
COMP310 
Multi-Agent Systems

Dr Terry R. Payne 
Department of Computer Science

Chapter 11 - Multi-Agent Interactions



Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

Environment

sphere of influence

KEY

agent

interaction

organisational relationship

What are Multi-Agent Systems?
•A multiagent system contains a number 

of agents that: 
• interact through communication;  
• are able to act in an environment;  
• have different “spheres of influence” (which may 

coincide); and  
• will be linked by other (organisational) relationships. 

•We will look at how agents decide how 
to interact in competitive situations. 
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utility

money

Utilities and Preferences
•Our Assumptions: 

• Assume we have just two agents: Ag = {i, j}  
• Agents are assumed to be self-interested i.e. they have preferences over 

how the environment is.  
• Assume Ω = {ω1, ω2, . . .} is the set of “outcomes” that agents have 

preferences over. 

•We capture preferences by utility functions, represented as 
real numbers (ℝ):  

•Utility functions lead to preference orderings over 
outcomes, e.g.: 

•where ω and ω' are both possible outcomes of Ω
3

Utility is not money. Just a way 
to encode preferences.

ω ≽i ω′ means ui(ω) ≥ ui(ω′)  
ω ≻i ω′ means ui(ω) > ui(ω′)

ui : Ω → ℝ 
uj : Ω → ℝ
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Multiagent Encounters
• We need a model of the environment in which these agents will act... 

• agents simultaneously choose an action to perform, and as a result of the actions they 
select, an outcome in Ω will result  

• the actual outcome depends on the combination of actions  
• assume each agent has just two possible actions that it can perform: 
• i.e. Ac = {C,D}, where 

•  C (“cooperate”) and 
•  D (“defect”) 

• Environment behaviour given by state transformer function τ 
• (introduced in Chapter 2):

4

⌧ : Ac|{z}
agent i’s action

⇥ Ac|{z}
agent j’s action

! ⌦
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Multiagent Encounters
•Here is a state transformer function τ(i,j) 

• This environment is sensitive to actions of both 
agents. 

•With this state transformer, neither 
agent has any influence in this 
environment. 

•With this one, the environment is 
controlled by j

5

τ(D,D) = ω1    τ(D,C) = ω2    
τ(C,D) = ω3    τ(C,C) = ω4 

τ(D,D) = ω1    τ(D,C) = ω1    
τ(C,D) = ω1    τ(C,C) = ω1 

τ(D,D) = ω1    τ(D,C) = ω2    
τ(C,D) = ω1    τ(C,C) = ω2
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Rational Action
•Suppose we have the case where both agents can influence the outcome, 

and they have the following utility functions: 

• With a bit of abuse of notation: 

• Then agent i’s preferences are (C, C) ≽i (C, D) ≻i (D, C) ≽i (D, D) 

• In this case, what should i do? 

• i prefers all outcomes that arise through C over all outcomes that arise 
through D. 
• Thus C is the rational choice for i.

6

ui(D,D) = 1  ui(D,C) = 1  ui(C,D) = 4  ui(C,C) = 4  
uj(D,D) = 1  uj(D,C) = 4  uj(C,D) = 1  uj(C,C) = 4

ui(ω1)=1   ui(ω2)=1   ui(ω3)=4   ui(ω4)=4 
uj(ω1)=1   uj(ω2)=4   uj(ω3)=1   uj(ω4)=4
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Payoff Matrices
•We can characterise the previous scenario in a 

payoff matrix shown opposite 
• Agent i is the column player and gets the upper reward in a 

cell.  
• Agent j is the row player and gets the lower reward in a cell.  

•Actually there are two matrices here, one (call it 
A) that specifies the payoff to i and another B 
that specifies the payoff to j.  

•Sometimes we’ll write the game as (A, B) in 
recognition of this. 

7

i

j

defect coop
defect 1 4

1 1
coop 1 4

4 4

In this case, i cooperates 
and gains a utility of 4; 

whereas j defects and gains 
a utility of only 1. 

(C, C) ≽i (C, D) ≻i (D, C) ≽i (D, D)



Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

Solution Concepts

•How will a rational agent will behave in any 
given scenario? 

•Play. . . 
• dominant strategy; 
• Nash equilibrium strategy; 
• Pareto optimal strategies; 
• strategies that maximise social welfare.

8
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Dominant Strategies
•Given any particular strategy s (either 

C or D) that agent i can play, there will 
be a number of possible outcomes.  
• We say s1 dominates s2 if every outcome 

possible by i playing s1 is preferred over every 
outcome possible by i playing s2.  

•Thus in the game opposite, C 
dominates D for both players.

9

i

j

defect coop
defect 1 4

1 1
coop 1 4

4 4
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Dominant Strategies
•A rational agent will never play a 

dominated strategy. 
• i.e, a strategy that is dominated (and thus 

inferior) by another 

•So in deciding what to do, we can 
delete dominated strategies. 
• Unfortunately, there isn’t always a unique un-

dominated strategy.

10

i

j

defect coop
defect 1 4

1 1
coop 1 4

4 4
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Nash Equilibrium
•In general, we will say that two strategies 

s1 and s2 are in Nash equilibrium (NE) if: 
• under the assumption that agent i plays s1, agent j 

can do no better than play s2; 
• I.e. if I drive on the left side of the road, you can do no better than also 

driving on the left! 

• under the assumption that agent j plays s2, agent i 
can do no better than play s1. 

• I.e. if you drive on the left side of the road, I can do no better than also 
driving on the left! 

•Neither agent has any incentive to 
deviate from a Nash Equilibrium (NE).

11

John Forbes Nash 
(Nobel Laureate in Economics) 

Portrayed by Russel Crowe in the film 
“A Beautiful Mind”
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Nash Equilibrium
•Consider the payoff matrix opposite:  

• Here the Nash equilibrium (NE) is (D, D).  
• In a game like this you can find the NE by 

cycling through the outcomes, asking if either 
agent can improve its payoff by switching its 
strategy.  

•Thus, for example, (C, D) is not a NE 
because i can switch its payoff from 1 
to 5 by switching from C to D. 

12

i

j

defect coop
defect 5 1

3 2
coop 0 0

2 1

i

j

defect coop
defect 5 1

3 2
coop 0 0

2 1
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Nash Equilibrium
•More formally: 

• A strategy (i∗, j∗) is a pure strategy Nash Equilibrium solution 
to the game (A, B) if: 
 
       ∀i, ai∗,j∗ ≥ ai,j∗ 
        ∀j, bi∗,j∗ ≥ bi∗,j 

•Unfortunately: 
• Not every interaction scenario has a pure strategy Nash 

Equilibrium (NE). 
• Some interaction scenarios have more than one pure strategy 

Nash Equilibrium (NE).
13
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Nash Equilibrium
•The game opposite (upper) has two pure 

strategy NEs, (C, C) and (D, D) 
• In both cases, a single agent can’t unilaterally improve 

its payoff. 

•In the game opposite game (lower) has no 
pure strategy NE 
• For every outcome, one of the agents will improve its 

utility by switching its strategy.  
• We can find a form of NE in such games, but we need 

to go beyond pure strategies. 
14

i

j

defect coop
defect 5 1

3 2
coop 0 3

2 3

i

j

defect coop
defect 2 1

1 2
coop 0 1

2 1
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Mixed Strategy Nash equilibrium
•Matching Pennies 

• Players i and j simultaneously choose the face of a coin, either 
“heads” or “tails”. 

• If they show the same face, then i wins, while if they show different 
faces, then j wins. 

•NO pair of strategies forms a pure strategy NE: 
• whatever pair of strategies is chosen, somebody will wish they had 

done something else.  

•The solution is to allow mixed strategies: 
• play “heads” with probability 0.5 
• play “tails” with probability 0.5.  

•This is a Mixed Nash Equilibrium strategy. 
15

i

j

heads tails
heads 1 -1

-1 1
tails -1 1

1 -1
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Mixed Strategy Nash equilibrium
•Consider the Game Rock/Paper/Scissors 

• Paper covers rock 
• Scissors cut paper 
• Rock blunts scissors 

•This has the following payoff matrix 

•What should you do? 
• Choose a strategy at random!

16

i

j

rock paper scissors
rock 0 1 0

0 0 1
paper 0 0 1

1 0 0
scissors 1 0 0

0 1 0
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Mixed Strategies
•A mixed strategy has the form 

• play α1 with probability p1 
• play α2 with probability p2 
• ... 
• play αk with probability pk. 
• such that p1+p2+··· +pk =1. 

•Nash proved that: 
• every finite game has a Nash equilibrium in 

mixed strategies.
17

Nash’s Theorem 

Nash proved that every finite 
game has a Nash equilibrium 
in mixed strategies. (Unlike 
the case for pure strategies.) 

So this result overcomes the 
lack of solutions; but there still 
may be more than one Nash 
equilibrium. . .
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Pareto Optimality
•An outcome is said to be Pareto optimal 

(or Pareto efficient) if: 
• there is no other outcome that makes one agent 

better off without making another agent worse off.  
• If an outcome is Pareto optimal, then at least one agent will be 

reluctant to move away from it (because this agent will be worse off).  
• If an outcome ω is not Pareto optimal, then there is another outcome 
ω′ that makes everyone as happy, if not happier, than ω. 

•“Reasonable” agents would agree to 
move to ω′ in this case. 
• Even if I don’t directly benefit from ω′, you can 

benefit without me suffering.
18

i

j

defect coop
defect 5 1

3 2
coop 0 0

2 1

This game has one 
Pareto efficient 
outcome: (D, D) 

There is no solution in which 
either agent does better
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Social Welfare
•The social welfare of an outcome ω is the sum 

of the utilities that each agent gets from ω: 

• Think of it as the “total amount of money in the system”.  

•As a solution concept: 
• may be appropriate when the whole system (all agents) has a 

single owner (then overall benefit of the system is important, 
not individuals). 

• It doesn’t consider the benefits to individuals.  
• A very skewed outcome can maximise social welfare. 

19

X

i2Ag

ui(!) i

j

defect coop
defect 2 1

2 1
coop 3 4

3 4

i

j

defect coop
defect 2 1

2 1
coop 3 7

3 0

In both these games, 
(C, C) maximises 

social welfare
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Competitive and Zero-Sum Interactions
•Where preferences of agents are diametrically opposed 

we have strictly competitive scenarios.  

•Zero-sum encounters are those where utilities sum to 
zero: 

• Zero sum encounters are bad news: for me to get +ve utility you have 
to get negative utility! The best outcome for me is the worst for you!  

• Zero sum encounters in real life are very rare . . . but people tend to 
act in many scenarios as if they were zero sum.  

•Most games have some room in the set of outcomes 
for agents to find (somewhat) mutually beneficial 
outcomes. 

20

ui(ω)+uj(ω)=0       for all ω ∈ Ω. 
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The Prisoner’s Dilemma
•Payoff matrix for prisoner’s dilemma:  

• Top left: If both defect, then both get punishment for mutual 
defection.  

• Top right: If i cooperates and j defects, i gets sucker’s payoff of 1, 
while j gets 4.  

• Bottom left: If j cooperates and i defects, j gets sucker’s payoff of 
1, while i gets 4. 

• Bottom right: Reward for mutual cooperation (i.e. neither confess).

21

The Prisoner’s Dilemma 
Two men are collectively charged with 
a crime and held in separate cells, with 
no way of meeting or communicating. 
They are told that:

• if one confesses and the other does 

not (C,D) or (D,C), the confessor will be 
freed, and the other will be jailed for 
three years; 

• if both confess (D,D), then each will be 
jailed for two years. 

Both prisoners know that if neither 
confesses (C,C), then they will each be 
jailed for one year.

i

j

defect coop
defect 2 1

2 4
coop 4 3

1 3

As neither men 
want to admit to 

being guilty, 
cooperation means 

not confessing!
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What should you do?
•The individual rational action is defect. 

• This guarantees a payoff of no worse than 2, whereas 
cooperating guarantees a payoff of at most 1.  

• So defection is the best response to all possible strategies: 
both agents defect, and get payoff = 2.  

•But intuition says this is not the best outcome: 
• Surely they should both cooperate and each get payoff of 3!  

•This is why the Prisoners Dilemma game is 
interesting 
• The analysis seems to give us a paradoxical answer. 

22

i

j

defect coop
defect 2 1

2 4
coop 4 3

1 3

Solution Concepts 

• The dominant strategy here is to 
defect.


• (D, D) is the only Nash equilibrium.

• All outcomes except (D, D) are 

Pareto optimal.

• (C, C) maximises social welfare.
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The Prisoner’s Dilemma
•This apparent paradox is the fundamental 

problem of multi-agent interactions. 
• It appears to imply that cooperation will not occur in societies 

of self-interested agents. 

•Real world examples: 
• nuclear arms reduction -“why don’t I keep mine” 
• free rider systems - public transport, file sharing; 
• in the UK — television licenses. 
• in the US — funding for NPR/PBS.  

•The prisoner’s dilemma is ubiquitous.  
• Can we recover cooperation? 

23

i

j

defect coop
defect 2 1

2 4
coop 4 3

1 3

Solution Concepts 

• The dominant strategy here is to 
defect.


• (D, D) is the only Nash equilibrium.

• All outcomes except (D, D) are 

Pareto optimal.

• (C, C) maximises social welfare.
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Arguments for Recovering Cooperation
•Conclusions that some have drawn from this analysis: 

• the game theory notion of rational action is wrong! 
• somehow the dilemma is being formulated wrongly 

•Arguments to recover cooperation: 
• We are not all machiavelli! 
• The other prisoner is my twin! 
• Program equilibria and mediators 
• The shadow of the future. . .

24
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We are not all Machiavelli
•Lots of “altruism” is something else: 

• Either there is some delayed reciprocity; or 
• There are mechanisms to punish defection. 

•There is a reason why HMRC (or the IRS 
in the US) audits people’s taxes :-) 

•Altruism may be something that makes 
us feel good 
• This is why we are prepared to pay for it.  

25

“... We aren’t all that hard-boiled, 
and besides, people really do act 

altruistically ...” 
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The Other Prisoner is My Twin
•Argue that both prisoner’s will think alike and 

decide that it is best to cooperate.  
• If they are twins, they must think along the same lines, 

right? 
• (Or they have some agreement that they won’t talk.) 

•Well, if this is the case, we aren’t really 
playing the Prisoner’s Dilemma! 

•Possibly more to the point is that if you know 
the other person is going to cooperate, you 
are still better off defecting. 

26
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Program Equilibria
•The strategy you really want to play in the 

prisoner’s dilemma is: I’ll cooperate if he 
will  
• Program equilibria provide one way of enabling this.  

•Each agent submits a program strategy to 
a mediator which jointly executes the 
strategies.  
• Crucially, strategies can be conditioned on the 

strategies of the others.  
• The best response to this program: 

• submit the same program, giving an outcome of (C, C)!
27

Player 1 (P1) 
If (P1 == P2) { 
    do(C) 
} else { 
    do(D) 
} 
stop

Player 2 (P2) 
If (P1 == P2) { 
    do(C) 
} else { 
    do(D) 
} 
stop

Mediator

P1:C P2:C

Player 1 (P1) 
If (P1 == P2) { 
    do(C) 
} else { 
    do(D) 
} 
stop

Player 2 (P2) 
do(D) 
stop 

P1:D P2:D

Mediator
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The Iterated Prisoner’s Dilemma 
(The Shadow of the Future)

• Play the game more than once. 
• If you know you will be meeting your opponent again, then the incentive to defect 

appears to evaporate. 
• If you defect, you can be punished (compared to the co-operation reward.) 
• If you get suckered, then what you lose can be amortised over the rest of the iterations, making it a small loss. 

• Cooperation is (provably) the rational choice in the infinitely 
repeated prisoner’s dilemma. 
• (Hurrah!) 

• But what if there are a finite number of repetitions? 

28
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Backwards Induction
•But. . . suppose you both know that you will 

play the game exactly n times. 
• On round n − 1, you have an incentive to defect, to gain that extra bit of 

payoff. 
• But this makes round n − 2 the last “real”, and so you have an incentive to 

defect there, too. 

• This is the backwards induction problem.  

•Playing the prisoner’s dilemma with a fixed, 
finite, pre-determined, commonly known 
number of rounds, defection is the best 
strategy.  
• That seems to suggest that you should never cooperate.  
• So how does cooperation arise? Why does it make sense? 

29

As long as you have some 
probability of repeating the 
interaction co-operation can have 
a better expected payoff.

As long as there are enough co-
operative folk out there, you can 
come out ahead by co-operating. 
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Axelrod’s Tournament
•Suppose you play iterated prisoner’s 

dilemma (IPD) against a range of 
opponents. 

•What approach should you choose, 
so as to maximise your overall payoff?  
• Is it better to defect, and hope to find suckers 

to rip-off?  
• Or is it better to cooperate, and try to find 

other friendly folk to cooperate with? 
30

Robert Axelrod 

Robert Axelrod (1984) investigated 
this problem, with a computer 
tournament for programs playing 
the iterated prisoner’s dilemma.


Axelrod hosted the tournament 
and various researchers sent in 
approaches for playing the game.
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Strategies in Axelrod’s Tournament
•Surprisingly TIT-FOR-TAT for won.  

• But don’t read too much into this :-) 

•In scenarios like the Iterated Prisoner’s 
Dilemma (IPD) tournament… 
• …the best approach depends heavily on what the 

full set of approaches is.  

•TIT-FOR-TAT did well because there 
were other players it could co-operate 
with.

31

ALL-D 
“Always defect” — the hawk strategy;

Tit-For-Tat 
1. On round u = 0, cooperate.

2. On round u > 0, do what your opponent 

did on round u − 1.

Tester 
On 1st round, defect. If the opponent 
retaliated, then play TIT-FOR-TAT. Otherwise 
intersperse cooperation & defection.

JOSS 
As TIT-FOR-TAT, except periodically defect.
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Recipes for Success in Axelrod’s Tournament

•Don’t be envious: 
• Don’t play as if it were zero sum! 

•Be nice: 
• Start by cooperating, and 

reciprocate cooperation. 

•Retaliate appropriately: 
• Always punish defection 

immediately, but use “measured” 
force 

• don’t overdo it. 

•Don’t hold grudges: 
• Always reciprocate cooperation 

immediately.

32
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Stag Hunt
•A group of hunters goes stag hunting.  

• If they all stay focussed on the stag, they will 
catch it and all have a lot of food.  

• If some of them head off to catch rabbits, the 
stag will escape.  

•In this case the rabbit hunters will have 
some small amount of food and the 
(remaining) stag hunters will go hungry.  
• What should each hunter do? 

33

“... You and a friend decide it would be a great joke to 
show up on the last day of school with some ridiculous 
haircut. Egged on by your clique, you both swear you’ll 
get the haircut.

A night of indecision follows. As you anticipate your 
parents’ and teachers reactions [. . . ] you start 
wondering if your friend is really going to go through 
with the plan.

Not that you don’t want the plan to succeed: the best 
possible outcome would be for both of you to get the 
haircut.

The trouble is, it would be awful to be the only one to 
show up with the haircut. That would be the worst 
possible outcome.

You’re not above enjoying your friend’s embarrassment. 
If you didn’t get the haircut, but the friend did, and 
looked like a real jerk, that would be almost as good as 
if you both got the haircut...”

Mike Wooldridge



Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

Stag Hunt
•Two Nash equilibrium solutions (C, C) and (D, D). 

• If you know I’ll co-operate, the best you can do is to co-operate as well. 
• If you know I’ll defect, then that is the best you can do as well.  

• Social welfare is maximised by (C, C).  
• The only Pareto efficient outcome is (C, C).  

•As usual with Nash equilibrium, theory gives us no 
real help in deciding what the other party will do. 
• Hence the worrying about the haircut.  

•The same scenario occurs in mutinies and strikes. 
• We would all be better off if our hated captain is deposed, but if 

some of us give in, we will all be hanged.

34

Stag Hunt Payoff Matrix 

The difference from the 
prisoner’s dilemma is that 
now it is better if you both co-
operate than if you defect 
while the other co-operates. 

i

j

defect coop
defect 2 1

2 3
coop 3 4

1 4



Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

Game of Chicken
•Chicken has the following payoff matrix: 

•Difference to prisoner’s dilemma: 
• Mutual defection is most feared outcome. 
• Whereas sucker’s payoff is most feared in prisoner’s dilemma. 

•There is no dominant strategy 
• Strategy pairs (C, D) and (D, C) are Nash equilibria. 

• If I think you will stay in the car, I should jump out. 
• If I think you will jump out of the car, I should stay in. 

• All outcomes except (D, D) are Pareto optimal. 
• All outcomes except (D, D) maximise social welfare.

35

The game of chicken gets its name from a rather 
silly, macho “game” that was supposedly popular 
amongst juvenile delinquents in 1950s America; the 
game was immortalised by James Dean in the 
1950s film Rebel without a Cause. The purpose of 
the game is to establish who is bravest of the two 
players.


The game is played by both players driving their 
cars at high speed towards a cliff.   The idea is that 
the least brave of the two (the “chicken”) will be the 
first to drop out of the game by jumping out of the 
speeding car.  The winner is the one who lasts 
longest in the car.  Of course, if neither player jumps 
out of the car, then both cars fly off the cliff, taking 
their foolish passengers to a fiery death on the rocks 
that undoubtedly lie at the foot of the cliff.

jump = coop
stay in car = defect.

i

j

defect coop
defect 1 2

1 4
coop 4 3

2 3
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Other Symmetric 2x2 Games
•Given the 4 possible outcomes of (symmetric) 

cooperate/defect games, there are 24 possible 
orderings on outcomes. 
• The textbook lists them all, but here we give the 

combinations 

•These are more abstract descriptions of the 
games than the payoff matrices we 
considered.  

•All payoff matrices consistent with these 
preferences orders are instances of the games. 

36

First, cases with dominant solutions:

Cooperation dominates

        CC ≻i CD ≻i DC ≻i DD 

        CC ≻i CD ≻i DD ≻i DC 

Deadlock (You will always do best by defecting)

        DC ≻i DD ≻i CC ≻i CD 

        DC ≻i DD ≻i CD ≻i DD

Games that we looked at in detail:

Prisoner’s dilemma.

        DC ≻i CC ≻i DD ≻i CD  

Chicken

        DC ≻i CC ≻i CD ≻i DD  

Stag Hunt

        CC ≻i DC ≻i DD ≻i CD
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Summary
•This chapter has looked at agent 

interactions, and one approach to 
characterising them.  
• The approach we have looked at here is that of game 

theory, a powerful tool for analysing interactions.  
• We looked at solution concepts of Nash equilibrium 

and Pareto optimality.  
• We then looked at the classic Prisoner’s Dilemma, and 

how the game can be analysed using game theory.  
• We also looked at the iterated Prisoner’s Dilemma, 

and other canonical 2 × 2 games. 
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Class Reading (Chapter 11): 

“The Evolution of Cooperation”, R. Axelrod.  
Basic Books, New York, 1984. 

This is a book, but is quite easy going, 
and most of the important content is 
conveyed in the first few chapters.  
Appart from anything else, it is 
beautifully written, and it is easy to see 
why so many readers are enthusiastic 
about it.  However, read it in 
conjunction with Binmore’s critiques, 
cited in the course text.


