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Overview
•Allocation of scarce resources amongst a number 

of agents is central to multiagent systems. 

•A resource might be: 
• a physical object 
• the right to use land 
• computational resources (processor, memory, . . . ) 

•It is a question of supply vs demand 
• If the resource isn’t scarce…, or if there is no competition for 

the resource... 
• ...then there is no trouble allocating it 

• If there is a greater demand than supply 
• Then we need to determine how to allocate it

!2



Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

Overview
•In practice, this means we will be talking 

about auctions. 
• These used to be rare (and not so long ago).  
• However, auctions have grown massively with the  

Web/Internet 
• Frictionless commerce 

•Now feasible to auction things that 
weren’t previously profitable:  
• eBay 
• Adword auctions
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What is an auction
•Auctions are effective in allocating resources 

efficiently 
• They also can be used to reveal truths about bidders  

•Concerned with traders and their allocations of: 
• Units of an indivisible good; and 
• Money, which is divisible. 

•Assume some initial allocation. 

•Exchange is the free alteration of allocations of 
goods and money between traders

!4

“... An auction is a market institution in 
which messages from traders include 
some price information — this 
information may be an offer to buy at a 
given price, in the case of a bid, or an 
offer to sell at a given price, in the case 
of an ask — and which gives priority to 
higher bids and lower asks...” 

This definition, as with all this 
terminology, comes from Dan Friedman
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Types of value
•There are several models, embodying 

different assumptions about the nature 
of the good.  
• Private Value / Common Value / Correlated Value 

• With a common value, there is a risk that the winner will suffer 
from the winner’s curse, where the winning bid in an auction 
exceeds the intrinsic value or true worth of an item 

•Each trader has a value or limit price 
that they place on the good.  
• Limit prices have an effect on the behaviour of 

traders
!5

Private Value 
Good has an value to me that is independent 
of what it is worth to you. 
• For example: John Lennon’s last dollar bill.

Common Value 
The good has the same value to all of us, but 
we have differing estimates of what it is. 
• Winner’s curse.

Correlated Value 
Our values are related. 
• The more you’re prepared to pay, the more 

I should be prepared to pay.
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Auction Protocol Dimensions
•Winner Determination  

• Who gets the good, and what do they pay? 
• e.g. first vs second price auctions 

•Open Cry vs Sealed-bid  
• Are the bids public knowledge? 

• Can agents exploit this public knowledge in future bids? 

•One-shot vs Iterated Bids  
• Is there a single bid (i.e. one-shot), after which the good is 

allocated? 
• If multiple bids are permitted, then: 

• Does the price ascend, or descend? 
• What is the terminating condition?

!6
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English Auction
•This is the kind of auction everyone knows.  

• Typical example is sell-side.  

•Buyers call out bids, bids increase in price.  
• In some instances the auctioneer may call out prices with buyers 

indicating they agree to such a price. 

•The seller may set a reserve price, the lowest 
acceptable price.  

•Auction ends: 
• at a fixed time (internet auctions); or when there is no more 

bidding activity.  
• The “last man standing” pays their bid.

!7

English Auction 

Classified in the terms we used above: 
• First-price 
• Open-cry 
• Ascending 

Around 95% of internet auctions are of this kind.  
The classic use is the sale of antiques and artwork. 
Susceptible to:  

• Winner’s curse 
• Shills
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Dutch Auction
•Also called a “descending clock” auction 

• Some auctions use a clock to display the prices. 

•Starts at a high price, and the auctioneer 
calls out descending prices.  
• One bidder claims the good by indicating the current 

price is acceptable.  
• Ties are broken by restarting the descent from a slightly higher 

price than the tie occurred at. 

•The winner pays the price at which they 
“stop the clock”.

!8

Dutch Auction 

Classified in the terms we used above: 
• First-price 
• Open-cry 
• Descending 

High volume (since auction proceeds swiftly).  Often 
used to sell perishable goods: 

• Flowers in the Netherlands (eg. Aalsmeer) 
• Fish in Spain and Israel. 
• Tobacco in Canada.
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First-Price Sealed-Bid Auction
•In an English auction, you get information 

about how much a good is worth.  
• Other people’s bids tell you things about the market. 

•In a sealed bid auction, none of that 
happens 
• at most you know the winning price after the auction. 

•In the First-Price Sealed-Bid (FPSB) auction 
the highest bid wins as always  
• As its name suggests, the winner pays that highest price 

(which is what they bid). 
!9

FPSB 

Classified in the terms we used above: 
• First-price 
• Sealed Bid 
• One-shot 

Governments often use this mechanism to sell 
treasury bonds (the UK still does, although the US 
recently changed to Second-Price sealed Bids). 
Property can also be sold this way (as in Scotland).
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Vickrey Auction
•The Vickrey auction is a sealed bid auction.  

• The winning bid is the highest bid, but the winning bidder pays the 
amount of the second highest bid. 

•This sounds odd, but it is actually a very smart design. 
• Will talk about why it works later. 

•It is in the bidders’ interest to bid their true value. 
• incentive compatible in the usual terminology. 

•However, it is not a panacea, as the New Zealand 
government found out in selling radio spectrum rights 
• Due to interdependencies in the rights, that led to strategic bidding, 

• one firm bid NZ$100,000 for a license, and paid the second-highest price of only NZ$6.

!10

Vickrey Auction 

Classified in the terms we used above: 

• Second-price 
• Sealed Bid 
• One-shot 

Historically used in the sale of stamps and other 
paper collectibles.
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Why does the Vickrey auction work?
•Suppose you bid more 

than your valuation. 
• You may win the good.  
• If you do, you may end up paying 

more than you think the good is 
worth.  

• Not so smart. 

•Suppose you bid less than 
your valuation. 
• You stand less chance of winning 

the good. 
• However, even if you do win it, 

you will end up paying the same. 
• Not so smart.

!11



Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

Proof of dominance of truthful bidding
•Let 𝜐i be the bidding agent i’s value for an item, and bi be the agent’s bid 

• The payoff for bidder i is: 

•Assume bidder i bids bi > 𝜐i (i.e. overbids) 
• If maxj≠i bj < 𝜐i, then the bidder would win whether or not the bid was truthful.  Therefore the 

strategies of bidding truthfully and overbidding have equal payoffs 
• If maxj≠i bj > bi, then the bidder would loose whether or not the bid was truthful.  Again, both 

strategies have equal payoffs 

• If 𝜐i < maxj≠i bj < bi, then the strategy of overbidding would win the action, but the payoff would be 
negative (as the bidder will have overpaid).  A truthful strategy would pay zero.

!12

pi =

⇢
vi �maxj 6=ibj if bi > maxj 6=ibj
0 otherwise
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Proof of dominance of truthful bidding
•Let 𝜐i be the bidding agent i’s value for an item, and bi be the agent’s bid 

• The payoff for bidder i is: 

•Assume bidder i bids bi < 𝜐i (i.e. underbids) 
• If maxj≠i bj > 𝜐i, then the bidder would loose whether or not the bid was truthful.  Therefore the 

strategies of bidding truthfully and underbidding have equal payoffs 
• If maxj≠i bj < bi, then the bidder would win whether or not the bid was truthful.  Again, both 

strategies have equal payoffs 

• If bi < maxj≠i bj < 𝜐i, then only the strategy of truthtelling would win the action, with a positive payoff 
(as the bidder would have).  An underbidding strategy would pay zero.

!13

pi =

⇢
vi �maxj 6=ibj if bi > maxj 6=ibj
0 otherwise
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Collusion
•None of the auction types discussed 

so far are immune to collusion 
• A grand coalition of bidders can agree 

beforehand to collude 
• Propose to artificially lower bids for a good 
• Obtain true value for good 
• Share the profit 

• An auctioneer could employ bogus bidders 
• Shills could artificially increase bids in open cry auctions 
• Can result in winners curse 

!14

Not examined in 

2017-2018
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Combinatorial Auctions
•A combinatorial auction is an auction for 

bundles of goods. 
• A good example of bundles of goods are spectrum 

licences.  
• For the 1.7 to 1.72 GHz band for Brooklyn to be useful, 

you need a license for Manhattan, Queens, Staten Island.  
• Most valuable are the licenses for the same bandwidth.  
• But a different bandwidth license is more valuable than no  

license 
• a phone will work, but will be more expensive. 

•(The FCC spectrum auctions, however, did 
not use a combinatorial auction mechanism) 

!15
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Combinatorial Auctions
•Define a set of items to be auctioned as: 

•Given a set of agents Ag = {1,...,n}, the 
preferences of agent i are given with the 
valuation function opposite: 
• If that sounds to you like it would place a big requirement on 

agents to specify all those preferences, you would be right.  

• If 𝜐i(∅) = 0, then we say that the valuation function for i is 
normalised. 
• i.e. Agent i does not get any value from an empty allocation 

•Another useful idea is free disposal: 
• In other words, an agent is never worse off having more stuff.

!16

Z1 ✓ Z2 implies vi(Z1)  vi(Z2)

Z1 ✓ Z2 implies vi(Z1)  vi(Z2)

Free Disposal

Z = {Z1, . . . , Zm}

Set of items for auction

⌫i : 2Z ! R
meaning that for every possible
bundle of goods Z ✓ Z, vi(Z)
says how much Z is worth to i.

Valuation Function

�i : 2Z ! R
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Allocation of Goods

•An outcome is an allocation of goods to the agents. 
• Note that we don’t require all off the goods to be allocated  
• Formally an allocation is a list of sets Z1, . . . Zn, one for each agent Agi such 

that  

• and for all i,j ∈ Ag such that i ≠ j, we have Zi ∩ Zj =∅.  
• Thus no good is allocated to more than one agent.  

• The set of all allocations of Z to agents Ag is: 

!17

Zi ✓ Z

alloc(Z, Ag)
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Maximising Social Welfare
• If we design the auction, we get to say how the allocation 

is determined.  
• Combinatorial auctions can be viewed as different social choice functions, 

with different outcomes relating to different allocations of goods 
• A desirable property would be to maximize social welfare. 

• i.e. maximise the sum of the utilities of all the agents. 

•We can define a social welfare function: 

!18

sw(Z1, . . . , Zn, v1, . . . , vn) =
nX

i=1

vi(Zi)

allocations valuations 
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Defining a Combinatorial Auction
•Given this, we can define a combinatorial auction.  

• Given a set of goods Z and a collection of valuation functions 𝜐1,...,𝜐n, one 
for each agent i ∈ Ag, the goal is to find an allocation Z1*, … Zn* that 
maximises sw: 

•Figuring this out is called the winner determination 
problem. 

!19

Z⇤
1 , . . . , Z

⇤
n = argmax(Z1,...,Zn)2alloc(Z,Ag)sw(Z1, . . . , Zn, v1, . . . , vn)

Z⇤
1 , . . . , Z

⇤
n = argmax(Z1,...,Zn)2alloc(Z,Ag)sw(Z1, . . . , Zn, v1, . . . , vn)Z⇤

1 , . . . , Z
⇤
n = argmax(Z1,...,Zn)2alloc(Z,Ag)sw(Z1, . . . , Zn, v1, . . . , vn)
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Winner Determination
•How do we do this?  

•Well, we could get every agent 
i to declare their valuation:  
• The hat denotes that this is what the 

agent says, not what it necessarily is.  
• Remember that the agent may lie! 

• Then we just look at all the 
possible allocations and figure 
out what the best one is. 

•One problem here is 
representation, valuations are 
exponential: 

• A naive representation is impractical. 
• In a bandwidth auction with 1122 

licenses we would have to specify 
21122 values for each bidder.  

•Searching through them is 
computationally intractable

!20

v̂i

vi : 2Z ! R
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Bidding Languages
• Rather than exhaustive evaluations, allow bidders to construct valuations from 

the bits they want to mention.  
• An atomic bid β is a pair (Z, p) where   
• A bundle Z′ satisfies a bid (Z, p) if Z ⊆ Z′.  

• In other words a bundle satisfies a bid if it contains at least the things in the bid. 

• Atomic bids define valuations 

• Atomic bids alone don’t allow us to construct very interesting valuations.

!21

v�(Z
0) =

⇢
p if Z 0 satisfies (Z, p)
0 otherwise

Z ✓ Z
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XOR Bids
•With XOR bids, we pay for at most one 

• A bid β = (Z1, p1) XOR … XOR (Zk, pk) defines a valuation function 
vβ as follows: 

• I pay nothing if your allocation Z’ doesn’t satisfy any of my bids 

• Otherwise, I will pay the largest price of any of the satisfied bids.  

•XOR bids are fully expressive, that is they can 
express any valuation function over a set of goods.  
• To do that, we may need an exponentially large number of atomic 

bids.  
• However, the valuation of a bundle can be computed in polynomial time. 

!22

v�(Z
0) =

⇢
0 if Z 0 does not satisfy any (Zi, pi)
max{pi|Zi ✓ Z 0} otherwise

v�1({a}) = 0

v�1({b}) = 0

v�1({a, b}) = 3

v�1({c, d}) = 5

v�1({a, b, c, d}) = 5

B1 =({a,b}, 3) XOR ({c, d}, 5) 
“…I would pay 3 for a bundle that contains a 
and b but not c and d. I will pay 5 for a bundle 
that contains c and d but not a and b, and I will 
pay 5 for a bundle that contains a, b, c and d...” 

From this we can construct the valuation:
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OR Bids
•With OR bids, we are prepared to 

pay for more than one bundle 
• A bid β = (Z1, p1) OR … OR (Zk, pk) defines k 

valuations for different bundles 
• An allocation of goods Z’  is assigned given a set 

W of atomic bids such that: 
• Every bid in W is satisfied by Z’ 

• No goods appear in more than one bundle; i.e. Zi ∩ Zj = ∅ for 
all i,i where i ≠ j 

• No other subset W’ satisfying the above condition is better:

!23

Not examined in 

2017-2018

X

(Zi,pi)2W 0

pi >
X

(Zj ,pj)2W 0

pj

B1 =({a,b}, 3) OR ({c, d}, 5) 
“…I would pay 3 for a bundle that contains a 
and b but not c and d. I will pay 5 for a bundle 
that contains c and d but not a and b, and I will 
pay 8 for both bundles that contain a 
combination of a, b, c and d...” 

From this we can construct the valuation: 

Note that the cost of the last bundle is 
different to that when the XOR bid was used

��1({a}) = 0

��1({b}) = 0

��1({a, b}) = 3

��1({c, d}) = 5

��1({a, b, c, d}) = 8
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OR Bids
•Here is another example! 

• B3 =({e, f, g}, 4) OR ({f, g}, 1) OR ({e}, 3) OR ({c, d}, 4)  

• This gives us: 

•Remember that if more than one bundle is satisfied, then you pay for each 
of the bundles satisfied. 
• Also remember free disposal, which is why the bundle {e,f} satisfies the bid ({e}, 3) as the agent 

doesn’t pay extra for f

!24

��3({e}) = 3

��3({e, f}) = 3

��3({e, f, g}) = 4

��3({b, c, d, f, g}) = 4 + 1 = 5

��3({a, b, c, d, e, f, g}) = 4 + 4 = 8

��3({c, d, e}) = 4 + 3 = 7

Not examined in 

2017-2018
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OR Bids
•OR bids are strictly less expressive than XOR bids 

• Some valuation functions cannot be expressed: 

• 𝜐({a}) = 1, 𝜐({b}) = 1, 𝜐({a,b}) = 1 

•OR bids also suffer from computational complexity 
• Given an OR bid β and a bundle Z, computing 𝜐β(Z) is NP-hard

!25

Not examined in 

2017-2018
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Winner Determination
•Determining the winner is a combinatorial optimisation problem 

(NP-hard) 
• But this is a worst case result, so it may be possible to develop approaches that 

are either optimal and run well in many cases, or approximate (within some 
bounds). 

•Typical approach is to code the problem as an integer linear 
program and use a standard solver.  
• This is NP-hard in principle, but often provides solutions in reasonable time.  
• Several algorithms exist that are efficient in most cases 

•Approximate algorithms have been explored 
• Few solutions have been found with reasonable bounds 

•Heuristic solutions based on greedy algorithms have also 
been investigated 
• e.g. that try to find the largest bid to satisfy, then the next etc

!26
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The VCG Mechanism
•Auctions are easy to strategically manipulate 

• In general we don’t know whether the agents valuations 
are true valuations.  

• Life would be easier if they were… 
• … so can we make them true valuations? 

•Yes! 
• In a generalization of the Vickrey auction.  

• Vickrey/Clarke/Groves Mechanism 

•Mechanism is incentive compatible: telling 
the truth is a dominant strategy.

!27

Recall that we could get every 
agent i to declare their valuation:


where the hat denotes that this 
is what the agent says, not what 
it necessarily is. 


• The agent may lie!

v̂i
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The VCG Mechanism
•Need some more notation. 

• Indifferent valuation function: 𝜐0(Z) = 0 for all Z 
• I.e. the value for a bid that doesn’t care about the goods 

• sw−i is the social welfare function without i: 

• This is how well everyone except agent i does from Z1, ..., Zn 

•And we can then define the VCG mechanism.
!28

sw�i(Z1, . . . , Zn, v1, . . . , vn) =
X

j2Ag,j 6=i

vj(Zj)
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The VCG Mechanism
•Every agent simultaneously declares a valuation 

• Remember that this not be the actual valuation 

• The mechanism computes the allocation Z1∗, . . . , Zn∗: 

•Each agent i pays pi  
• This is effectively a compensation to the other agents for their loss in utility due to i winning an allocation 
• This is the difference in social welfare to agents other than i 

• Between the outcome Z1’, . . . , Zn’ when i doesn’t participate 

• And the outcome Z1∗, . . . , Zn∗ when i does participate 

• Therefore the mechanism computes, for each agent I the allocation that maximises social welfare were 
that agent to have declared 𝜐0 to be its valuation:

!29

v̂i

Z⇤
1 , . . . , Z

⇤
n = argmax(Z1,...,Zn)2alloc(Z,Ag)sw(Z1, . . . , Zn, v̂1, . . . , v̂i, . . . , v̂n)

Z 0
1, . . . , Z

0
n = argmax(Z1,...,Zn)2alloc(Z,Ag)sw(Z1, . . . , Zn, v̂1, . . . , v

0, . . . , v̂n)

pi = sw�i(Z
0
1, . . . , Z

0
n, v̂1, . . . , v

0, . . . , v̂n)

� sw�i(Z
⇤
1 , . . . , Z

⇤
n, v̂1, . . . , v̂i, . . . , v̂n)



Copyright: M. J. Wooldridge, S. Parsons and T.R. Payne, Spring 2013. Updated 2018

The VCG Mechanism
•With the VCG, each agent pays out the cost (to the other agents) of it 

having participated in the auction.  
• It is incentive compatible for exactly the same reason as the Vickrey auction was before. 

• No agent can benefit by declaring anything other than its true valuation 

• To understand this, think about VCG with a singleton bundle 
• The only agent that pays anything will be the agent i that has the highest bid 
• But if it had not participated, then the agent with the second highest bid would have won 
• Therefore agent i “compensates” the other agents by paying this second highest bid 

• Therefore we get a dominant strategy for each agent that guarantees 
to maximise social welfare. 
• i.e. social welfare maximisation can be implemented in dominant strategies

!30
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Summary
•Allocating scarce resources comes down to auctions 

• We looked at a range of different simple auction mechanisms.  
• English auction 
• Dutch auction 
• First price sealed bid 
• Vickrey auction 

•The we looked at the popular field of combinatorial 
auctions. 
• We discussed some of the problems in implementing combinatorial 

auctions. 

•And we talked about the Vickrey/Clarke/Groves 
mechanism, a rare ray of sunshine on the problems 
of multiagent interaction. 

!31

Class Reading (Chapter 14): 

“Expressive commerce and its application to 
sourcing: How to conduct $35 billion of 
generalized combinatorial auctions”, T. 
Sandholm.  AI Magazine, 28(3): 45-58 
(2007). 

This gives a detailed case study of a 
successful company operating in the 
area of computational combinatorial 
auctions for industrial procurement.


