COMP310 Multi-Agent Systems Chapter 14 - Allocating Scarce Resources

Dr Terry R. Payne Department of Computer Science

MICHAEL WOOLDRIDGE

SECOND EDITION

Overview

- Allocation of scarce resources amongst a number of agents is central to multiagent systems.
- A resource might be:
 - a physical object
 - the right to use land
 - computational resources (processor, memory, . . .)
- It is a question of supply vs demand
 - If the *resource isn't scarce...*, or if there is *no competition* for the resource...
 - ...then there is no trouble allocating it
 - If there is a *greater demand than supply*
 - Then we need to determine how to allocate it

Overview

- In practice, this means we will be talking about auctions.
 - These used to be rare (and not so long ago).
 - However, auctions have grown massively with the Web/Internet
 - Frictionless commerce
- Now feasible to auction things that weren't previously profitable:
 - eBay
 - Adword auctions

- Auctions are effective in allocating resources efficiently
 - They also can be used to reveal truths about bidders
- Concerned with traders and their allocations of:
 - Units of an indivisible **good**; and
 - Money, which is divisible.
- Assume some initial allocation.

• Exchange is the free alteration of allocations of goods and money between traders

What is an auction

"... An auction is a market institution in which messages from traders include some price information — this information may be an offer to buy at a given price, in the case of a **bid**, or an offer to sell at a given price, in the case of an **ask** — and which gives priority to higher bids and lower asks..."

This definition, as with all this terminology, comes from Dan Friedman

- There are several models, embodying different assumptions about the nature of the good.
 - Private Value / Common Value / Correlated Value
 - With a common value, there is a risk that the winner will suffer from the *winner's curse*, where the winning bid in an auction exceeds the intrinsic value or true worth of an item
- Each trader has a value or *limit price* that they place on the good.
 - Limit prices have an effect on the behaviour of traders

Types of value

Private Value

Good has an value to me that is independent of what it is worth to you.

• For example: John Lennon's last dollar bill.

Common Value

The good has the same value to all of us, but we have differing estimates of what it is.

• Winner's curse.

Correlated Value

Our values are related.

• The more you're prepared to pay, the more I should be prepared to pay.

Auction Protocol Dimensions

• Winner Determination

- Who gets the good, and what do they pay?
 - e.g. first vs second price auctions

Open Cry vs Sealed-bid

• Are the bids public knowledge?

• Can agents exploit this public knowledge in future bids?

• One-shot vs Iterated Bids

- Is there a single bid (i.e. one-shot), after which the good is allocated?
- If multiple bids are permitted, then:
 - Does the price ascend, or descend?
 - What is the terminating condition?

English Auction

- This is the kind of auction everyone knows.
 - Typical example is sell-side.
- Buyers call out bids, bids increase in price.
 - In some instances the auctioneer may call out prices with buyers indicating they agree to such a price.
- The seller may set a *reserve price*, the lowest acceptable price.
- Auction ends:
 - at a fixed time (internet auctions); or when there is no more bidding activity.
 - The "last man standing" pays their bid.

Classified in the terms we used above:

- First-price •
- **Open-cry**
- Ascending •

Around 95% of internet auctions are of this kind. The classic use is the sale of antiques and artwork.

Susceptible to:

- Winner's curse
- Shills

Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

- Also called a "descending clock" auction
 - Some auctions use a clock to display the prices.
- Starts at a high price, and the auctioneer calls out *descending prices*.
 - One bidder claims the good by indicating the current price is acceptable.
 - *Ties are broken* by restarting the descent from a slightly higher price than the tie occurred at.
- The winner pays the price at which they "stop the clock".

Dutch Auction

Dutch Auction

Classified in the terms we used above:

- First-price
- **Open-cry**
- Descending

High volume (since auction proceeds swiftly). Often used to sell perishable goods:

- Flowers in the Netherlands (eg. Aalsmeer)
- Fish in Spain and Israel.
- Tobacco in Canada.

Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

First-Price Sealed-Bid Auction

- In an English auction, you get information about how much a good is worth.
 - Other people's bids tell you things about the market.
- In a **sealed bid auction**, none of that happens
 - at most you know the winning price after the auction.
- In the First-Price Sealed-Bid (FPSB) auction the highest bid wins as always
 - As its name suggests, the winner pays that highest price (which is what they bid).

Classified in the terms we used above:

- First-price •
- Sealed Bid
- **One-shot** •

Governments often use this mechanism to sell treasury bonds (the UK still does, although the US recently changed to Second-Price sealed Bids).

Property can also be sold this way (as in Scotland).

Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

Vickrey Auction

- The Vickrey auction is a sealed bid auction.
 - The winning bid is the *highest bid*, but the winning bidder *pays the* amount of the second highest bid.
- This sounds odd, but it is actually a very smart design.
 - Will talk about why it works later.
- It is in the bidders' interest to bid their true value.
 - *incentive compatible* in the usual terminology.
- However, it is not a panacea, as the New Zealand government found out in selling radio spectrum rights
 - Due to interdependencies in the rights, that led to strategic bidding,
 - one firm bid NZ\$100,000 for a license, and paid the second-highest price of only NZ\$6.

Classified in the terms we used above:

paper collectibles.

Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

Why does the Vickrey auction work?

- Suppose you bid more than your valuation.
 - You may win the good.
 - If you do, you may end up paying more than you think the good is worth.
 - Not so smart.

- Suppose you bid less than your valuation.
 - You stand less chance of winning the good.
 - However, even if you do win it, you will end up paying the same.
 - Not so smart.

Proof of dominance of truthful bidding

• The payoff for bidder *i* is:

$$p_i = \begin{cases} v_i - \\ 0 \end{cases}$$

• Assume bidder *i* bids $b_i > v_i$ (i.e. **overbids**)

- If $max_{j\neq i} b_j < v_i$, then the bidder would win whether or not the bid was truthful. Therefore the strategies of bidding truthfully and overbidding have equal payoffs
- If $max_{i\neq i} b_i > b_i$, then the bidder would loose whether or not the bid was truthful. Again, both strategies have equal payoffs
- If $v_i < max_{i\neq i}$ $b_i < b_i$, then the strategy of overbidding would win the action, but the payoff would be negative (as the bidder will have overpaid). A truthful strategy would pay zero.

- Let v_i be the bidding agent is value for an item, and b_i be the agent's bid
 - $-\max_{j\neq i}b_j$ if $b_i > \max_{j\neq i}b_j$ otherwise

Proof of dominance of truthful bidding

• Let v_i be the bidding agent is value for an item, and b_i be the agent's bid

• The payoff for bidder *i* is:

$$p_i = \begin{cases} v_i - \\ 0 \end{cases}$$

- Assume bidder *i* bids $b_i < v_i$ (i.e. *underbids*)
 - If $max_{j\neq i} b_j > v_i$, then the bidder would loose whether or not the bid was truthful. Therefore the strategies of bidding truthfully and underbidding have equal payoffs
 - If $max_{i\neq i} b_i < b_i$, then the bidder would win whether or not the bid was truthful. Again, both strategies have equal payoffs
 - If $b_i < max_{j \neq i}$ $b_j < v_i$, then only the strategy of truthtelling would win the action, with a positive payoff (as the bidder would have). An underbidding strategy would pay zero.

 $-\max_{j\neq i}b_j$ if $b_i > \max_{j\neq i}b_j$ otherwise

Not examined in 2017-2018

Collusion

- None of the auction types discussed so far are immune to collusion
 - A grand coalition of bidders can agree beforehand to collude
 - Propose to artificially lower bids for a good
 - Obtain true value for good
 - Share the profit
 - An auctioneer could employ bogus bidders
 - Shills could artificially increase bids in open cry auctions
 - Can result in *winners curse*

Combinatorial Auctions

- A combinatorial auction is an *auction for* bundles of goods.
 - A good example of bundles of goods are spectrum. licences.
 - For the 1.7 to 1.72 GHz band for Brooklyn to be useful, you need a license for Manhattan, Queens, Staten Island.
 - Most valuable are the licenses for the same bandwidth.
 - But a different bandwidth license is more valuable than no license
 - a phone will work, but will be more expensive.

• (The FCC spectrum auctions, however, did not use a combinatorial auction mechanism)

Combinatorial Auctions

- Define a set of items to be auctioned as:
- Given a set of agents $Ag = \{1, ..., n\}$, the preferences of agent i are given with the *valuation function* opposite:
 - If that sounds to you like it would place a big requirement on agents to specify all those preferences, you would be right.
 - If $v_i(\emptyset) = 0$, then we say that the valuation function for *i* is normalised.
 - i.e. Agent *i* does not get any value from an empty allocation
- Another useful idea is *free disposal*:
 - In other words, an agent is never worse off having more stuff.

Set of items for auction

 $\mathcal{Z} = \{Z_1, \dots, Z_m\}$

Valuation Function

$$\upsilon_i: 2^{\mathcal{Z}} \to \mathbb{R}$$

meaning that for every possible bundle of goods $Z \subseteq \mathcal{Z}, v_i(Z)$ says how much Z is worth to i.

 $Z_1 \subseteq Z_2$ implies $v_i(Z_1) \le v_i(Z_2)$

Allocation of Goods

- An outcome is an allocation of goods to the agents. • Note that we don't require all off the goods to be allocated • Formally an allocation is a list of sets Z_1, \ldots, Z_n , one for each agent Ag_i such
- that $Z_i \subset \mathcal{Z}$
 - and for all $i,j \in Ag$ such that $i \neq j$, we have $Z_i \cap Z_j = \emptyset$.
 - Thus no good is allocated to more than one agent.

• The set of all allocations of Z to agents Ag is: $alloc(\mathcal{Z}, Ag)$

- If we design the auction, we get to say how the allocation is determined.
 - Combinatorial auctions can be viewed as different social choice functions, with different outcomes relating to different allocations of goods
 - A desirable property would be to maximize social welfare.
 - i.e. maximise the sum of the utilities of all the agents.
- We can define a social welfare function:

 $v_i(Z_i)$ $\ldots, Z_n, v_1, \ldots, v_n) = \mathbf{b}$ SUi=1

allocations

Maximising Social Welfare

\boldsymbol{n}

Defining a Combinatorial Auction

- Given this, we can define a combinatorial auction.
 - Given a set of goods Z and a collection of valuation functions v_1, \ldots, v_n , one for each agent $i \in Ag$, the goal is to find an allocation Z_1^* , ... Z_n^* that maximises sw:

$$Z_1^*, \dots, Z_n^* = \underset{(Z_1, \dots, Z_n) \in alloc(\mathcal{Z}, Ag)}{sw(Z_1, \dots, Z_n, v_1, \dots, v_n)}$$

• Figuring this out is called the *winner determination* problem.

Winner Determination

• How do we do this?

- Well, we could get every agent *i* to declare their valuation: \hat{v}_i
 - The hat denotes that this is what the agent says, not what it necessarily is.
 - Remember that the agent may lie!
- Then we just look at all the possible allocations and figure out what the best one is.

- One problem here is representation, valuations are exponential: $v_i: 2^{\mathcal{Z}} \to \mathbb{R}$
 - A naive representation is impractical.
 - In a bandwidth auction with 1122 licenses we would have to specify 2¹¹²² values for each bidder.
- Searching through them is computationally intractable

- the bits they want to mention.
 - An atomic bid β is a pair (Z, p) where $Z \subseteq \mathcal{Z}$
 - A bundle Z' satisfies a bid (Z, p) if $Z \subseteq Z'$.
- Atomic bids define valuations

$$v_{\beta}(Z') = \left\{ \right.$$

Atomic bids alone don't allow us to construct very interesting valuations.

Bidding Languages

Rather than exhaustive evaluations, allow bidders to construct valuations from

• In other words a bundle *satisfies* a bid if it contains at least the things in the bid.

- p if Z' satisfies (Z, p)
 - otherwise 0

XOR Bids

• With XOR bids, we pay for at most one

• A bid $\beta = (Z_1, p_1) XOR \dots XOR (Z_k, p_k)$ defines a valuation function v_{β} as follows:

 $v_{\beta}(Z') = \begin{cases} 0 & \text{if } Z' \text{ does not satisfy any } (Z_i, p_i) \\ \max\{p_i | Z_i \subseteq Z'\} & \text{otherwise} \end{cases}$

- I pay nothing if your allocation Z' doesn't satisfy any of my bids
- Otherwise, I will pay the largest price of any of the satisfied bids.
- •XOR bids are *fully expressive*, that is they can express any valuation function over a set of goods.
 - To do that, we may need an exponentially large number of atomic bids.
 - However, the valuation of a bundle can be computed in polynomial time.

$B_1 = (\{a, b\}, 3) XOR (\{c, d\}, 5)$

"... I would pay 3 for a bundle that contains a and b but not c and d. I will pay 5 for a bundle that contains c and d but not a and b, and I will pay 5 for a bundle that contains a, b, c and d..."

From this we can construct the valuation:

 $v_{\beta_1}(\{a\}) = 0$ $v_{\beta_1}(\{b\}) = 0$ $v_{\beta_1}(\{a,b\}) = 3$ $v_{\beta_1}(\{c,d\}) = 5$ $v_{\beta_1}(\{a, b, c, d\}) = 5$

Not examined in 2017-2018

OR Bids

• With OR bids, we are prepared to pay for more than one bundle

- A bid $\beta = (Z_1, p_1) OR \dots OR (Z_k, p_k)$ defines k valuations for different bundles
- An allocation of goods Z' is assigned given a set W of atomic bids such that:
 - Every bid in W is satisfied by Z'
 - No goods appear in more than one bundle; i all *i*,*i* where $i \neq j$
 - No other subset W' satisfying the above condition is better:

.e.
$$Z_i \cap Zj = \emptyset$$
 for

$B_1 = (\{a, b\}, 3) OR (\{c, d\}, 5)$

"... I would pay 3 for a bundle that contains a and b but not c and d. I will pay 5 for a bundle that contains c and d but not a and b, and I will pay 8 for both bundles that contain a combination of a, b, c and d..."

From this we can construct the valuation:

- $v_{\beta_1}(\{a\}) = 0$
- $\upsilon_{\beta_1}(\{b\}) = 0$
- $v_{\beta_1}(\{a,b\}) = 3$
- $v_{\beta_1}(\{c,d\}) = 5$
- $v_{\beta_1}(\{a, b, c, d\}) = 8$

Note that the **cost of the last bundle is** different to that when the XOR bid was used

OR Bids

• Here is another example!

- $B_3 = (\{e, f, g\}, 4) OR(\{f, g\}, 1) OR(\{e\}, 3) OR(\{c, d\}, 4)$
- $v_{\beta_3}(\{e\}) = 3$ • This gives us: $v_{\beta_3}(\{e, f\}) = 3$ $v_{\beta_3}(\{e, f, g\}) = 4$ $v_{\beta_3}(\{b, c, d, f, g\}) = 4 + 1 = 5$ $v_{\beta_3}(\{a, b, c, d, e, f, g\}) = 4 + 4 = 8$ $v_{\beta_3}(\{c, d, e\}) = 4 + 3 = 7$
- Remember that if more than one bundle is satisfied, then you pay for each of the bundles satisfied.
 - Also remember free disposal, which is why the bundle $\{e, f\}$ satisfies the bid $(\{e\}, 3)$ as the agent doesn't pay extra for f

OR Bids

OR bids are strictly less expressive than XOR bids

Not examined in

2017-2018

- Some valuation functions cannot be expressed:
- $v(\{a\}) = 1, v(\{b\}) = 1, v(\{a,b\}) = 1$
- - Given an OR bid β and a bundle Z, computing $v_{\beta}(Z)$ is NP-hard

• OR bids also suffer from computational complexity

Winner Determination

- Determining the winner is a combinatorial optimisation problem (NP-hard)
 - But this is a worst case result, so it may be possible to develop approaches that are either optimal and run well in many cases, or approximate (within some bounds).
- Typical approach is to code the problem as an *integer linear* program and use a standard solver.

 - This is NP-hard in principle, but often provides solutions in reasonable time. • Several algorithms exist that are efficient in most cases
- Approximate algorithms have been explored
 - Few solutions have been found with reasonable bounds
- Heuristic solutions based on greedy algorithms have also been investigated
 - e.g. that try to find the largest bid to satisfy, then the next etc

- Auctions are easy to strategically manipulate
 - In general we don't know whether the agents valuations are true valuations.
 - Life would be easier if they were...
 - ... so can we make them true valuations?
- Yes!
 - In a generalization of the Vickrey auction.
 - Vickrey/Clarke/Groves Mechanism

 Mechanism is incentive compatible: telling the truth is a dominant strategy.

The VCG Mechanism

Recall that we could get every agent i to declare their valuation:

 v_i

where the hat denotes that this is what the agent says, not what it necessarily is.

• The agent may lie!

- Need some more notation.
 - **Indifferent valuation** function: $v^0(Z) = 0$ for all Z
 - I.e. the value for a bid that doesn't care about the goods
 - sw_{-i} is the social welfare function without i:

$$sw_{-i}(Z_1,\ldots,Z_n,v_1,\ldots,v_n) = \sum_{\substack{j \in Ag, j \neq i}} v_j(Z_j)$$

- This is how well everyone except agent i does from $Z_1, ..., Z_n$
- And we can then define the VCG mechanism.

The VCG Mechanism

- Every agent simultaneously declares a valuation \hat{v}_i
 - Remember that this not be the actual valuation
- The mechanism computes the allocation Z_{1^*}, \ldots, Z_{n^*} : $Z_1^*, \ldots, Z_n^* = \operatorname{argmax}_{(Z_1, \ldots, Z_n) \in \operatorname{alloc}(\mathcal{Z}, Aq)} sw(Z_1, \ldots, Z_n, \hat{v_1}, \ldots, \hat{v_i}, \ldots, \hat{v_n})$
- Each agent *i* pays p_i
 - This is effectively a *compensation* to the other agents for their loss in utility due to *i* winning an allocation $p_i = sw_{-i}(Z'_1, \dots, Z'_n, \hat{v}_1, \dots, v^0, \dots, \hat{v}_n)$ Between the outcome Z_1 ', ..., Z_n ' when *i* doesn't participate
 - This is the difference in social welfare to agents other than i
- $-sw_{-i}(Z_1^*,\ldots,Z_n^*,\hat{v}_1,\ldots,\hat{v}_i,\ldots,\hat{v}_n)$
 - And the outcome Z_{1^*}, \ldots, Z_{n^*} when *i* does participate
 - Therefore the mechanism computes, for each agent I the allocation that maximises social welfare were that agent to have declared v^0 to be its valuation:

$$Z'_1,\ldots,Z'_n$$
 =

The VCG Mechanism

 $= argmax_{(Z_1,\dots,Z_n)\in alloc(\mathcal{Z},Ag)} sw(Z_1,\dots,Z_n,\hat{v_1},\dots,v^0,\dots,\hat{v_n})$ Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018 29

- With the VCG, each agent pays out the cost (to the other agents) of it having participated in the auction.
 - It is incentive compatible for exactly the same reason as the Vickrey auction was before.
 - No agent can benefit by declaring anything other than its true valuation
 - To understand this, think about VCG with a singleton bundle
 - The only agent that pays anything will be the agent *i* that has the highest bid
 - But if it had not participated, then the agent with the second highest bid would have won
 - Therefore agent *i* "*compensates*" the other agents by paying this second highest bid
- to maximise social welfare.

The VCG Mechanism

• Therefore we get a dominant strategy for each agent that guarantees

• i.e. social welfare maximisation can be implemented in dominant strategies

Summary

Allocating scarce resources comes down to auctions

- We looked at a range of different simple auction mechanisms.
 - English auction
 - Dutch auction
 - First price sealed bid
 - Vickrey auction
- The we looked at the popular field of combinatorial auctions.
 - We discussed some of the problems in implementing combinatorial auctions.
- And we talked about the Vickrey/Clarke/Groves mechanism, a rare ray of sunshine on the problems of multiagent interaction.

Class Reading (Chapter 14):

"Expressive commerce and its application to" sourcing: How to conduct \$35 billion of generalized combinatorial auctions", T. Sandholm. Al Magazine, 28(3): 45-58 (2007).

This gives a detailed case study of a successful company operating in the area of computational combinatorial auctions for industrial procurement.

