
-- --

A TESSERAL APPROACH TO N-DIMENSIONAL
SPATIAL REASONING

F.P.Coenen, B. Beattie, T.J.M.Bench-Capon, B.M.Diaz and M.J.R.Shave

Department of Computer Science, The University of Liverpool,
Chadwick Building, P.O. Box 147, Liverpool L69 3BX, England.

Tel: 0151 794 3698 Fax: 0151 794 3715 email: frans@csc.liv.ac.uk

Abstract. A qualitative multi-dimensional spatial reasoning system is described
founded on a tesseral representation of space. Spatial problems are presented to
this system in the form of a script describing the nature of the N-dimensional
space (the object space), the spatial objects of interest and the relations that are
desired to exist between those objects. Objects are defined in terms of classes
and instances of classes with locations and shapes defined as sets of tesseral
addresses. Relations are expressed in terms of topological set relations which
may be quantified through the application of tesseral offsets. Solutions to spatial
problems are generated using a heuristically guided constraint satisfaction mech-
anism. The heuristics are directed at limiting the growth of the search tree
through a constraint selection strategy applied at each stage of the satisfaction
process. The general advantages of the system are that it is conceptually simple,
computationally effective and universally applicable to N-dimensional problem
solving.

1. Introduction

An N-dimensional spatial reasoning system is described that combines a reasoning
mechanism, founded on set relations, with quantitative input and output data is
described. The approach is designed for incorporation into systems which use raster
encoded data, particularly Geographic Information Systems (GIS), so that a spatio-
temporal reasoning capability can be attached to those systems. Particular GIS end-
user applications that have been investigated by the authors include optimal site loca-
tion scenarios, noise pollution investigations and nautical chart interaction. Other end
applications that have been considered include N-dimensional scheduling and
timetabling scenarios, well known AI "puzzles" such as the 8-queens problem and
multi-dimensional shape fitting tasks. The last named are used to illustrate this paper.

The system is founded on a tesseral representation of space and uses a heuristically
guided constraint satisfaction mechanism to resolve spatial problems defined in the
form of a script. The heuristics are directed at the effective selection of constraints so
as to minimise the growth of the solution tree and the pursuit of unsuccessful
branches within that tree. Scripts comprise object definitions (in terms of classes and
instances of such classes) and constraint definitions describing the relations that are
desired to exist between objects. Object locations and shapes are defined in terms of
sets of tesseral addresses and may be generated through interaction with existing spa-
tial data formats. Output can be in a number of file or graphical formats as directed by
the user.



-- --

2. Representation

Tesseral representations are well established and a substantial literature exists con-
cerning the nature of such representations (for example [3] and [4]). Broadly such
representations are founded on ideas concerning the hierarchical subdivision of N-
dimensional space into isohedral sub-spaces down to a predefined resolution. The
resulting sub-spaces are then referenced using some addressing system which has the
effect of linearising the tessellated space. Such systems can have an arithmetic associ-
ated with them which provides translation through the space, and rotation of objects
within that space. A 2-D illustration of the tesseral representation used to support the
reasoning mechanism is given in Figure 1. Note that addresses increase in steps of
256 in the Y direction. This base has been chosen for the benefit of this document, but
any other base could equally well have been selected. Objects of interest are consid-
ered to exist only in the positive quadrant of the representation, referred to as the
object space. Howev er the remaining quadrants need to be referenced to support the
arithmetic associated with the representation.

0 1 2 3 4

256 257 258 259 260

512 513 514 515 516

768 769 770 771 772

1024 1025 1026 1027 1028

-4 -3 -2 -1

252 253 254 255

508 509 510 511

764 765 766 767

1020 1021 1022 1023

-1028-1027-1026-1025

-772 -771 -770 -769

-516 -515 -514 -513

-260 -259 -258 -257

-1024-1023-1022-1021-1020

-768 -767 -765 -764 -763

-512 -511 -510 -509 -508

-256 -255 -254 -253 -252

+X-X

+Y

-Y

Figure 1: Referencing for 2-D space

The distinctive features of this representation, compared with other tesseral represen-
tations are:



-- --

1) The resulting linearisation is intuitively obvious and predictable (i.e. given any
sub-space the addresses of all the physically adjacent sub-spaces can always be
predicted). This is not the case with most other tessellations which follow a "Z"
linearisation often referred to as the Morton sequence ([7]).

2) Translation and rotation algorithms are implemented using integer arithmetic.
For example (with reference to figure 1) to move one tile in a "north-easterly"
direction we add the address 257 to a "current" address, regardless of the physi-
cal location of that current address (to move to (say) the north-west we would
add 255 and so on). Rotation is implemented using the standard approach taken
from complex number theory. Consequently more efficient manipulation of
objects is achieved than that supported by traditional tesseral arithmetics which,
to be effective, required specialised tesseral processors.

The principal benefit of the linearisation (a feature of all tesseral addressing systems)
is that N-dimensional space can be manipulated in one dimensional terms. Conse-
quently the spatial reasoning technique described is universally applicable regardless
of the number of dimensions under consideration. A further feature of tesseral repre-
sentations is runline encoding which allows sequences of addresses to be stored in
terms of start and end addresses. Knowledge of the relative location of runline
encoded sequences within the linearisation then provides for effective comparison of
sequences of addresses. For example to determine whether one sequence of addresses
stands in some relation to another sequence of addresses it is not necessary to com-
pare each address in one with each address in the other. Similarly when adding (or
subtracting) one sequence of addresses to another it is only necessary to add (or sub-
tract) the start and end addresses.

Cartesian representations, when compared to tesseral approaches, display the follow-
ing general disadvantages:

1) Addresses (X-Y-Z-T coordinate tuples) are not uniform across the dimensions, the
number of coordinates required to address a point increases with the number of
dimensions under consideration.

2) Translation through the space can only be achieved by incrementing and decre-
menting the individual coordinates making up an address.

3) It is computationally expensive to compare and manipulate addresses.

4) The computer storage requirements are higher.

The representation can be extended to 3-D by applying multiples of a further base to
the set of 2-D addresses. In this document we will use a base of 65536 (2562) to
define 3-D space. The representation can be extended in a similar manner to encom-
pass further higher dimensions.

3. Object description

Using the above representation the shape and/or location of quantitatively defined
spatial objects can be described in terms of a set of tesseral addresses. Using the sys-
tem scripting language such objects are defined in terms of classes and instances of
such classes using a syntax of the following form (single quotes surround literals and
punctuation):



-- --

<CLASS> : ‘class(’ CLASSNAME ‘,’ OBJECTTYPE ‘).’

| ‘class(’ CLASSNAME ‘,’ OBJECTTYPE, SHAPE ‘).’

;

<INSTANCE> : ‘instance(’ INSTANCENAME ‘,’ CLASSNAME ‘).’

| ‘instance(’ INSTANCENAME ‘,’ CLASSNAME ‘,’

LOCATIONSPACE ‘).’

| ‘instance(’ INSTANCENAME ‘,’ CLASSNAME ‘,’

MODIFIERS ‘).’

| ‘instance(’ INSTANCENAME ‘,’ CLASSNAME ‘,’

LOCATIONSPACE ‘,’ MODIFIERS ‘).’

;

A number of types of object are recognised:

1) Fixed objects: Objects which have a known location and consequently a known
shape.

2) Free objects: Objects that have a known shape but no specific location other
than a general location space within which the object is known to exist.

3) Shapeless objects: Objects that have no known shape or location (other than a
general location space within which the object is known to exist).

In the case of a fixed object there is no requirement to define its shape as this will be
given by its location. In the case of a free object, where the shape definition is omit-
ted, the shape is assumed to comprise a single address. Where a location definition is
omitted this is assumed, by default, to extend to the entire object space. The nature of
locations (and shapes) can be augmented by the addition of "modifiers", for example
we may include a rotate modifier indicating that the shape may be rotated.

4. Spatial relations

Using the proposed tesseral representations, relationships (constraints) between
objects can be expressed using standard set relations (e.g. = - Equals, = - notEquals, ∩
-Intersection, ∩ - not intersection, ⊆ - Subset, etc.). With respect to the scripting lan-
guage a relationship between two spatial objects can is expressed as follows:

<CONSTRAINT> : ‘constraint(’ OPERAND1, OPERATOR, OPERAND2 ‘).’

| ‘constraint(’ OPERAND, OPERATOR ‘).’

;

where the operands are single instances, lists of instances or entire classes of
instances. Where a constraint comprises only one operand this is a shorthand for
expressing a set of constraints where the operator links all possible instance pairs
defined by the operand (in this case, of course, the operand must describe at least two
instances). Using the above format standard topological relations can be expressed. To
increase the expressiveness of the range of set operators available offsets may be
applied to locations associated with either operand so that the existing set of relations



-- --

can be augmented with directions and/or distances. As a result we can formulate rela-
tions such as toTheNorthOf, disjoint(N) (disjoint by a distance N),
toTheNorthOf(N) (to the north of by a distance N) and so on. Further discussion
on the application of offsets can be found in [1].

The ontology used to develop the spatial scripting language used here can be found in
[5].

5. One-dimensional scenario

To illustrate the system’s operation we will consider three shape fitting scenarios of
increasing complexity commencing with a 1-D example (this section), and progress-
ing to 2-D and 3-D in the following two sections. This provides a clear demonstration
of how the same technique is applied irrespective of the number of dimensions.

In Figure 2(a) two discontinuous 1-D shapes are presented, labelled A and B. They are
defined in terms of a set of 1-D tesseral addresses (the set of addresses incorporating
the 0 address and running immediately parallel to the X-axis in Figure 1). Let us
assume: (1) that these two shape definitions are associated with two classes of free
object, (2) that there are two instances of each of these classes, a1, a2, b1 and b2,
and (3) that we wish to fit these instances into a 1-D object space, comprising 20
addresses, in such a manner that no part of one instance’s location coincides with that
of another. Let us also assume that there is nothing that prevents us from rotating
these objects (if only through 180°). We can express this problem in the form of a
script as follows:

space([19]).

class(A, free, [0..2, 6, 8]).

class(B, free, [0..3, 5]).

instance(a1, A).

instance(a2, A, rotation).

instance(b1, B, rotation).

instance(b2, B, rotation).

constraint([a1, a2, b1, b2], notIntersection).

This script comprises four basic constructs: space, class, instance and con-

straint. The first is used to declare the object space we wish to work with. The
second defines the classes of objects we are interested in and the third is used to
declare instances of those classes. Note that, to reduce the amount of processing
required, one of the instances is not rotated. Note also that the unary (one operand)
constraint expression is a shorthand method of defining the following set of con-
straints:



-- --

constraint(a1, notIntersection, a2).

constraint(a1, notIntersection, b1).

constraint(a1, notIntersection, b2).

constraint(a2, notIntersection, b1).

constraint(a2, notIntersection, b2).

constraint(b1, notIntersection, b2).

When this script is passed to the tesseral spatial reasoning system two possible solu-
tions are generated, these are illustrated in Figure 2(b).

(A)

(B)

(a) One-dimensional Shapes (CLASSES)

KEY: = a1 = a2 = b1 = b2

(b) Solutions
Figure 2: One-dimensional shape fitting scenario.

6. Tw o-dimensional scenario

Without requiring any change to the representation or the underlying constraint satis-
faction mechanism the system can equally well be applied to two dimensional shape
fitting problems. In Figure 3(a) a number of two dimensional shapes (Classes) are
presented. Assuming one instance of each class and a 6x6 object space a script can be
derived which will cause the spatial reasoning system to place these instances into this
object space in such a manner that no instance overlaps any other. The script is as fol-
lows:

space(6,6)

class(A, free, [0..4, 259, 514..515]).

class(B, free, [0..2, 257, 259]).

class(C, free, [0..2, 258..259, 514]).

class(D, free, [-255, 0..3, 257]).

class(E, free, [0..2, 256, 258..259]).

class(F, free, [0..2, 256]).



-- --

instance(a1, A).

instance(b1, B, rotation).

instance(c1, C, rotation).

instance(d1, D, rotation).

instance(e1, E, rotation).

instance(f1, F, rotation).

constraint([a1, b1, c1, d1, e1, f1], notIntersection).

The definition of these shapes can be confirmed by reference to the 2-D "object
space" given in Figure 1. Note that, to reduce the amount of work required to produce
a result, one of the instances is again not rotated. The solution, on completion of the
script, is given in Figure 3(b).

(A) (B) (C)

(D) (E) (F)

(a) Tw o-dimensional Shapes (CLASSES)

(b) Solutions
Figure 3: Two-dimensional shape fitting scenario.

7. Three dimensional scenario

A similar scenario can be designed with respect to a 3-D object space. Consider the
seven shapes (classes) given in Figure 4(a). Assuming a 4x4x4 object space, and one
instance of each class, we can write a script designed to fit these instances into the
object space (without overlap) as follows:



-- --

space(4,4,4)

class(A, free, [-65535, -255, 0..2, 65537, 131073, 131329]).

class(B, free, [0..1, 257, 513, 65537, 66049, 131073..131074,

131329, 131585]).

class(C, free, [0, 65536, 131072, 131074, 196607..196610]).

class(D, free, [0..2, 257..258, 65537..65538, 65793..65794]).

class(E, free, [0, 255..256, 511, 766..768, 65536, 65792,

66302, 131328]).

class(F, free, [0, 256, 512, 767..768, 65536, 65792, 66304,

131328, 196864]).

class(G, free, [0, 255..256, 65536, 65792, 66046..66048]).

instance(a1, A).

instance(b1, B, rotation).

instance(c1, C, rotation).

instance(d1, D, rotation).

instance(e1, E, rotation).

instance(f1, F, rotation).

instance(g1, G, rotation).

constraint([a1, b1, c1, d1, f1, e1, g1], notIntersection).

Again, for reasons of efficiency, rotation is not permitted for one of the instances - if
we allow rotation of instance a this will simply produce 24 different views of the
same result. There is one solution to this problem as demonstrated in Figure 4(b).

Although it may be argued that the 1-D and 2-D shape fitting scenarios given in the
foregoing two sections may be considered to be relatively simple in that the number
of possible combinations in each case is "small" (346112 in the 1-D scenario and
7077888000 in 2-D scenario), the above example is significantly more taxing. We can
carry out some rough calculations to indicate that there are in the region of 6x1013

location combinations for the above scenario. The fact that the system can success-
fully resolve such problems using standard computer hardware is an indication of the
strength of the approach, particularly the representation on which it is founded, but
also the heuristically guided constraint satisfaction technique currently used to resolve
scripts describing tesserally defined spatial problems. The foregoing sequence of
examples also clearly illustrates that the system can successfully operate in any num-
ber of dimensions without requiring any alteration to the basic representation or the
operation of the system. Because of space limitations we can not present a 4-D shape
fitting scenario here, however, the system has proved itself successful at resolving
such scenarios.

8. Conclusions

A spatio-temporal reasoning mechanism has been described founded on a tesseral
representation and linearisation of space. The mechanism offers the following signifi-
cant advantages:



-- --

(A) (B) (C) (D)

(E) (F) (G)

(a) Three-dimensional Shapes (CLASSES)

a1

b1
c1

d1

e1
f1g1

(b) Solutions

Figure 4: Three-dimensional shape fitting scenario.



-- --

1) It is universally applicable regardless of the number of dimensions under consider-
ation.

2) It is fully compatible with Raster data representations rendering it suited to a wide
range of applications, e.g. image analysis, reasoning for GIS and map interaction.

3) It is conceptually simple and computationally effective.

The approach has been incorporated into a spatial reasoning system, the SPARTA sys-
tem, which has been tested against a great many application scenarios including envi-
ronmental impact assessment and noise pollution (see [2] and [6]) for further detail).
Current work is focused on noise pollution modelling and assessment in the city of
London, and marine electronic chart interaction.

9. References

1. Beattie, B., Coenen, F.P., Bench-Capon, T.J.M., Diaz. B.M. and Shave, M.J.R. (1995). Spa-
tial reasoning for GIS using a tesseral data representation, in N. Revell and A.M. Tjoa,
A.M. (Eds), Database and Expert Systems Applications, (Proceedings DEXA’95), Lecture
Notes in Computer Science 978, Springer Verlag, pp207-216.

2. Beattie, B., Coenen, F.P., Hough, A. Bench-Capon, T.J.M., Diaz, B.M. and Shave, M.J.R
(1996). Spatial reasoning for environmental impact assessment, Third International Con-
ference on GIS and Environmental Modelling, Santa Barbara: National Centre for Geo-
graphic Information and Analysis, WWW and CD.

3. Bell, S.B.M., Diaz, B.M., Holroyd, F.C. and Jackson, M.J.J. (1983). Spatially referenced
methods of processing raster and vector data, Image and Vision Computing 1(4) 211-220.

4. Diaz, B.M. and Bell, S.B.M. (1986). Spatial data processing using tesseral methods, Natu-
ral Environment Research Council publication, Swindon, England (1986).

5. Coenen, F.P., Beattie, B., Bench-Capon, T.J.M., Shave, M.J.R. and Diaz, B.M. (1996). An
ontology for linear spatial reasoning, in R.R. Wagner and H. Thomas (Eds), Database and
Expert Systems Applications, (Proceedings DEXA’96), Lecture Notes in Computer Science
1134, Springer Verlag, 718-727.

6. Coenen, F.P., Beattie, B., Bench-Capon, T.J.M., Diaz, B.M. and Shave, M.J.R. (1996). Spa-
tial reasoning for geographic information systems. Proceedings 1st International Confer-
ence on GeoComputation, School of Geography, University of Leeds 1 121-131.

7. Morton, G.M. (1966). A computer oriented geodetic data base, and a new technique in file
sequencing, IBM Canada Ltd..

-- --


