COMP310Multi-Agent Systems Chapter 12 - Making Group Decisions

Dr Terry R. Payne Department of Computer Science

An Introduction to MultiAgent Systems

MICHAEL WOOLDRIDGE

SECOND EDITION

Social Choice

- - multiagent encounters
 - game-like interactions
 - participants act strategically

Social choice theory is concerned with group decision making.

- preferences as well.
- Classic example of social choice theory: *voting*
 - Formally, the issue is combining preferences to *derive a social outcome*.

• We continue thinking in the same framework as the previous chapter:

Agents make decisions based on their preferences, but they are aware of other agents'

Components of a Social Choice Model

- •Assume a set $Ag = \{1, ..., n\}$ of **voters**.
 - These are entities who express preferences.
 - Voters make group decisions with respect to a set $\Omega = \{\omega_1, \omega_2, ...\}$ of **outcomes**.
 - Think of these as the **candidates**.
 - If $|\Omega| = 2$, we have a pairwise election.

• Each voter has preferences over Ω

- An ordering over the set of possible outcomes Ω .
 - Sometimes we will want to pick one, most preferred candidate.
 - More generally, we may want to rank, or order these candidates.

Preference Order Example Suppose $\Omega = \{pear, plum, banana, orange\}$ then we might have agent *i* with preference order: (banana, plum, pear, orange) meaning $banana >_i plum >_i pear >_i orange$

Preference Aggregation

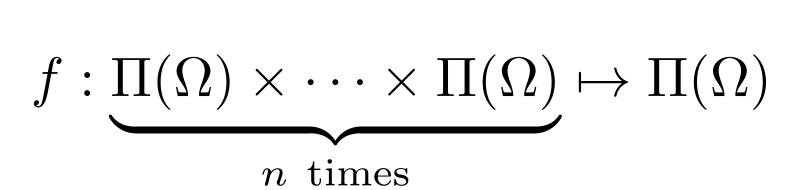
- The fundamental problem of social choice theory is that...
 - ...different voters typically have different preference orders!

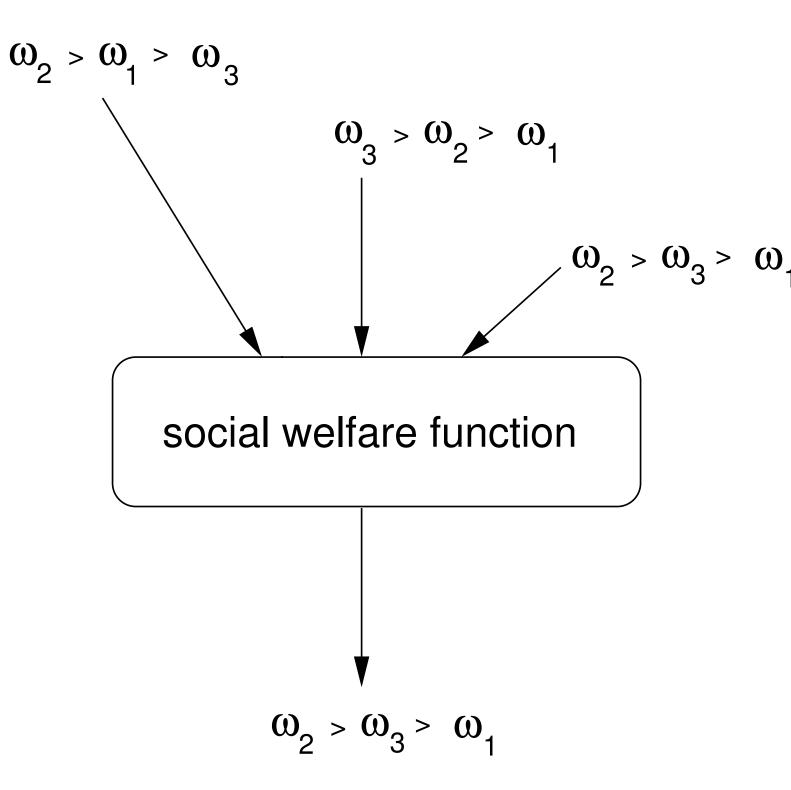
"... given a collection of preference orders, one for each voter, how do we combine these to derive a group decision, that reflects as *closely as possible* the preferences of voters? ..."

- We need a way to combine these opinions into on overall decision.
 - What social choice theory is about is finding a way to do this.
 - Two variants of preference aggregation:
 - social welfare functions
 - social choice functions

Social Welfare Function

- Let $\Pi(\Omega)$ be a set of preference orderings over Ω
 - A social welfare function takes voter preferences and produces a **social preference order**.
 - That is it merges voter opinions and comes up with an order over the candidates.
- •We let $>_*$ denote to the outcome of a social welfare function: $\omega >_* \omega'$
 - which indicates that ω is ranked above ω' in the social ordering
 - Example: combining search engine results, collaborative filtering, collaborative planning, etc.

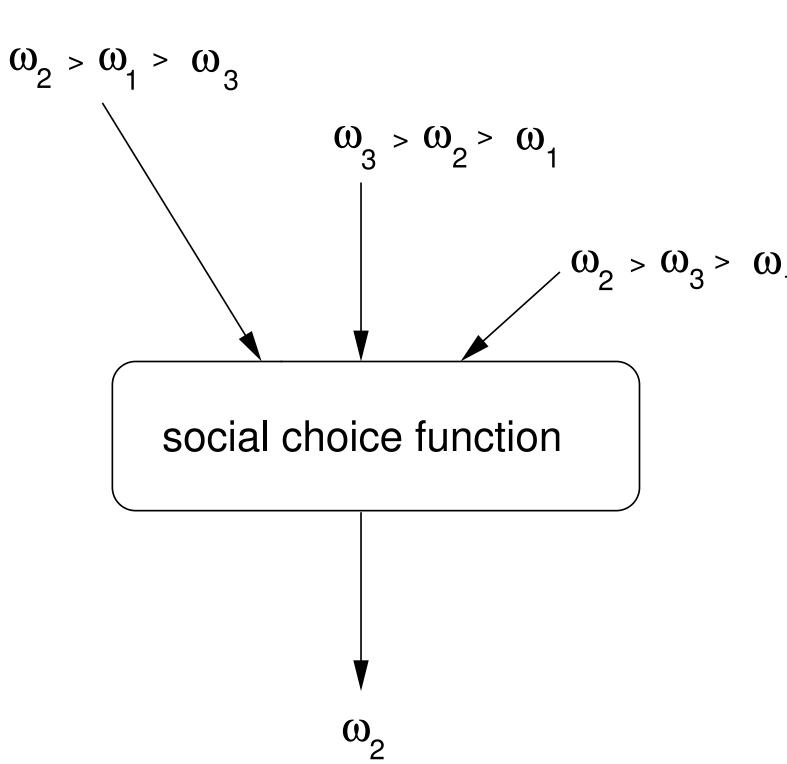




Social Choice Function

- Sometimes, we just one to select one of the possible candidates, rather than a social order.
 - This gives a **social choice function** (see opposite)
 - For example, a local by-election or presidential election
- In other words, we don't get an ordering out of a social choice function but, as its name suggests, we get *a single choice*.
 - Of course, if we have a social welfare function, we also have a social choice function.
- For the rest of this chapter...
 - ...we'll refer to both both social choice and social welfare functions as *voting procedures*.

 $f: \Pi(\Omega) \times \cdots \times \Pi(\Omega)$ n times



Voting Procedures: Plurality

- Social choice function: selects a single outcome.
 - Each voter submits preferences.
 - Each candidate gets one point for every preference order that ranks them first.
- Winner is the one with largest number of points.
 - Also known in the UK as *first past the post*, or *relative* majority
 - Example: Political elections in UK.
- If we have only two candidates, then plurality is a simple majority election

Anomalies with Plurality Suppose: $|Ag| = 100 \text{ and } \Omega = \{\omega_1, \omega_2, \omega_3\}$ with: 40% voters voting for ω_1 30% of voters voting for ω_2 30% of voters voting for ω_3

With plurality, ω_1 gets elected even though a **clear majority** (60%) prefer another candidate!

Strategic Manipulation by Tactical Voting

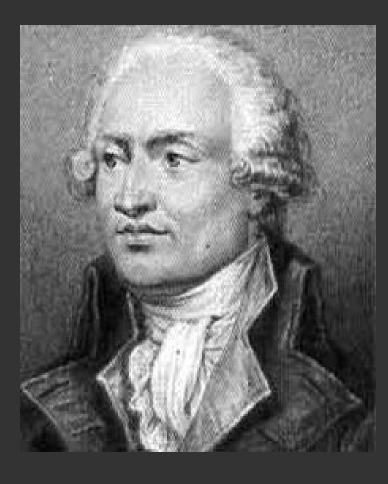
- - i.e. its preferences are: $\omega_1 >_i \omega_2 >_i \omega_3$
- However:
 - you believe 49% of voters have preferences: $\omega_2 > \omega_1 > \omega_3$
 - and you believe 49% have preferences: $\omega_3 > \omega_2 > \omega_1$
- true preference profile.
 - This is tactical voting: an example of strategic manipulation of the vote.

• Suppose agent i wants ω_1 to win, but otherwise prefers ω_2 over ω_3

• You may do better voting for ω_2 , even though this is not your

Condorcet's Paradox

Nicolas de Caritat, marquis de Condorcet (1743-1794)



- In a democracy, it seems inevitable that we can't choose an outcome that will make everyone happy.
- Condorcet's paradox tells us that in some situations, no matter which outcome we choose, a majority of voters will be unhappy with the outcome.

•This is Condorcet's paradox: there are situations in which: • no matter which outcome we choose, a majority of voters will be unhappy with the outcome chosen.

• Suppose $Ag = \{1, 2, 3\}$ and $\Omega = \{\omega_1, \omega_2, \omega_3\}$ with:

 $\omega_1 >_1 \omega_2 >_1 \omega_3$ $\omega_3 >_2 \omega_1 >_2 \omega_2$ $\omega_2 >_3 \omega_3 >_3 \omega_1$

• For every possible candidate, there is another candidate that is preferred by a majority of voters!

• If we pick ω_1 , two thirds of the voters prefer ω_3 to ω_1 .

• If we pick ω_3 , two thirds of the voters prefer ω_2 .

• If we pick ω_2 , it is still the case that two thirds of the voters prefer a different candidate, in this case ω_1 to the candidate we picked.

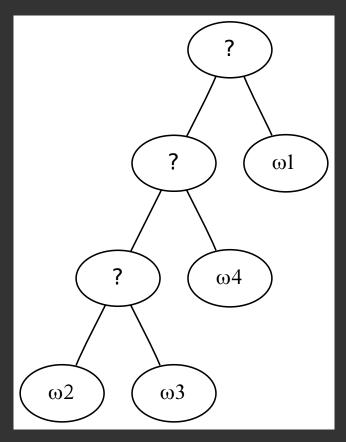
Sequential Majority Elections

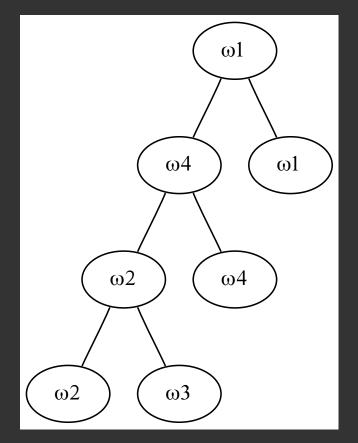
scenario to a series of pairwise voting scenarios.

Linear Sequential Pairwise Elections

 $\{\omega_4\}$ is ω_2 , ω_3 , ω_4 , ω_1

First we have an election between ω_2 and ω_3 . The winner enters an election with ω_4 . The winner of that faces ω_1 .





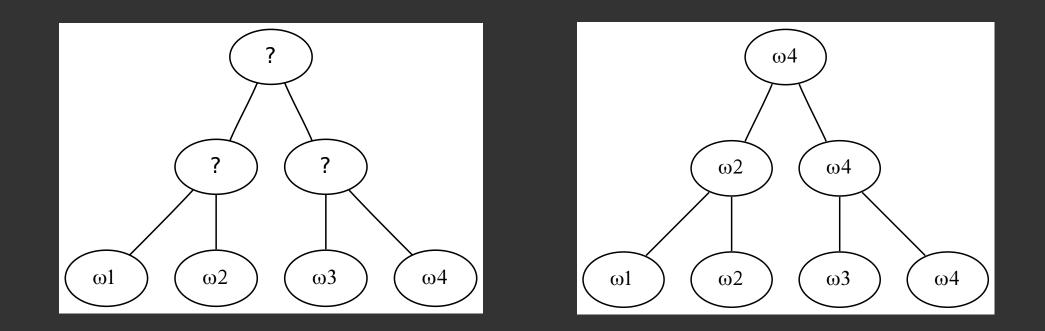
One way to improve on plurality voting is to reduce a general voting.

Balanced Binary Tree

We can also organise this as a balanced binary tree.

- An election between ω_1 and ω_2 .
- An election between ω_3 and ω_4 .
- An election between the two winners.

Rather like the Final Four



Linear Sequential Pairwise Elections

- which determines who plays against who.
 - For example, if the agenda is:

 $\omega_2, \omega_3, \omega_4, \omega_1$

- then the first election is between ω_2 and ω_3 ...
- ... and the winner goes on to the second election with ω_4 ...
- ... and the winner of this election goes in the final election with ω_1 .

Here, we pick an ordering of the outcomes – the agenda

Anomalies with Sequential Pairwise Elections

Majority Graphs

A directed graph with:

- vertices = candidates
- an edge (i, j) if i would beat j is a simple majority election.

A compact representation of voter preferences. With an odd number of voters (no ties) the majority graph is such that:

- The graph is complete.
- The graph is asymmetric.
- The graph is irreflexive.

Such a graph is called a *tournament*, a nice summarisation of information about voter preferences.

• Then for every candidate, we can fix an agenda for that candidate to win in a sequential pairwise election!

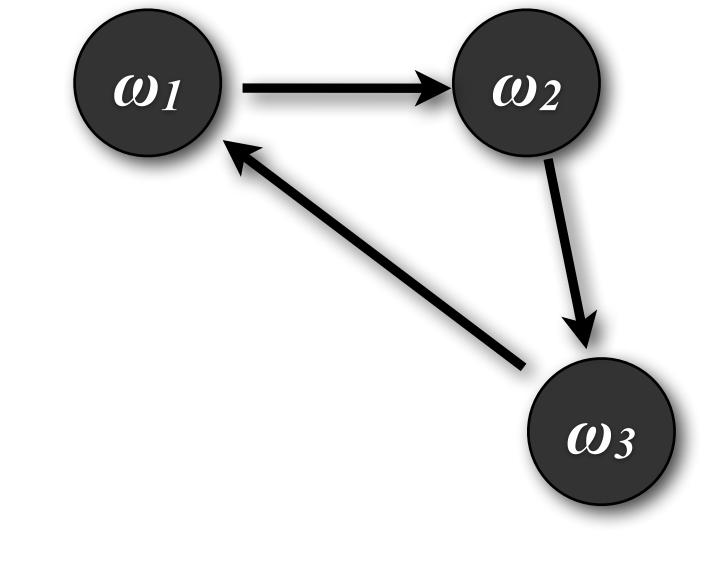
 This idea is easiest to illustrate using a majority graph.

- Suppose:
 - 33 voters have preferences: $\omega_1 > \omega_2 > \omega_3$
 - 33 voters have preferences: $\omega_3 > * \omega_1 > * \omega_2$
 - 33 voters have preferences $\omega_2 > * \omega_3 > * \omega_1$

Majority Graph Example

• Given the previous example:

- with agenda (ω_3 , ω_2 , ω_1), ω_1 wins
 - i.e. the winner of ω_3 vs ω_2 is ω_2 , which is beaten by ω_1
- with agenda (ω_1 , ω_3 , ω_2), ω_2 wins
 - i.e. the winner of ω_1 vs ω_3 is ω_3 , which is beaten by ω_2
- with agenda (ω_1 , ω_2 , ω_3), ω_3 wins
 - i.e. the winner of ω_1 vs ω_2 is ω_1 , which is beaten by ω_3
- Since the graph contains a cycle, it turns out that we can fix whatever result we want.
 - All we have to do is to pick the right order of the elections.

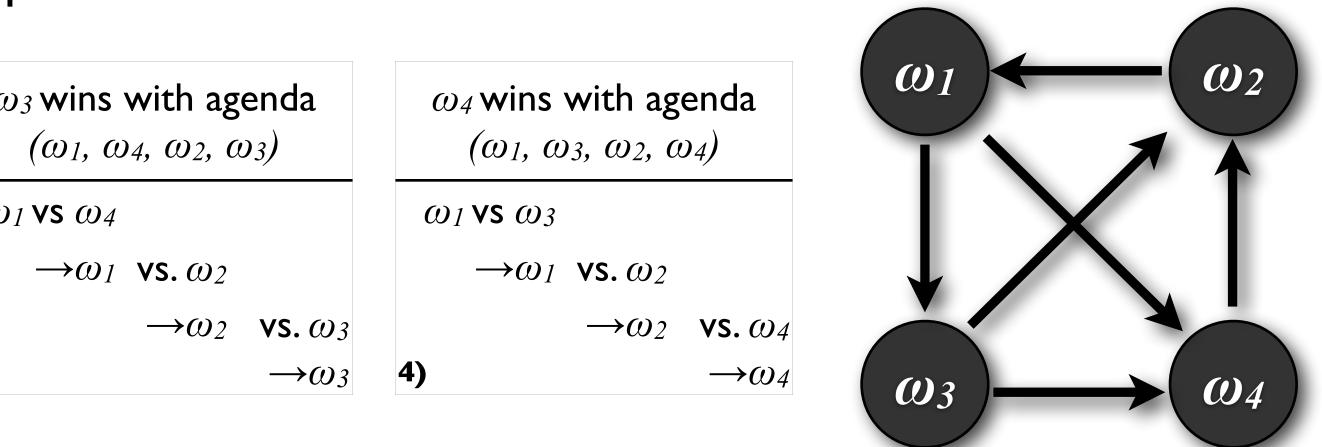


Agendas and Majority Graphs

• This is another example of a majority graph in which every outcome is a possible winner

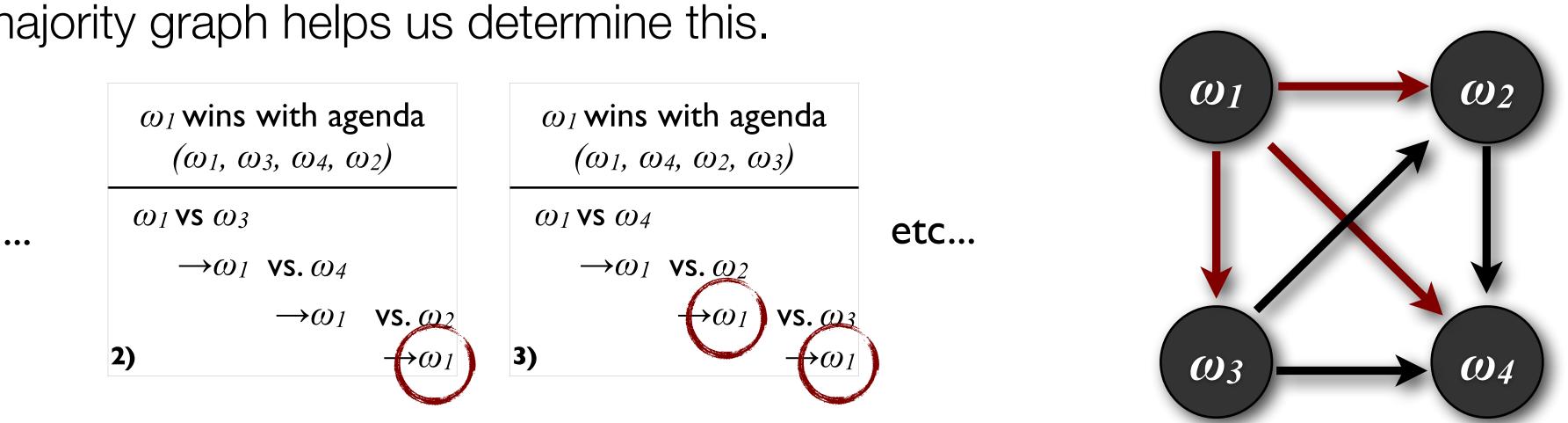
ω_1 wins with agenda (ω_3 , ω_4 , ω_2 , ω_1)	ω_2 wins with agenda (ω_1 , ω_3 , ω_4 , ω_2)	ω
$\omega_3 VS \omega_4$	$\omega_1 \mathbf{VS} \ \omega_3$	ω
$\rightarrow \omega_3 $ vs. ω_2	$\rightarrow \omega_1 \text{ vs.} \omega_4$	
$\rightarrow \omega_3$ vs. ω_1	$\rightarrow \omega_1 \text{vs.} \omega$	2
$\rightarrow \omega_1$	$\mathbf{2)} \qquad \longrightarrow \boldsymbol{\omega}$	2 3)

- Note, that there may be multiple agendas that result in the same winner:
 - ω_1 also wins with agenda ($\omega_4, \omega_2, \omega_3, \omega_1$)



Condorcet Winners

- that will result in it winning overall.
 - The majority graph helps us determine this.



- To determine if ω_i is a possible winner, we have to find, for every other ω_j , if there is a path from ω_i to ω_j in the majority graph.
 - This is computationally easy to do.

• Now, we say that a result is a *possible winner* if there is an agenda

The Slater Ranking

- The Slater rule is interesting because it considers:
 - the question "of which social ranking should be selected", as
 - "the question of trying to find a consistent ranking that is as close to the majority graph as possible"
 - i.e. one that does not contain cycles
- Think of it as:

Not examined in

2017-2018

inconsistency measure

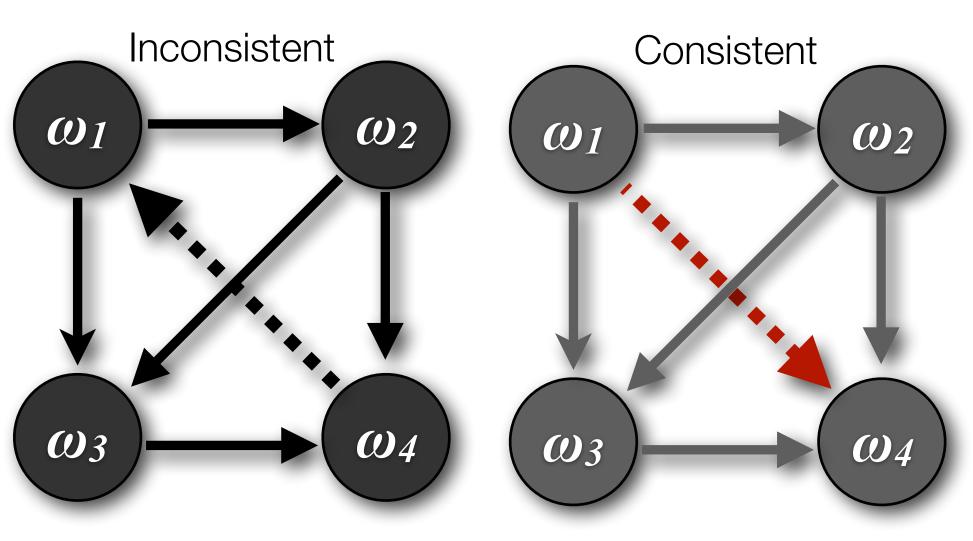
• If we reversed some edges in a graph, which ordering minimises this

Not examined in 2017-2018

- Consider this majority graph (upper)
 - No cycles, therefore the ranking $\omega_1 > \omega_3 > \omega_2 > \omega_4$ is acceptable:
 - The graph is *consistent*

This majority graph (lower) has cycles

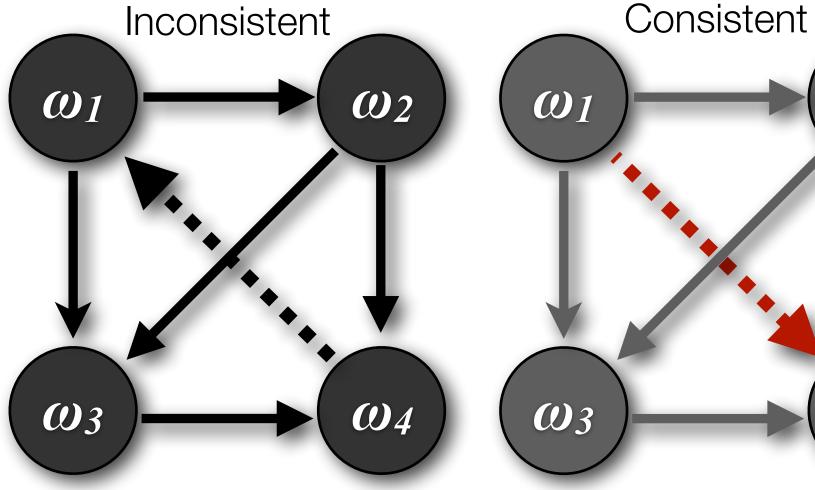
- We can have a ranking where one candidate beats another, although it would loose in a pairwise election
- $\omega_1 > \omega_2 > \omega_3 > \omega_4$ even though ω_4 beats ω_1 in a pairwise election
- By flipping the edge (ω_4, ω_1) we would have a consistent graph
- As this is the only edge we would need to flip, we say the cost of this order is 1.

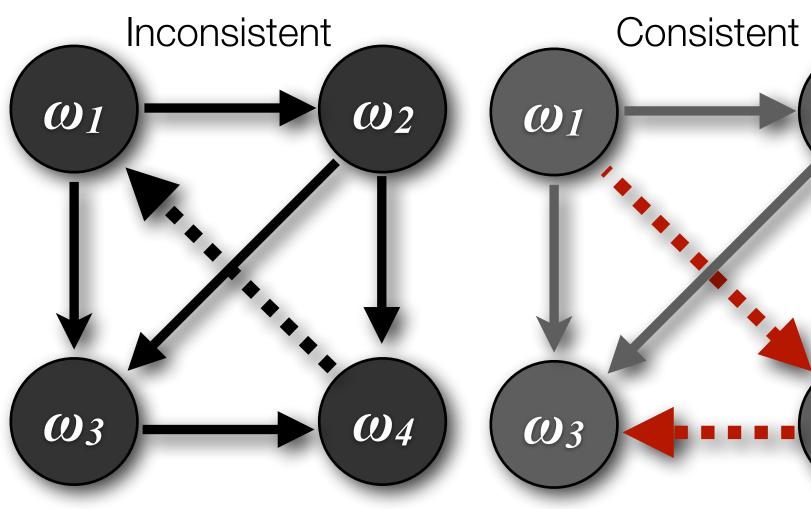


Not examined in 2017-2018

The Slater Ranking

- Remember that the following ranking has a cost of 1
 - $\omega_1 > \omega_2 > \omega_3 > \omega_4$
 - By flipping the single edge (ω_4, ω_1) we would have a consistent graph.
- Consider the alternate ranking:
 - $\omega_1 > \omega_2 > \omega_4 > \omega_3$
 - In this case, we would have to flip two edges (ω_{4}, ω_{1}) and (ω_{3}, ω_{2}) ω_4) giving a **cost of 2** giving





Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

The Slater Ranking

Not examined in 2017-2018

• The Slater ranking is the one with minimal cost

- with the minimal cost
- hard

• i.e. calculate the cost of each ordering and find the one

• Computing the ordering with minimal Slater ranking is NP-

Borda Count

- One reason plurality has so many anomalies is that it ignores most of a voter's preference orders: it only looks at the top ranked candidate.
 - The Borda count takes whole preference order into account.

• Suppose we have k candidates - i.e. $k = |\Omega|$

- For each candidate, we have a variable, counting the strength of opinion in favour of this candidate.
 - If ω_i appears first in a preference order, then we increment the count for ω_i by k 1;
 - we then increment the count for the next outcome in the preference order by k 2,
 - ..., until the final candidate in the preference order has its total incremented by θ .
- After we have done this for all voters, then the totals give the ranking.

Example of Borda Count

Assume we have three voters with preferences:

> $\omega_1 >_1 \omega_3$ $\omega_3 >_2 (\omega_2) >_2 \omega_1$

The Borda count of ω_2 is 4:

2 from the first place vote of voter 1.

1 each from the second place votes of voters 2 and 3.

What are the Borda counts of the other candidates?

- A social choice voting method
 - Also known as Instant Runoff Voting (IRV)
 - Results in a single winner
- Unlike Plurality voting, voters in IRV rank the candidates in order of preference.
 - Counting proceeds in rounds, with the last place candidate being eliminated, until there is a majority vote
- Offers a solution to Condorcet's paradox

William Robert Ware

(1832-1915)

- Used in national elections in several countries, including:
 - Members of the Australian House of Representatives and most Australian state legislatures
 - The President of India, and members of legislative councils in India
 - The President of Ireland

Round 1

Votes	1st choice	2nd choice
7	action	horror
5	comedy	action
2	drama	horror
5	comedy	drama
4	horror	action

	Round 1	Round 2
action	7	
comedy	5+5=10	
drama	2	
horror	4	

4th choice
drama
drama
action
horror
comedy

23 voters chose their favourite movie genres.

Majority (i.e. >50%) will be 12 or more votes

In the first round, we consider all of the 1st choice votes

As *drama* received the fewest votes, we eliminate this and reallocate the overall votes.

Round 2

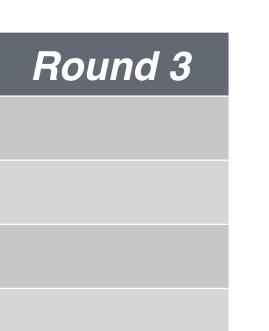
Votes	1st choice	2nd choice
7	action	horror
5	comedy	action
2	drama	horror
5	comedy	drama
4	horror	action

	Round 1	Round 2
action	7	7
comedy	5+5=10	10
drama	2	
horror	4	4+2=6

4th choice
-drama
-drama
action
horror
comedy

23 voters chose their favourite movie genres.

Majority (i.e. >50%) will be 12 or more votes



In the second round, we allocate the 2 votes for *drama* to the next choice, which is horror

However, *horror* now has the fewest votes, and is eliminated

Round 3

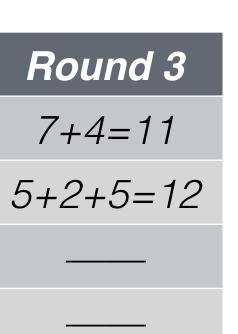
Votes	1st choice	2nd choice
7	action	horror
5	comedy	action
2	drama	horror
5	comedy	drama
4	horror	action

	Round 1	Round 2
action	7	7
comedy	5+5=10	5+5=10
drama	2	
horror	4	4+2=6

4th choice
-drama
-drama
action
horror
comedy

23 voters chose their favourite movie genres.

Majority (i.e. >50%) will be 12 or more votes



In the third round, we allocate the 6 votes for *horror* to the next choices: 2 votes to *comedy*, and 4 to *action*

Comedy now has the majority votes

Desirable Properties of Voting Procedures

 Can we classify the properties we want of a "good" voting procedure?

• Three key properties:

- The Pareto property;
- The Condorcet Winner condition;
- Independence of Irrelevant Alternatives (IIA).

• We should also avoid dictatorships!

The Pareto Property

If everybody prefers ω_i over ω_j , then ω_i should be ranked over ω_i in the social outcome.

Condorcet Winner

If ω_i is a condorcet winner, then ω_i should always be ranked first.

Independence of Irrelevant **Alternatives (IIA)**

Whether ω_i is ranked above ω_j in the social outcome should depend only on the relative orderings of ω_i and ω_j in voters profiles.

The Pareto Condition

- Recall the notion of Pareto efficiency from the previous lecture.
 - An outcome is Pareto efficient if there is no other outcome that makes one agent better off without making another worse off.
 - In voting terms, if every voter ranks ω_i above ω_i then $\omega_i >_* \omega_i$.
- Satisfied by plurality and Borda but not by sequential majority.

The Condorcet winner condition

 Recall that the Condorcet winner is an outcome that would beat every other outcome in a pairwise election.

A Condorcet winner is a strongly preferred outcome.

- The Condorcet winner condition says that if there is a Condorcet winner, then it should be ranked first.
 - Seems obvious.
- However, of the ones we've seen, only sequential majority satisfies it.

Independence of irrelevant alternatives

- Suppose there are a number of candidates including ω_i and ω_j and voter preferences make $\omega_i > \omega_j$.
 - Now assume one voter k changes preferences, but still ranks $\omega_i >_k \omega_j$
 - The independence of irrelevant alternatives (IIA) condition says that however $>_*$ changes, $\omega_i >_* \omega_j$ still.
 - In other words, the social ranking of ω_i and ω_j should depend only on the way they are ranked in the > relations of the voters.

Plurality, Borda and sequential majority do not satisfy IIA.

Dictatorship

- Not a desirable property, but a useful notion to define.
- A social welfare function f is a dictatorship if for some agent i:

 $f(\varpi_1, \varpi_2, \ldots \varpi_n)$

- In other words the output is exactly the preference order of the single "dictator" agent i.
- Plurality and the Borda count are not dictatorships. • But, dictatorships satisfy the Pareto condition and IIA.

$$\mathfrak{O}_n) = \mathfrak{O}_i$$

 $\overline{\omega}_1, \overline{\omega}_2, \dots \overline{\omega}_n$ denotes the preference orders of agents $1, \ldots, n$

Theoretical Results

- We have now explored several social choice functions
- Do any of these satisfy our desirable properties (i.e. Pareto, etc)?
 - **No** according to Arrow's Theorem
- Furthermore, voters can benefit by strategically misrepresenting their preferences, i.e., lying - tactical voting
 - Are there any voting methods which are non-manipulable, in the sense that voters can never benefit from misrepresenting preferences?
 - **No** according to the Gibbard-Satterthwaite Theorem

Theoretical Results

Arrows Theorem

- For elections with more than 2 candidates the only voting procedure satisfying the Pareto condition and IIA is a dictatorship
 - in which the social outcome is in fact simply selected by one of the voters.
- This is a negative result: there are fundamental limits to democratic decision making!

The Gibbard-Satterthwaite Theorem

- The only non-manipulable voting method satisfying the Pareto property for elections with more than 2 candidates is a *dictatorship*.
- In other words, every "realistic" voting method is prey to strategic manipulation...

Computational Complexity to the Rescue

• However...

- Gibbard-Satterthwaite only tells us that manipulation is possible in principle.
 - It does not give any indication of how to misrepresent preferences.
- Bartholdi, Tovey, and Trick showed:
 - computationally complex.
 - "Single Transferable Vote" is NP-hard to manipulate!

• that there are elections that are prone to manipulation in principle, but where manipulation was

Summary

- In this lecture we have looked at mechanisms for group decision making.
 - This has been a bit stylised we looked at how, if a group of agents ranks a set of outcomes, we might create a consensus ranking.
 - This does have a real application in voting systems.
 - Social choice mechanisms are increasingly used in real systems as a way to reach consensus.
 - We looked at the behaviour of some existing voting systems and some theoretical results for voting systems in general.
 - most of these results were pretty negative.
- Lots we didn't have time to cover another area with lots of active research.

Class Reading (Chapter 12):

"The computational difficulty of manipulating an election", J.J. Bartholdi, C.A. Tovey and M.A.Trick. Social Choice and Welfare. Vol. 6 227-241, 1989.

This is the article that prompted the current interest in computational aspects of voting. It is a technical scientific article, but the main thrust of the article is perfectly understandable without a technical detailed background.

Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

