prec, p, d):

f ∈ currDfactors(curr , prec)

¬CS1(cur , prec, p, d)

Instantiating U1.1 with Mason, Bryce and the relevant sets, we have an undercutter
argument:

Mason(Bryce)A2:

F16 ∈ currDfactors(Mason,Bryce)

¬CS1(Mason,Bryce, {F6 ,F21}, {F1})

While this presents a challenge to the plaintiff, the argument for the plaintiff can be
defended if the distinctions between the cases can be downplayed. The undercutting
move of U1.1 is one way of distinguishing the two cases, and in CATO the abstract
factor hierarchy allows us to downplay distinctions. This downplaying can be done
in two ways, substitution or cancellation, corresponding to the two different kinds of
extra strength the curr may have. Accordingly we introduce two schemes that can be
used to provide undercutters of U1.1:

U1.1.1(curr , prec, f1, f2, p, d):

f1 ∈ currDfactors(curr, prec),
f2 ∈ dFactors(prec),

substitutes(f1, f2)

¬U1.1(cur , prec, p, d)

U1.1.2(curr , prec, f1, f2, p, d):

14



f1 ∈ currDfactors(curr, prec),
f2 ∈ pFactors(curr),

cancels(f1, f2)

¬U1.1(cur , prec, p, d)

The idea here is that as the undercutting factor in the curr has the same parent as a
factor in prec, we can substitute for the undercutting factor, where the point is that
the abstract factor can be seen to have been applied also in the prec; alternatively, the
undercutting factor in the curr is cancelled out by some other factor in curr, so that
the abstract factor does not apply. Instantiating U1.1.2 with our running example and
given that we previously determined that cancels(F15, F16), we can form the following
argument:

Mason(Bryce)A3:

F16 ∈ currDfactors(Mason,Bryce),
F15 ∈ pFactors(Mason),

cancels(F15 ,F16 )

¬U1.1(cur , prec, p, d)

We now turn to the argumentation scheme to establish the preference between two
sets of factors, required to justify the third premise of CS1.

CS2(cur , prec, p, d):

commonPfactors(curr , prec) = p,
commonDfactors(curr , prec) = d,

outcome(prec) = Plaintiff

preferred(p, d)

Note that CS2 establishes a preference between two particular sets. It might seem natu-
ral to add that from preferred(p, d) we should be able to derive preferred(p′, d) where
p′ ⊃ p and preferred(p, d′) where d′ ⊂ d, as in, for example [22]. This, however,
would be to go beyond CATO. Moreover it would arguably go against the spirit of
CATO-style reasoning, which insists that all claims about preferences are based on a
specific precedent. CATO always argues using a particular precedent, never with a set
of precedents. If the current case does in fact contain additional pro-plaintiff factors or
fewer pro-defendant factors, these are made use of in different arguments employing
the argumentation schemes CS3 and CS4 discussed below.

Instantiating CS2, we have an argument for the preference, as mentioned above:

Mason(Bryce)A4:

commonPfactors(Mason,Bryce) = {F6 ,F21})
commonDfactors(Mason,Bryce) = {F16})

outcome(Bryce) = Plaintiff

preferred({F6 ,F21}, {F16})

15



All of the premises of CS2 are taken from our database, or straightforward set op-
erations on such data and so represent ASPIC+ axioms which cannot be questioned. It
is, however, possible to both rebut and to undercut the argument.

R2.1(cur , prec, prec2 , p, d):

p ⊆ commonPfactors(curr , prec2 ),
d ⊆ commonDfactors(curr , prec2 ),

outcome(prec) = Defendant

¬preferred(p, d)

Attacks made using R2.1 offer counter examples in which the same comparison was
available in a case decided for the defendant, suggesting that the preference is opposite,
and so providing a rebuttal. We do not consider such rebuttals further in this paper, but
in arguing a case they would be subject to attacks using the schemes introduced in this
paper, just like CS2. The following scheme can be used to undercut CS2.

U2.1(curr , prec, p, d):

f ∈ precPfactors(curr , prec)

¬CS2(curr , prec, p, d)

Instantiating U2.1 with Mason and Bryce, we have two arguments, one for each factor
in precPfactors:

Mason(Bryce)A5:

F4 ∈ precPfactors(Mason,Bryce)

¬CS2(Mason,Bryce, {F6 ,F21}, {F1})

Mason(Bryce)A5’:

F18 ∈ precPfactors(Mason,Bryce)

¬CS2(Mason,Bryce, {F6 ,F21}, {F1})

U2.1 undercuts the argument by suggesting that it may have been the additional plain-
tiff factors available in the prec that tipped the balance, and so distinguishing the curr
and the prec. Like U1.1, U2.1 can be undercut if we can downplay the distinction.

U2.1.1(curr , prec, f1, f2, p, d):

f1 ∈ precPfactors(curr , prec),
f2 ∈ pFactors(curr),

substitutes(f1, f2)

¬U2.1(curr , prec, p, d)

U2.1.2(curr , prec, f1, f2, p, d):

16



f1 ∈ precPfactors(curr , prec),
f2 ∈ dFactors(curr),

cancels(f1, f2)

U2.1(curr , prec, p, d)

We instantiate U2.1.1, which undercuts U2.1:

Mason(Bryce)A6:

F4 ∈ precPfactors(Mason,Bryce),
F6 ∈ pFactors(Mason),

substitutes(F4 ,F6 )

¬U2.1(Mason,Bryce, {F6 ,F21}, {F1})

At this point we have: the main argument for the plaintiff based on a particular
prec, comprising an application of a preference and an argument for the preference;
undercutters of these two subarguments; and undercutters of some of these undercut-
ting arguments. We may still, however, have some strengths of the curr unused, and so
we can add some supplementary arguments.

CS3(curr , prec, f1, p, d):

commonPfactors(curr , prec) = p,
commonDfactors(curr , prec) = d,

preferred(p, d),
f1 ∈ currPfactors(curr , prec),

¬∃f2(f2 ∈ dFactors(curr) ∧ cancels(f2, f1)),
¬∃f3(f3 ∈ pFactors(prec) ∧ substitutes(f1, f3))

outcome(curr) = Plaintiff

CS4(curr , prec, f1, p, d):

commonPfactors(curr , prec) = p,
commonDfactors(curr , prec) = d,

preferred(p, d),
f1 ∈ precDfactors(curr , prec),

¬∃f2(f2 ∈ currPFactors(curr) ∧ cancels(f2, f1)),
¬∃f3(f3 ∈ dFactors(curr) ∧ substitutes(f1, f3))

outcome(curr) = Plaintiff

These arguments make use of the factors not used to substitute or cancel factors cited
to undercut the arguments for the plaintiff based on the prec. Thus CS3 points to
additional plaintiff factors in the curr that were not used to cancel or substitute for
factors otherwise used. CS4 does the same thing in terms of factors that made the
defendant’s case stronger in the prec. Note that both require the preferred(P, D) as a
premise, and so must use CS2 to establish this. This seems, from a logical point of view,
somewhat odd, since the premises of CS1 are a subset of CS3 and the conclusion is the

17



A 1

 A 4  

A 2A 3

A 5

A5’

A 6

Figure 2: Mason(Bryce) partial Argument Graph

same. Traditionally in work on computational argumentation, arguments are defined
so that the premises should be a minimal subset from which the conclusion may be
derived [9]. Yet these are presented as arguments in CATO, and so we need schemes
for them if we are to reconstruct CATO. Essentially these arguments, which appear in
CATO as the move emphasise strengths, are intended to have a kind of rhetorical force,
rather than a logical force. From a logical point of view, the case is already won, but
in order to stress how superior the plaintiff’s position is, his advocate adds that not
only has the preference been established, but there remains all this unused ammunition
which could have countered stronger arguments against the position. The idea seems
to be to reassure the judge deciding for the plaintiff that the decision is not a close one,
but quite clear and convincing.

3.5 Running Example Result
We have the following defeat relations between arguments, which are represented
in Figure 2, where we indicate that Mason (Bryce) A4 is a subargument of Mason
(Bryce) A1:

• defeat(Mason(Bryce)A2, Mason(Bryce)A1)

• defeat(Mason(Bryce)A3, Mason(Bryce)A2)

• defeat(Mason(Bryce)A5, Mason(Bryce)A4)

• defeat(Mason(Bryce)A5′, Mason(Bryce)A4)

• defeat(Mason(Bryce)A6, Mason(Bryce)A5)

Following [14] and the assumption in ASPIC+ that an attack on a subargument is
an attack on the argument, there is a unique extension, containing {Mason(Bryce)A6,
Mason(Bryce)A5′ and Mason(Bryce)A3}. In particular, Mason(Bryce)A1 does not
appear in any extension as its subargument is defeated by the unattacked Mason(Bryce)A5′.
While the cases have common factors, Bryce was decided in favour of the plaintiff, and
the preference for the decision holds, we have not succeeded in eliminating all sig-
nificant distinctions; in particular, we have not found a substitution for F18 . Were
we to have found such a substitution, then we would have a successful attack on
Mason(Bryce)A5′, in which case the extension would contain {Mason(Bryce)A6,
Mason(Bryce)A4, Mason(Bryce)A3, Mason(Bryce)A1}. The extension would not
contain Mason(Bryce)A2, Mason(Bryce)A5, or Mason(Bryce)A5′. Given such a

18



substitution, Bryce would have been a good precedent for Mason as informally dis-
cussed previously.

Though this might appear to be a negative result, we can transform it into a positive
result by finding an argument against Mason(Bryce)A5′, which requires that we substi-
tute or cancel F18 based on comparable factors in the factor hierarchy. We might argue
that F18 Identical-Products holds in both cases, but was too obvious to be explicitly
mentioned in Mason, and so was omitted from the initial analysis performed for CATO.
Alternatively, we could argue that F18 should be seen as providing too weak a factor
to distinguish the cases. As another possibility, we can argue that Mason(Bryce)A6
should rest on resolving the relative strength of F4 and F6 , if that becomes an issue.
In all three instances, we would need to argue about the factors themselves, which is
the subject of the next section.

3.6 Rationality postulates
To prove that our argumentation theory satisfies the rationality postulates of consistency
and strict closure, the following properties need to be proven ([21, 20]):

• Rs is closed under contraposition or transposition.

• Strict consequence is c-classical in that if S ` ϕ,¬ϕ, then any maximal subset
of S strictly implies the negation of the remaining element. (Here S ` ϕ means
that there exists a strict argument for ϕ with all premises taken from S.)

• AT is well-formed in that if ϕ is a contrary of ψ then ψ 6∈ Kn and ψ is not the
consequent of a strict rule.

• The argument ordering is reasonable as defined in [21, 20].

• The closure of Kn under strict rules is consistent.

The first three properties are immediate from the fact that L is a first-order language
and ` in our case corresponds to first-order consequence. Above we used an argument
ordering in which all strict-and-firm arguments are preferred over all other arguments
and all non-strict-and-firm arguments have equal strength: given this it is easy to show
that the argument ordering is reasonable. It remains to show that the closure of Kn

under strict rules is consistent. Since in our case L is a first-order language andRs and
` correspond to first-order consequence, this can be proven by specifying a first-order
model in which all our axioms are true.

Proposition 3.1 The closure ofKn under strict rules of the argumentation theory spec-
ified above is consistent.

Proof:
We construct a model and then verify that all elements of Kn are true in the model.

Then completeness of first-order logic implies the proposition. The model contains just
one factor, one precedent and one current case, where both cases share the factor as a
pro-plaintiff factor and both cases are won by the plaintiff8.

8Although this example is minimal it is not unrealistic. It would fit, for example, the representation of
Pierson v Post in [8].

19



For ease of notation, we equate below the various model elements with the language
elements that denote them, letting the context disambiguate. Capital I stands as usual
for the interpretation function of the language in the model.

• The sorts, relations and functions of the model are those corresponding to, re-
spectively, the sorts, predicates and function symbols of L.

• Individuals:

– Curr of sort curr and Prec of sort prec (recall that both are subsorts of the
sort case)

– Plaintiff and Defendant of sort parties

– F1 of sort factors

– ∅ and {F1} of sort sets

• Interpretation of predicates (those not listed are empty):

– I(pFactor) = {F1}
– I(outcome) = {Plaintiff }
– I(hasPfactor) = {(Curr ,F1 ), (Prec,F1 )}
– I(hasFactor) = {(Curr ,F1 ), (Prec,F1 )}
– The interpretation of ⊆ and ∈ is obvious and left implicit.

• Interpretation of functions:

– Factors(Curr) = {F1}
– pFactors(Curr) = {F1}
– Factors(Prec) = {F1}
– pFactors(Prec) = {F1}
– dFactors(Curr) = ∅
– dFactors(Prec) = ∅
– commonPfactors(Curr ,Prec) = {F1}
– commonDfactors(Curr ,Prec) = ∅
– currPfactors(Curr ,Prec) = ∅
– currDfactors(Curr ,Prec) = ∅
– precPfactors(Curr ,Prec) = ∅
– precDfactors(Curr ,Prec) = ∅
– outcome(Curr) = Plaintiff

– outcome(Prec) = Plaintiff

– The interpretation of {}, ∪, ∩ and \ is obvious and left implicit.

We now verify that all axioms are true in this model.

20



• Axiom 1 is clearly true for the following three cases: I(s) = I(s′) = ∅; I(s) =
I(s′) = {F1}; I(s) = ∅ while I(s′) = {F1}. Since these are all cases that
can arise, Axiom 1 is universally true. In the same way it is easy to verify that
Axioms 2 - 4 are true.

• For axiom 5 note first that this axiom is in fact a scheme for a set of axioms and
that in our case we only need to consider the version with two variables s and x1.
Then two cases have to be considered, in both of which we have I(x1) = F1 .
The first case is when I(s) = ∅. Then the left-hand side of the equivalence
equals to ∅ = {F1}, which is false in the model. In this case the right-hand
side reduces to F1 ∈ ∅, which is also false in the model, so the equivalence is
true. The second case is when if I(s) = {F1}. Then the left-hand side of the
equivalence equals to {F1} = {F1}, which is true in the model. In this case the
right-hand side reduces to F1 ∈ {F1}, which is also true in the model, so the
equivalence is again true.

• Axiom 6 is true since I(dFactor) = ∅.

• Axiom 7 is true since there is only one individual of sort factor, namely F1 ,
and we have that I(pFactor) = {F1} and I(hasPfactor) = I(hasFactor) =
{(Curr ,F1 ), (Prec,F1 )}. Likewise, Axiom 8 is true since I(dFactor) =
I(hasPfactor) = ∅.

• Axiom 9 is true since our model contains only one factor and two cases. For
the first case we have Factors(Curr) = {F1} so F1 ∈ Factors(Curr) and
we have (Curr ,F1 ) ∈ I(hasFactor). The second case (with Prec) is identical.
So both sides of the equivalence are true for all f and case. Axiom 10 can be
verified in the same way. Axiom 11 is true since the model has no pro-defendant
factors.

• For axioms 12-17 note that all three variables can be instantiated in only
one way. Then axiom 12 is true since commonPfactors(Curr ,Prec) =
{F1}, pFactors(Curr) = pFactors(Prec) = {F1} and {F1} ∩ {F1} =
{F1}. Similarly, axiom 12 is true since commonDfactors(Curr ,Prec) = ∅,
dFactors(Curr) = dFactors(Prec) = ∅ and ∅ ∩ ∅ = ∅. Axiom 14
is true since currPfactors(Curr ,Prec) = ∅, pFactors(Curr) = {F1},
commonPfactors(Curr ,Prec) = {F1} and {F1} \ {F1} = ∅. Axioms 15, 16
and 17 can be verified in the same way.

• Axioms 18-20 are true since the interpretations of the predicates ancestor, par-
entFactor, substitutes and cancels are all empty.

• Finally, the domain-closure and unique-names axioms must be verified. The
relevant domain closure axioms are:

– ∀case, factor .hasFactor(case, factor) ≡
((case = Curr ∧ factor = F1 ) ∨ (case = Prec ∧ factor = F1 ))

– ∀case.case = Curr ∨ case = Prec

21



– Curr 6= Prec

– ∀factor .factor = F1

It is straightforward to show that these are true in the model.

Corollary 3.2 The Dung-style argumentation framework corresponding to the argu-
mentation theory defined above satisfies all four rationality postulates as formulated in
[21].

4 Beyond Factor-Based Reasoning
Thus far we have considered reasoning from cases represented as sets of factors to
their outcomes. This has been the focus of much of the work on cased-based reasoning
in AI and Law, and the understanding of this aspect of reasoning with cases is quite
mature. This has enabled us to propose a set of argumentation schemes to capture this
reasoning with some confidence, which we believe can serve as a stable, sound and
useful basis for determining the nature and properties of these aspects of reasoning with
legal cases. There is, however, a lot more to reasoning with legal cases than this: cases
do not arrive neatly packaged as bundles of factors, but as rather messy collections of
facts or, even worse, as dossiers of conflicting evidence on the basis of which the facts
must be established. Unfortunately there is as yet no generally accepted model of how
the cases should be analysed into factors that we can use as we used CATO above, and
so here we can do no more than provide pointers as to the way forward. Accordingly
in this section we will discuss some of the additional aspects of reasoning with cases
which we believe need to be further investigated.

Once the facts of a case have been established - and this is rarely straightforward
since the move from evidence to facts is often itself the subject of debate - legal reason-
ing can be seen, following Ross [25] and more recently [19], as a two stage process,
first from the established facts to intermediate predicates, and then from these inter-
mediate predicates to legal consequences. CATO has been explicitly identified with
the second of these steps (e.g. [11]). Finding these intermediate predicates is by no
means simple, and different intermediate concepts require different strategies. Some
can be given by listing facts, which supply sufficient, and possibly collectively neces-
sary, conditions while others require consideration of a range of facts, none of which
supply sufficient or necessary conditions. Moreover, as argued in [6], which factors
hold of a case or which side is favoured by a particular fact may be the whole point. It
is even sometimes necessary to argue about what factors there are. To tell more of the
story of reasoning with cases, therefore, it is necessary to consider the step from facts
to factors. We will first say something about the use of dimensions rather than factors,
and then briefly consider several issues:

• reasoning about what factors hold in a case relative to the facts of a case;

• reasoning about exclusory relations between factors;

• reasoning about factors along dimensions; and

22



• reasoning about factors and values.

Our preliminary attempts to provide ASPIC+ formalisations of the information and
schemes related to these issues can be found in [23].

4.1 Dimensions in Legal Case-Based Reasoning
Dimensions, rather than discrete factors, were used in Rissland and Ashley’s HYPO
[2], the system from which CATO was developed. Since factors as in CATO predom-
inate in the literature [8, 22, 7], some background discussion on and justification for
dimensions is warranted. Dimensions have an extent and values along the extent. In
contrast to factors, which are either simply present or absent, a dimension, if present,
may favour the plaintiff or the defendant to a particular degree. Dimensions encom-
pass a range of values, with the extreme pro-plaintiff value at one end and the extreme
pro-defendant value at the other. Thus, at some initially undetermined point along the
range the dimension will cease to favour the plaintiff and start to favour the defendant.
Dimensions and factors are, however, related.

In one relationship, factors are intervals along the (continuous) dimension and or-
dered with respect to one another; in other words as in [7], factors can be taken as
the values positioned along a dimension9. For example, one dimension in HYPO is
Secrets-Voluntarily-Disclosed, and ranges from 0 to 10,000,000 disclosees, 0 being the
pro-plaintiff direction. In CATO, this dimension is expressed as several factors which
can be seen as having different degrees of strength. There is a pro-defendant factor
Secrets-Disclosed-Outsiders, which is present if any disclosure at all had been made,
effectively stating that the dimension favours the defendant rather than the plaintiff if
a single person is disclosed to, and after that no further force is given to the defendant
if there are a million disclosures. In this respect it is a relatively weak factor for the
defendant. In addition, there is a Disclosure-In-Public-Forum factor, which is intended
to cover extensive non-specific disclosure. This is a stronger factor for the defendant. If
the latter, stronger, factor applies, then the former does not. Thus, we must reason not
only with respect to the factors that hold of a case, but also with the relative strength of
the factors one to the other. A number of HYPO dimensions are Boolean and counted
as present only for one end of the range (e.g. Common-Employee-Sole-Developer), and
these map straightforwardly to a single CATO factor.

Some other dimensions found in HYPO and used as the basis for CATO factors are
not related by a strength ordering relative to some measurable parameter. Most inter-
esting is the HYPO dimension Security-Measures-Adopted, which has a range (from
pro-defendant to pro-plaintiff):

• Minimal-Measures, Access-To-Premises-Controlled, Restrictions-On-Entry-By-
Visitors, Restrictions-On-Entry-By-Employees, Product-Marked-Confidential,
Employee-Trade-Secrets-Program-Exists, Restrictions-On-Hardcopy-Release,
Employee-Non-Disclosure-Agreements.

Whereas in HYPO, the fact that, for example, Employee-Non-Disclosure-Agreements
favours the plaintiff more than Restrictions-On-Entry-By-Employees, is indicated by

9This is related to a general phenomenon in cognition of categorial perception [18].

23



its position of the dimension, in CATO this is indicated by the presence of several
factors. If in HYPO Employee-Non-Disclosure-Agreements is satisfied, CATO would
have three factor present together: all of Security-Measures, Outsider-Disclosures-
Restricted, and Agreed-Not-To-Disclose. If, however, in HYPO only Restrictions-On-
Entry-By-Employees was reached, in CATO there would be just one factor, Security-
Measures. That is to say, as we move along the HYPO dimension we collect more and
more CATO factors. The increased degree of support is thus given by the cumulative
effect of several factors, rather than distinguishing the difference of degree of support
given by different positions on the dimension. The connection between the factors is,
however, lost.

Although factors dominated thinking about this style of reasoning in AI and Law
for some time (e.g. [8, 22, 7]), the need for dimensions was argued for in [6]. Chief
amongst the reasons was that the key issue of the case may be about where along the
dimension a factor falls and, having situated it, whether the factor favours the plaintiff
or defendant. The classic Pierson v Post is an example: the dispute turns on when
pursuit can be counted as justifying possession, for which different degrees of progress
towards bodily possession need to be recognised10. Contrast this with the representa-
tion based on factors in, for example [8], where the case is assigned the factor Caught,
and Post is then left without an argument11.

We can further illustrate the issues using Pierson v Post as basis for further reason-
ing about the factors and schemes that apply in cases. We will take Post as the plaintiff,
as in the original action. In [8], the only factors present are Not-Caught and Open-
Land, both of which are pro-defendant. Thus any case found for the defendant where
the incident had taken place on open land and the plaintiff had not caught the animal
would serve as a precedent; the plaintiff had nothing on which to base the plaintiff’s
case, all additional factors in the chosen precedent strengthening the defendant’s case.
In fact the argument put forward for the plaintiff was that Post was sufficiently close to,
and sufficiently certain of, taking bodily possession of the fox that it should be counted
as caught.

Essentially this is an argument against the presence of a factor favouring the de-
fendant, and an argument in favour of the presence of a factor favouring the plaintiff.
What this means in ASPIC+ terms is that the status of the factors attributed to the case
cease to be axioms and become instead premises requiring justification. What form
might this justification take?

In Pierson v Post, the defendant’s argument was in terms of particular authorities12.
Tompkins, arguing for the defendant, cites Justinian, Fleca, and Bracton, all of whom
seem to say that actual bodily possession is required, and Puttendorf and Barbeyrac,
who seem to allow some latitude, but still require mortal wounding. Livingston, argu-
ing for the plaintiff, claims that certain capture would also be enough for Barbeyrac, but
also says that it should be so found in this case for the teleological purpose of encour-

10In brief the facts were these. Post was chasing a fox with horse and hounds and had cornered it when
Pierson intervened and killed it with a fence pole. Post sued Pierson for taking his fox. On appeal, Pierson
won on the grounds that only by mortally wounding or seizing the animal can one acquire possession of it,
not simply by pursuing it.

11For a more recent attempt to represent Pierson v Post with factors see [5].
12For a detailed reconstruction of the arguments in this case see [16].

24



aging the destruction of vermin. Neither of these lines of argument are in themselves
case-based or reasoning on the basis of the relationship of facts and factors, but make
use of generic argumentation schemes such as Argument from Authority and Sufficient
Condition Scheme for Practical Reasoning found in works such as [27].

4.2 Reasoning from Facts to Factors
Suppose an undecided case concerning capturing a wild animal is being argued where
the plaintiff claims that the animal was caught on the basis of hot pursuit and inevitable
capture. Moreover, suppose we take Pierson v Post as a precedent. In that case the
argument that the plaintiff should be counted as having caught the animal was put for-
ward but not sustained. Rather the precedent establishes that the pro-defendant factor
Not-Caught applies. But to argue that the pursuit should count as possession, even
unsuccessfully, requires that cases are not only represented in terms of factors (e.g.
Not-Caught) but also in terms of the underlying facts which, in effect, support the fac-
tor assignment (e.g. Hot-Pursuit and Inevitable-Capture). In addition, it indicates that
we must have available ways to argue for relationships between case facts and fac-
tors; for example, that Pierson v Post can be seen as establishing that Hot-Pursuit and
Inevitable-Capture do not imply Caught, despite arguments that they should.

In HYPO there are some procedures that determine whether a dimension applies
in terms of facts stored about the case, in effect, providing schemes to reason about
the factor category in the case. These schemes are not provided with any justification
and no source is given, but are simply hard-coded into the dimension frames. To make
this step of the reasoning more accessible, we might identify a set of argumentation
schemes so that the relation of factors to facts can be explicitly discussed.

4.3 Reasoning about Factor Incompatibility
In section 3.4, we provided rules for arguing about substituting or cancelling factors in
relation to the factor hierarchy. There is, however, another way to reason about factors,
done in CATO by the analyst rather than the system. In CATO, when analysing cases
the analyst is required to respect the fact that some pairs of factors are incompatible, so
that the presence of one factor in a case provides an argument against the presence of
another factor in that case. This is obvious in the case of clearly dichotomous factors
such as Caught and Not-Caught, but it is much more widespread than this in CATO. In
[1] each factor has a textual explanation of when it does and does not apply. Often the
latter includes circumstances where some other factor does apply. In [1] we have:

F20 Info-Known-To-Competitors(d)
Description: Plaintiff’s information was known to competitors.

This factor shows that plaintiff’s information was known in the industry or
available from sources outside plaintiff’s business.

The factor applies if: The information plaintiff claims as its trade secret
is general knowledge in the industry or trade.

25



The factor does not apply if: Competitor’s knowledge of plaintiff’s infor-
mation results solely from disclosures made by plaintiff. (In this situation,
F10 applies.) Or if the information could be compiled from publicly avail-
able sources, but there was no evidence that competitors had actually done
so. (In this situation, F24 applies.)

F10 is Secrets-Disclosed-Outsiders and F24 is Info-Obtainable-Elsewhere. Thus F10
and F24 are incompatible with F20 and with one another.

If we could make this aspect of the reasoning explicit, using additional predicates
to represent which factors exclude one another and additional schemes to enable argu-
ments for and against the presence of factors based on this information, another step in
reasoning with legal cases could potentially be transferred from human analyst to the
system, and made available for discussion within the system, rather than be necessarily
taken as a given.

4.4 Reasoning along Dimensions
In section 4.1, we recognised that factors may favour their party to different extents. In
light of this, we might wish to reconsider our notions of cancellation and substitution.
Arguments based on substitution and cancellation were used to undercut arguments
distinguishing cases. Given that undercutters always defeat the arguments they attack,
these are powerful arguments. But suppose the factors in question were F20 and F24 ,
as defined above. It is clear from the description that F20 is intended to be more pro-
defendant than F24 , for F20 represents an actual rather than a merely possible state
of affairs. Thus if we have F24 in a curr and F20 in a prec, there is no problem in
substitution: when considering the two under the common abstract factor the plaintiff’s
case is stronger, because the factor for the defendant is weaker in the curr. But if
plaintiff attempts to argue that F24 in a prec substitutes for F20 in a curr, undercutting
an instance of U1.1, the issue is less clear. The defendant can at least argue that F24 is
not strong enough to be substituted for F20 . This has been handled in different ways in
different applications: CATO indicated different degrees of influence by distinguishing
thin and fat links in the factor hierarchy. IBP [10], which developed from CATO,
introduced the idea of knock-out factors, which could be neither substituted for nor
cancelled - indeed were entirely decisive with regards to a particular issue.

The most quantitative approach can be found in Chorley’s AGATHA [13]. AGATHA
constructs theories as defined in [7] by heuristic search over a search space of theories
of case law derived from CATO cases constructed using the operators defined in [7].
To support heuristic search, the theories need to assessed using an evaluation function.
Part of this evaluation function in AGATHA required every factor to be assigned a
weight according to the importance of its dimension and its position on that dimension.
This meant that cases could be assigned a score reflecting the weighted sum of the
factors present in them. Although good performance was achieved by AGATHA, the
assignment of the weights was pragmatic rather than based on any principled analysis.

We believe that a representation making explicit the information that is required
and the schemes that can be used to argue about the comparative strength of factors
would help to clarify how we should resolve these difficult issues.

26



4.5 Reasoning about Value Preferences
In work such as [7] the body of precedents used in systems such as CATO are taken as
the basis for constructing a theory of the relevant domain intended not only to record
preferences, but also to explain them. Their approach, following [8], was to link factors
with social values, the idea being that a factor favoured a particular party because
deciding for that party when that factor was present in a case would promote that value.
Preferences between cases can then be expressed as preferences between sets of values.
The process then becomes one of arguing for value preferences on the basis of the
precedents and applying these preferences to new cases. This step of the reasoning
could also be captured as a set of argumentation schemes, which we intend to do as
future work.

5 Discussion
By articulating the process of reasoning with precedent cases as sets of argumentation
schemes and their critical questions, we can see it as a sequence of stages in a dialogue
between Plaintiff and Defendant, which are as follows, where every option is available:

1. P: Assert that the decision should be in favour of the plaintiff since factors favour-
ing the plaintiff are preferred to factors favouring the defendant;

(a) D: Cite additional points in favour of the defendant

(b) P: Substitute for, dismiss, or cancel these additional strengths

(c) D: Dispute strength of substituting or cancelling factors

2. P: Identify a precedent case that justifies a preference applicable to the current
case;

(a) D: Cite additional points favouring the plaintiff in the precedent

(b) P: Substitute for, dismiss, or cancel these additional strengths

(c) D: Dispute strength of substituting or cancelling factors

(d) D: Identify a precedent case that justifies a preference for the defendant
applicable to the current case

i. P: Cite additional points in favouring the defendant in the precedent:
ii. D: Substitute for, dismiss, or cancel these additional strengths

iii. P: Dispute strength of substituting or cancelling factors

3. D: Dispute which factors are present in the current case

(a) P: Defend original factors

Different systems will support more or fewer of these stages. At one extreme we
have a neural network style system such as that described in [3] in which the system acts
as a black box taking factors (or facts) as an input and expressing a preference based on
its internalisation of the set of precedents. Such a system supports only step 1. CATO,

27



from which our discussion began, supports the identification of the preference in 2, the
distinguishing moves in 1a and 2a (although it does not discriminate between them),
and the counter example move of 2d. CATO also supports the downplaying of 1b and
2b, but does not distinguish between substitution and cancellation. HYPO links facts
and dimensions, and so can explain 3, but not support argument about it. Hypothetical
arguments in HYPO were intended to explore the issues raised in 1c, 2c, and 2d(iii), but
this aspect of HYPO was never fully developed in [2]. These considerations are also
used internally in the most advanced version of Chorley’s AGATHA [13], although the
resulting arguments are not transparent to the user.

Representation in terms of ASPIC+ identifies the underlying knowledge base re-
quired by each stage. Given such knowledge in the KB, the specification of the argu-
mentation schemes in this paper would permit straightforward implementation, using
a defeasible reasoner to instantiate the schemes from the KB, identifying the attack re-
lations, and then evaluating them as in a Dungian argumentation framework. The first
of these steps, identifying the arguments, is achieved for stages 1, 1a, 1b, 2, 2a and 2b,
using Prolog as the defeasible reasoner in a program described in [5].

Another benefit from representing these arguments in terms of ASPIC+ is that we
can regard cases described under factors as but one source of arguments, as in [17].
At the top level, stage 1, there may be arguments for the defendant rebutting our
case-based argument for the plaintiff and these arguments may be based on cases, au-
thority, purpose, or whatever other kind of argument our opponent wishes to advance.
Similarly, the premises of our arguments often require other, generic, argumentation
schemes, such as authority and purpose, to justify them. By providing a framework
in which all kinds of argument can be represented equally, we can readily provide a
framework in which reasoning of many different kinds can be deployed. Note that
this is done without recasting the various distinctive case-based aspects of CATO style
arguments uniformly as ordinary rules, as was the case in e.g. [22].

A final important insight is gained by recognising that the above indicates at which
points choice is possible, and at which points the judgement is constrained. Let us
relate this to the steps above. At step 1 we may get arguments, constructed with a
variety of schemes, for and against deciding for the plaintiff, which conflict through
rebuttal and so can be decided through preferences. The attack of 1a, however, cannot
be rejected on the grounds of preference, but can only be defeated by 1b, which in turn
can only be defeated by an argument from 1c. Arguments in stage 1c itself, however,
may be resolved on grounds of preference. Similarly although the rebuttals arising at 2d
may be decided by preferences, 2a can only be defended by 2b, and 2b by 2c, at which
stage preferences may be used to resolve competing arguments. When considering 2d,
only at 2d(iii) do preferences play a role. Thus although we may think of case-based
reasoning as involving a choice between the plaintiff and the defendant arguments, in
fact, choice operates at a number of quite specific, fine-grained points in the debate.

6 Concluding Remarks
In this paper, we have clarified a range of aspects of legal case-based reasoning with
factors using formal defeasible arguments modelled within the ASPIC+ framework.

28



The choice of ASPIC+ has made it possible to prove consistency and closure results for
our formalisation by exploiting the metatheory of ASPIC+. Our formalisation has also
illustrated the potential of the ASPIC+ framework for formalising reasoning with ar-
gumentation schemes. The schemes reconstructing CATO are proposed as a definitive
way of capturing the reasoning from factors to decision. In Section 4 we have discussed
some issues relating to further aspects of legal reasoning with cases that have received
rather less attention, and about which no consensus as yet exists. In future work, we
will look to further extend our approach, by providing formally expressed schemes for
these additional aspects, and also for reasoning to and with value preferences as found
in [7].

7 Acknowledgement
This work was partially supported by the European IMPACT Project (247228). The
views expressed are, however, those of one or more of the authors, and should not be
taken as necessarily representative of the project.

References
[1] V. Aleven. Teaching case-based argumentation through a model and examples.

PhD thesis, University of Pittsburgh, Pittsburgh, PA, USA, 1997.

[2] K. Ashley. Modelling Legal Argument: Reasoning with Cases and Hypotheticals.
Bradford Books/MIT Press, Cambridge, MA, 1990.

[3] T. Bench-Capon. Neural networks and open texture. In Proceedings of the Fourth
International Conference on Artificial Intelligence and Law (ICAIL 1993), pages
292–297, Amsterdam, 1993. ACM.

[4] T. Bench-Capon. Arguing with cases. In A. Oskamp, R. D. Mulder, C. van
Noortwijk, C. Grutters, K. Ashley, T. Bench-Capon, and T. Gordon, editors, Pro-
ceedings of the Twentieth Annual Conference on Legal Knowledge and Informa-
tion Systems (JURIX 1997), pages 85–100, Amsterdam, 1997. The Foundation
for Legal Knowledge Systems.

[5] T. Bench-Capon. Representing Popov v. Hayashi with dimensions and factors.
Artificial Intelligence and Law, 20(1):15–35, 2012.

[6] T. Bench-Capon and E. Rissland. Back to the future: dimensions revisited. In
B. Verheij, A. Lodder, R. Loui, and A. Muntjewerff, editors, Proceedings of the
Twentieth Annual Conference on Legal Knowledge and Information Systems (JU-
RIX 2001), pages 41–52, Amsterdam, 2001. IOS Press.

[7] T. Bench-Capon and G. Sartor. A model of legal reasoning with cases incorpo-
rating theories and values. Artificial Intelligence, 150(1-2):97–143, 2003.

29



[8] D. Berman and C. Hafner. Representing teleological structure in case-based legal
reasoning: the missing link. In Proceedings of the Fourth International Confer-
ence on Artificial Intelligence and Law (ICAIL 1993), pages 50–59, Amsterdam,
1993. ACM.

[9] P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial
Intelligence, 128(1-2):203–235, 2001.

[10] S. Brüninghaus and K. Ashley. Predicting outcomes of case-based legal argu-
ments. In Proceedings of the Ninth International Conference on Artificial Intelli-
gence and Law (ICAIL 2003), pages 233–242, Edinburgh, 2003. ACM.

[11] S. Brüninghaus and K. Ashley. A predictive role for intermediate legal concepts.
In D. Bourcier, editor, Proceedings of the Twentieth Annual Conference on Le-
gal Knowledge and Information Systems (JURIX 2003), pages 153–162, Utrecht,
2003. IOS Press.

[12] M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms.
Artificial Intelligence, 171:286–310, 2007.

[13] A. Chorley and T. Bench-Capon. AGATHA: Using heuristic search to automate
the construction of case law theories. Artificial Intelligence and Law, 13(1):9–51,
2005.

[14] P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–358, 1995.

[15] T. Gordon, H. Prakken, and D. Walton. The Carneades model of argument and
burden of proof. Artificial Intelligence, 171:875–896, 2007.

[16] T. Gordon and D. Walton. Pierson v. Post revisited - a reconstruction using the
Carneades argumentation framework. In P. Dunne and T. Bench-Capon, editors,
Proceedings of the First International Conference on Computational Models of
Argumentation (COMMA 2006), pages 208–219. IOS Press, 2006.

[17] T. Gordon and D. Walton. Legal reasoning with argumentation schemes. In
Proceedings of the Twelfth International Conference on Artificial Intelligence and
Law (ICAIL 2009), pages 137–146, Barcelona, 2009. ACM.

[18] S. Harnad. Categorical perception. In Encyclopedia of Cognitive Science. Nature
Publishing Group: Macmillan, December 2003.

[19] L. Lindahl and J. Odelstad. Open and closed intermediaries in normative systems.
In T. van Engers, editor, Proceedings of the Twentieth Annual Conference on
Legal Knowledge and Information Systems (JURIX 2006), pages 91–99, Paris,
2006. IOS Press.

[20] S. Modgil and H. Prakken. A general account of argumentation with preferences.
Artificial Intelligence, 195:361–397, 2013.

30



[21] H. Prakken. An abstract framework for argumentation with structured arguments.
Argument and Computation, 1(2):93–124, 2010.

[22] H. Prakken and G. Sartor. Modelling reasoning with precedents in a formal dia-
logue game. Artificial Intelligence and Law, 6(2-4):231–287, 1998.

[23] H. Prakken, A. Wyner, T. Bench-Capon, and K. Atkinson. A formalisation of
argument schemes for case-based reasoning in ASPIC+. Technical Report UU-
CS-2013-002, Department of Information and Computing Sciences, Utrecht Uni-
versity, Utrecht, 2013.

[24] E. Rissland, D. Skalak, and T. Friedman. BankXX: Supporting legal arguments
through heuristic retrieval. Artificial Intelligence and Law, 4(1):1–71, 1996.

[25] A. Ross. Tu-tu. Harvard Law Review, 70:812–825, 1961.

[26] D. Skalak and E. Rissland. Arguments and cases: an inevitable intertwining.
Artificial Intelligence and Law, 1(1):3–44, 1992.

[27] D. Walton. Argumentation Schemes for Presumptive Reasoning. Lawrence Erl-
baum Associates, Mahwah, NJ, USA, 1996.

[28] A. Wyner and T. Bench-Capon. Argument schemes for legal case-based reason-
ing. In A. Lodder and L. Mommers, editors, Proceedings of the Twentieth Annual
Conference on Legal Knowledge and Information Systems (JURIX 2007), pages
139–149, Leiden, 2007. IOS Press.

[29] A. Wyner, T. Bench-Capon, and K. Atkinson. Towards formalising argumentation
about legal cases. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Law (ICAIL 2011), pages 1–10, Pittsburgh, 2011.
ACM.

31


