
COMP310 
Multi-Agent Systems

Dr Terry R. Payne 
Department of Computer Science

Chapter 2 - Intelligent Agents



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

What is an Agent?
•The main point about agents is they are autonomous: 

capable independent action. 

• It is all about decisions 
• An agent has to choose what action to perform. 
• An agent has to decide when to perform an action.

2

“... An agent is a computer system that is situated in some 
environment, and that is capable of autonomous action in that 
environment in order to meet its delegated objectives...”



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agent and Environment

3

environment

feedba
ck

actions

sensors

effectors/actuators
percepts

?
Perception

D
ecision

A
ction

}
}
}



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Autonomy
•There is a spectrum of autonomy 

•Autonomy is adjustable 
• Decisions handed to a higher authority when this is beneficial

4

Simple Machines
(no autonomy)

People
(full autonomy)



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Simple (Uninteresting) Agents
•Control Systems 

• Example: Thermostat (physical environment) 
• delegated goal is maintain room temperature 
• actions are heat on/off 

•Software Demons 
• Example: UNIX biff program (software environment) 
• delegated goal is monitor for incoming email and flag it 
• actions are GUI actions. 

•They are trivial because the decision making they do is trivial.
5



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agents and Objects

•Are agents just objects by another 
name? 

•Object: 
• encapsulates some state; 
• communicates via message passing; 
• has methods, corresponding to operations that 

may be performed on this state.

6

“... Agents are objects 
with attitude...”



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Differences between Agents and Objects
•Agents are autonomous: 

• agents embody stronger notion of autonomy than objects, 
and in particular, they decide for themselves whether or not 
to perform an action on request from another agent; 

•Agents are smart: 
• capable of flexible (reactive, pro-active, social) behaviour – 

the standard object-oriented model has nothing to say about 
such types of behaviour; 

•Agents are active: 
• not passive service providers; a multi-agent system is 

inherently multi-threaded, in that each agent is assumed to 
have at least one thread of active control.

7

Agents do it because they 
want to!

Agents do it for personal gain!

Objects do it because they 
have to!

Objects do it for free!



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Aren’t agents just expert systems 
by another name?

•Expert systems typically disembodied 
‘expertise’ about some (abstract) domain of 
discourse. 
• agents are situated in an environment 

•MYCIN is not aware of the world — only 
information obtained is by asking the user 
questions. 
• agents act 

•MYCIN does not operate on patients.
8

MYCIN is an example of an 
Expert System that knows 
about blood diseases in 
humans.

It has a wealth of knowledge 
about blood diseases, in the 
form of rules.

A doctor can obtain expert 
advice about blood diseases by 
giving MYCIN facts, answering 
questions, and posing queries.



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Intelligent Agents and AI
•When building an agent, we simply want a system that can choose the 

right action to perform, typically in a limited domain. 

•We do not have to solve all the problems of AI to build a useful agent: 

•Oren Etzioni, speaking about the commercial experience of NETBOT, Inc:

9

“... We made our agents dumber and dumber and dumber . . . until finally they made money...”

“...a little intelligence goes a long way!..”



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Properties of Environments
•Since agents are in close contact with their environment, the properties 

of the environment affect agents. 
• Also have a big effect on those of us who build agents. 

•Common to categorise environments along some different dimensions. 
• Fully observable vs partially observable 
• Deterministic vs non-deterministic 
• Static vs dynamic 
• Discrete vs continuous 
• Episodic vs non-episodic 
• Real Time

10



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Properties of Environments

•Fully observable vs partially observable. 
• An accessible or fully observable environment is one in which the agent can obtain complete, 

accurate, up-to-date information about the environment’s state. 
• Most moderately complex environments (including, for example, the everyday physical world and 

the Internet) are inaccessible, or partially observable. 
• The more accessible an environment is, the simpler it is to build agents to operate in it.

11



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Properties of Environments

•Deterministic vs non-deterministic. 
• A deterministic environment is one in which any action has a single guaranteed effect — there is 

no uncertainty about the state that will result from performing an action. 
• The physical world can to all intents and purposes be regarded as non-deterministic. 
• We'll follow Russell and Norvig in calling environments stochastic if we quantify the non-

determinism using probability theory. 
• Non-deterministic environments present greater problems for the agent designer.

12



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Properties of Environments

•Static vs dynamic. 
• A static environment is one that can be assumed to remain unchanged except by the 

performance of actions by the agent. 
• A dynamic environment is one that has other processes operating on it, and which hence 

changes in ways beyond the agent’s control. 
• The physical world is a highly dynamic environment. 
• One reason an environment may be dynamic is the presence of other agents.

13



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Properties of Environments
•Discrete vs continuous. 

• An environment is discrete if there are a fixed, 
finite number of actions and percepts in it. 
• Otherwise it is continuous 

• Russell and Norvig give a chess game as an 
example of a discrete environment, and taxi 
driving as an example of a continuous one. 

•Often we treat a continuous 
environment as discrete for simplicity

14



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Properties of Environments
•Episodic vs non-episodic 

• In an episodic environment, the performance of an agent is dependent on a number of discrete 
episodes, with no link between the performance of an agent in different scenarios. 
• An example of an episodic environment would be an assembly line where an agent had to spot defective 

parts. 

• Episodic environments are simpler from the agent developer’s perspective because the agent 
can decide what action to perform based only on the current episode — it need not reason 
about the interactions between this and future episodes. 
• Relations to the Markov property 

• Environments that are not episodic are sometimes called non-episodic or sequential. 
• Here the current decision affects future decisions. 

• Driving a car is sequential.

15



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Properties of Environments

•Real time 
• A real time interaction is one in which time plays a part in evaluating an agents performance 
• Such interactions include those in which: 

• A decision must be made about some action within a given time bound 

• Some state of affairs must occur as quickly as possible 

• An agent has to repeat some task, with the objective to repeat the task as often as possible 

16



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Intelligent Agents

•We typically think of as intelligent agent as 
exhibiting 3 types of behaviour: 
• Reactive (environment aware) 
• Pro-active (goal-driven); 
• Social Ability.

17



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Reactivity
• If a program’s environment is guaranteed to be fixed, the 

program need never worry about its own success or 
failure  

•Program just executes blindly. 
• Example of fixed environment: compiler. 

• The real world is not like that: most environments are 
dynamic and information is incomplete.

18



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Reactivity

•Software is hard to build for dynamic domains: program 
must take into account possibility of failure 
• ask itself whether it is worth executing! 

•A reactive system is one that maintains an ongoing 
interaction with its environment, and responds to changes 
that occur in it (in time for the response to be useful).

19



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Proactiveness
•Reacting to an environment is easy 

• e.g., stimulus → response rules 

•But we generally want agents to do things for us. 
• Hence goal directed behaviour. 

•Pro-activeness = generating and attempting to achieve 
goals; not driven solely by events; taking the initiative. 
• Also: recognising opportunities.

20



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Social Ability
•The real world is a multi-agent environment: we cannot go 

around attempting to achieve goals without taking others into 
account. 
• Some goals can only be achieved by interacting with others. 
• Similarly for many computer environments: witness the INTERNET. 

•Social ability in agents is the ability to interact with other 
agents (and possibly humans) via cooperation, coordination, 
and negotiation. 
• At the very least, it means the ability to communicate. . .

21



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Social Ability: Cooperation

•Cooperation is working together as 
a team to achieve a shared goal. 

•Often prompted either by the fact that 
no one agent can achieve the goal 
alone, or that cooperation will obtain 
a better result (e.g., get result faster).

22



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Social Ability: Coordination

•Coordination is managing the 
interdependencies between 
activities. 

•For example, if there is a non-
sharable resource that you want to 
use and I want to use, then we need 
to coordinate.

23



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Social Ability: Negotiation
•Negotiation is the ability to reach 

agreements on matters of common 
interest. 

•For example: 
• You have one TV in your house; you want to watch a 

movie, your housemate wants to watch football. 
• A possible deal: watch football tonight, and a movie 

tomorrow. 

•Typically involves offer and counter-offer, 
with compromises made by participants.

24



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Some Other Properties...
•Mobility 

• The ability of an agent to move. For 
software agents this movement is 
around an electronic network. 

•Rationality 
• Whether an agent will act in order to 

achieve its goals, and will not 
deliberately act so as to prevent its 
goals being achieved. 

• Veracity 
• Whether an agent will knowingly 

communicate false information. 

•Benevolence 
• Whether agents have conflicting goals, 

and thus whether they are inherently 
helpful. 

• Learning/adaption 
• Whether agents improve performance 

over time.

25



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agents as Intentional Systems
• When explaining human activity, it is often useful to make statements 

such as the following: 
• Janine took her umbrella because she believed it was going to rain.  
• Michael worked hard because he wanted to possess a PhD.  

• These statements make use of a folk psychology, by which human 
behaviour is predicted and explained through the attribution of attitudes 
• e.g. believing, wanting, hoping, fearing ...  

• The attitudes employed in such folk psychological descriptions are 
called the intentional notions. 

26



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Dennett on Intentional Systems
•The philosopher Daniel Dennett coined the term 

intentional system to describe entities: 

•Dennett identifies different ‘grades’ of intentional system: 

•Is it legitimate or useful to attribute beliefs, desires, and 
so on, to computer systems? 

27

“... whose behaviour can be predicted by the method 
of attributing belief, desires and rational acumen...”

“... A first-order intentional system has beliefs and desires (etc.) 
but no beliefs and desires about beliefs and desires... 
... A second-order intentional system is more sophisticated; it 
has beliefs and desires (and no doubt other intentional states) 
about beliefs and desires (and other intentional states) — both 
those of others and its own...”



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

McCarthy on Intentional Systems

•John McCarthy argued that there are occasions when the 
intentional stance is appropriate:

28



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

McCarthy on Intentional Systems

•John McCarthy argued that there are occasions when the 
intentional stance is appropriate:

29

“... To ascribe beliefs, free will, intentions, consciousness, abilities, or wants to a machine is 
legitimate when such an ascription expresses the same information about the machine that it 
expresses about a person.  It is useful when the ascription helps us understand the structure of the 
machine, its past or future behaviour, or how to repair or improve it.  It is perhaps never logically 
required even for humans, but expressing reasonably briefly what is actually known about the state of 
the machine in a particular situation may require mental qualities or qualities isomorphic to them.  
Theories of belief, knowledge and wanting can be constructed for machines in a simpler setting than 
for humans, and later applied to humans.  Ascription of mental qualities is most straightforward for 
machines of known structure such as thermostats and computer operating systems, but is most 
useful when applied to entities whose structure is incompletely known ...” 



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

What can be described with the intentional stance?

• As it turns out, more or less anything can. . . consider a light switch: 

• But most adults would find such a description absurd! 
• Why is this? 

“... It is perfectly coherent to treat a light switch as a 
(very cooperative) agent with the capability of 
transmitting current at will, who invariably transmits 
current when it believes that we want it transmitted 
and not otherwise; flicking the switch is simply our 
way of communicating our desires …” 

Yoav Shoham

30



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Intentional Systems

• It provides us with a familiar, non-technical way of 
understanding and explaining agents. 

31



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

What can be described with the intentional stance?

• The answer seems to be that while the intentional stance description is 
consistent: 

• Put crudely, the more we know about a system, the less we need to rely on 
animistic, intentional explanations of its behaviour.  

• But with very complex systems, a mechanistic, explanation of its behaviour may 
not be practicable.  
• As computer systems become ever more complex, we need more powerful abstractions and 

metaphors to explain their operation — low level explanations become impractical.  
• The intentional stance is such an abstraction. 

32

“... it does not buy us anything, since we essentially 
understand the mechanism sufficiently to have a simpler, 
mechanistic description of its behaviour ...”  (Yoav Shoham)



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agents as Intentional Systems
•So agent theorists start from the (strong) view of 

agents as intentional systems: one whose simplest 
consistent description requires the intentional stance.  

•This intentional stance is an abstraction tool... 
• ... a convenient way of talking about complex systems, which allows 

us to predict and explain their behaviour without having to understand 
how the mechanism actually works.  

•Most important developments in computing are based 
on new abstractions: 
• procedural abstraction, abstract data types, objects, etc  

•Agents, and agents as intentional systems, represent a 
further, and increasingly powerful abstraction. 

33

So why not use the intentional 
stance as an abstraction tool in 
computing — to explain, 
understand, and, crucially, 
program computer systems, 
through the notion of “agents”? 



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agents as Intentional Systems
•There are other arguments in favour 

of this idea... 
1.Characterising Agents 

• It provides us with a familiar, non-technical way of 
understanding and explaining agents. 

2.Nested Representations 
• It gives us the potential to specify systems that include 

representations of other systems. 
• It is widely accepted that such nested representations are 

essential for agents that must cooperate with other agents. 
• “If you think that Agent B knows x, then move to location L”.

34

North by Northwest 

Eve Kendell knows that Roger Thornhill 
is working for the FBI. Eve believes that 
Philip Vandamm suspects that she is 
helping Roger. This, in turn, leads Eve to 
believe that Philip thinks she is working 
for the FBI (which is true). By pretending 
to shoot Roger, Eve hopes to convince 
Philip that she is not working for the FBI



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agents as Intentional Systems

•There are other arguments in favour of this idea... 
3.Post-Declarative Systems 

• In procedural programming, we say exactly what a system should do; 
• In declarative programming, we state something that we want to achieve, give the system 

general info about the relationships between objects, and let a built-in control mechanism (e.g., 
goal-directed theorem proving) figure out what to do; 

• With agents, we give a high-level description of the delegated goal, and let the control 
mechanism figure out what to do, knowing that it will act in accordance with some built-in 
theory of rational agency.

35



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Post-Declarative Systems

•What is this built-in theory? 

•Method of combining: 
• What you believe about the world. 
• What you desire to bring about 

•Establish a set of intentions 
• Then figure out how to make these happen.

36

DS1 seen 2.3 million miles from Earth 



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Abstract Architectures for Agents
•Assume the world may be in any of a finite set E of 

discrete, instantaneous states 

•Agents are assumed to have a repertoire of possible 
actions, Ac, available to them, which transform the 
state of the world.  

• Actions can be non-deterministic, but only one state ever results from 
and action.  

•A run, r, of an agent in an environment is a sequence 
of interleaved world states and actions: 

37

r : e0
↵0�! e1

↵1�! e2
↵2�! e3

↵3�! · · · ↵u�1�! eu

Ac = {↵,↵0, . . .}

E = {e, e0, . . .}



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Abstract Architectures for Agents (1)
• When actions are deterministic each state has only one possible 

successor. 
• A run would look something like the following:

38

North

North



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Abstract Architectures for Agents (2)
• When actions are deterministic each state has only one possible 

successor. 
• A run would look something like the following:

39

East

North



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Abstract Architectures for Agents

40

North

North

We could illustrate 
this as a graph...



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Abstract Architectures for Agents

41

North

North

When actions are non-
deterministic a run (or 
trajectory) is the same, but 
the set of  possible runs is 
more complex.



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Runs

• In fact it is more complex still, because all of the runs we 
pictured start from the same state.  

• Let: 

•We will use r,r′,... to stand for the members of 
• These sets of runs contain all runs from all starting states.

42

R be the set of all such possible finite sequences (over E and Ac);
RAc be the subset of these that end with an action; and
RE be the subset of these that end with a state.

R



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Environments
•A state transformer function represents behaviour of the environment:  

•Note that environments are... 
• history dependent: the next state not only dependent on the action of the agent, but an 

earlier action may be significant 
• non-deterministic: There is some uncertainty about the result 

• If              there are no possible successor states to r, so we say the 
run has ended. (“Game over.”)  
• An environment Env is then a triple                           where E is set of states, e0 ∈ E is 

initial state; and τ is state transformer function.

43

⌧(r) = ;

Env = hE, e0, ⌧i

⌧ : RAc �! 2E



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agents

•We can think of an agent as being a function which maps 
runs to actions: 

• Thus an agent makes a decision about what action to 
perform 
• based on the history of the system that it has witnessed to date.  

• Let Ag be the set of all agents. 

44

Ag : RE ! Ac



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

System
•A system is a pair containing an agent and an 

environment. 

•Any system will have associated with it a set of possible 
runs 
• We denote the set of runs of agent Ag in environment Env by: 

•Assume that this only contains runs that have ended.
45

R(Ag,Env)



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Systems

46

Formally, a sequence
(e0,↵0, e1,↵1, e2, . . .)

represents a run of an agent Ag in environment Env = hE, e0, ⌧i if:

1. e0 is the initial state of Env

2. ↵0 = Ag(e0); and

3. for u > 0,
eu 2 ⌧((e0,↵0, . . . ,↵u�1)) and
↵u = Ag((e0,↵0, . . . , eu))



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Why the notation?
•Well, it allows us to get a precise handle on some ideas about 

agents.  
• For example, we can tell when two agents are the same. 

•Of course, there are different meanings for “same”. Here is one 
specific one. 

•  We won’t be able to tell two such agents apart by watching what 
they do. 

47

Two agents are said to be behaviorally equivalent with
respect to Env i↵ R(Ag1, Env) = R(Ag2, Env).



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Deliberative Agents

48

• Maecenas aliquam maecenas ligula nostra, 
accumsan taciti. Sociis mauris in integer 

• El eu libero cras interdum at eget habitasse 
elementum est, ipsum purus pede 

• Aliquet sed. Lorem ipsum dolor sit amet, 
ligula suspendisse nulla pretium, rhoncus

North

North

Potentially the agent will reach a different 
decision when it reaches the same state by 
different routes.

West
North

East

West



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Purely Reactive Agents
•Some agents decide what to do without reference to their 

history 
• they base their decision making entirely on the present, with no reference 

at all to the past.  

•We call such agents purely reactive: 

• A thermostat is a purely reactive agent. 

49

action : E ! Ac

action(e) =

⇢
o↵ if e = temperature OK

on otherwise.



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Reactive Agents

50

• Maecenas aliquam maecenas ligula nostra, 
accumsan taciti. Sociis mauris in integer 

• El eu libero cras interdum at eget habitasse 
elementum est, ipsum purus pede 

• Aliquet sed. Lorem ipsum dolor sit amet, 
ligula suspendisse nulla pretium, rhoncus

North

North

A reactive agent will always do the 
same thing in the same state.

West
North

West



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Purely Reactive Robots

•A simple reactive program for a robot might be:  
• Drive forward until you bump into something. Then, turn to the right. 

Repeat. 

51



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agents with State

52

Agent

see action

next state

Environment



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Perception
•The see function is the agent’s ability to observe its 

environment, whereas the action function represents the 
agent’s decision making process. 

•Output of the see function is a percept: 

• ...which maps environment states to percepts. 

• The agent has some internal data structure, which is typically 
used to record information about the environment state and 
history.  

• Let I be the set of all internal states of the agent.
53

see : E ! Per



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Actions and Next State Functions
• The action-selection function action is now defined 

as a mapping from internal states to actions: 

• An additional function next is introduced, which 
maps an internal state and percept to an internal 
state: 

• This says how the agent updates its view of the 
world when it gets a new percept. 

54

action : I ! Ac

next : I ⇥ Per ! I



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agent Control Loop

55

1. Agent starts in some initial internal state i0.

2. Observes its environment state e, and generates a percept see(e).

3. Internal state of the agent is then updated via next function, becoming

next(i0, see(e)).

4. The action selected by the agent is action(next(i0, see(e))).

This action is then performed.

5. Goto (2).



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Tasks for Agents

•We build agents in order to carry out tasks 
for us.  
• The task must be specified by us. . .  

•But we want to tell agents what to do 
without telling them how to do it.  
• How can we make this happen??? 

56



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Utility functions
•One idea: 

• associated rewards with states that we want agents to bring about.  
• We associate utilities with individual states 

• the task of the agent is then to bring about states that maximise utility. 

• A task specification is then a function which associates a 
real number with every environment state:

57

u : E ! R



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Local Utility Functions
•But what is the value of a run... 

• minimum utility of state on run? 
• maximum utility of state on run? 
• sum of utilities of states on run? 
• average?  

•Disadvantage: 
• difficult to specify a long term view when assigning utilities to individual states.  

•One possibility: 
• a discount for states later on. This is what we do in reinforcement learning. 

58



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example of local utility function
•Goal is to select actions to maximise 

future rewards 
• Each action results in moving to a state with some 

assigned reward 
• Allocation of that reward may be immediate or delayed 

(e.g. until the end of the run) 
• It may be better to sacrifice immediate reward to gain 

more long-term reward 

•We can illustrate with a simple 4x3 
environment 
• What actions maximise the reward?

59

r = -0.04 (unless stated otherwise)

1 r=+1 
👍

2 r=-1 
👎

3

1 2 3 4



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example of local utility function
Assume environment was deterministic 
• Optimal Solution is: 

• [Up, Up, Right, Right, Right] 

• Additive Reward is: 
• r = (-0.04 x 4) + 1.0 
• r = 1.0 - 0.16 = 0.84 

• i.e. the utility gained is the sum of the rewards 
received 
• The negative (-0.04) reward incentivises the agent to reach its 

goal asap.

60

r = -0.04 (unless stated otherwise)

1 r=+1 
👍

2 r=-1 
👎

3

1 2 3 4

p=1.0Deterministic Environment
Agent is guaranteed to be in 
the intended cell (i.e. 
probability = 1.0)



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Sequential Decision Making
Returning to our earlier example 

• However, now assume environment was non-deterministic 

•Probability of reaching the goal if successful: 
• p = 0.85 = 0.32768 

•Could also reach the goal accidentally by going the 
wrong way round: 
• p = 0.14 x 0.8 = 0.0001 x 0.8 = 0.00008 
• Final probability of reaching the goal: p = 0.32776 

•Utility gained depends on the route taken 
• We will see later how to compute this… 

• Reinforcement Learning builds upon this type of model
61

p=0.1

p=0.1
p=0.8

Non-Deterministic Environment
Agent may fail to reach its intended 
cell (i.e. probability of success = 0.8, 
but may move sideways with p=0.1 
in each direction

r = -0.04 (unless stated otherwise)

1 r=+1 
👍

2 r=-1 
👎

3

1 2 3 4



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Utilities over Runs
•Another possibility: assigns a utility not to individual states, but to 

runs themselves:  

•Such an approach takes an inherently long term view.  

•Other variations: 
• incorporate probabilities of different states emerging.  

• To see where utilities might come from, let’s look at an example. 
62

u : R! R



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Utility in the Tileworld
•Simulated two dimensional grid environment on 

which there are agents, tiles, obstacles, and holes.  

•An agent can move in four directions: 
• up, down, left, or right 
• If it is located next to a tile, it can push it.  

•Holes have to be filled up with tiles by the agent. 
• An agent scores points by filling holes with tiles, with the aim being 

to fill as many holes as possible.  

•TILEWORLD changes with the random appearance 
and disappearance of holes.

63

The agent starts to 
push a tile towards 
the hole.

But then the hole 
disappears!!!

Later, a much more 
convenient hole 
appears (bottom 
right)



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Utilities in the Tileworld
•Utilities are associated over runs, so that more holes filled 

is a higher utility. 
• Utility function defined as follows: 
• Thus: 

• if agent fills all holes, utility = 1. 
• if agent fills no holes, utility = 0. 

• TILEWORLD captures the need for reactivity and for the 
advantages of exploiting opportunities.

64

u(r) =̂
number of holes filled in r

number of holes that appeared in r



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Expected Utility
• To denote probability that run r occurs when agent Ag is placed in 

environment Env, we can write: 

• In a non-deterministic environment, for example, this can be computed 
from the probability of each step. 

65

P (r | Ag, Env)

For a run r = (e0, ↵0, e1, ↵1, e2, . . .):

P (r | Ag, Env) = P (e1, | e0, ↵0)P (e2 | e1, ↵1) . . .

and clearly:
X

r2R(Ag,Env)

P (r | Ag, Env) = 1.



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Expected Utility
•The expected utility (EU) of agent Ag in environment Env 

(given P, u), is then: 

• That is, for each run we compute the utility and multiply it 
by the probability of the run. 

• The expected utility is then the sum of all of these. 

66

EU(Ag, Env) =
X

r2R(Ag,Env)

u(r)P (r | Ag, Env).



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Expected Utility
•The probability of a run can be determined from individual 

actions within a run 
• Using the decomposability axiom from Utility Theory

67

e0

e1

e2
e3

e4

e0

e1
e3

e4

p

(1-p)

q

(1-q)

p
q(1-p)

(1-p)(1-q)

is equivalent to

“... Compound lotteries can be reduced to simpler ones using the law of 
probability.  Known as the “no fun in gambling” as two consecutive 
lotteries can be compressed into a single equivalent lottery….”



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Optimal Agents
•The optimal agent Agopt in an environment Env is the one 

that maximizes expected utility: 

•Of course, the fact that an agent is optimal does not 
mean that it will be best; only that on average, we can 
expect it to do best.

68

Agopt = arg max
Ag2AG

EU(Ag, Env)



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example 1

69

Consider the environment Env1 = hE, e0, ⌧i
defined as follows:

E = {e0, e1, e2, e3, e4, e5}

⌧(e0
↵0�!) = {e1, e2}

⌧(e0
↵1�!) = {e3, e4, e5}

There are two agents possible with respect
to this environment:

Ag1(e0) = ↵0

Ag2(e0) = ↵1

The probabilities of the various runs are
as follows:

P (e0
↵0�! e1 | Ag1, Env1) = 0.4

P (e0
↵0�! e2 | Ag1, Env1) = 0.6

P (e0
↵1�! e3 | Ag2, Env1) = 0.1

P (e0
↵1�! e4 | Ag2, Env1) = 0.2

P (e0
↵1�! e5 | Ag2, Env1) = 0.7

Assume the utility function u1 is defined
as follows:

u1(e0
↵0�! e1) = 8

u1(e0
↵0�! e2) = 11

u1(e0
↵1�! e3) = 70

u1(e0
↵1�! e4) = 9

u1(e0
↵1�! e5) = 10

What are the expected utilities of the
agents for this utility function?



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example 1 Solution

70

Given the utility function u1 in the question, we have two transition func-
tions defined as ⌧(e0

↵0�!) = {e1, e2, e3}, and ⌧(e0
↵1�!) = {e4, e5, e6}. The

probabilities of the various runs (two for the first agent and three for the sec-
ond) is given in the question, along with the probability of each run occurring.
Given the definition of the utility function u1, the expected utilities of agents
Ag0 and Ag1 in environment Env can be calculated using:

EU(Ag,Env) =
X

r2R(Ag,Env)

u(r)P (r|Ag,Env).

This is equivalent to calculating the sum of the product of each utility for a run
ending in some state with the probability of performing that run; i.e.

• Utility of Ag0 = (0.4⇥ 8) + (0.6⇥ 11) = 9.8

• Utility of Ag1 = (0.1⇥ 70) + (0.2⇥ 9) + (0.7⇥ 10) = 15.8

Therefore agent Ag1 is optimal.



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example 2

71

Consider the environment Env1 = hE, e0, ⌧i
defined as follows:

E = {e0, e1, e2, e3, e4, e5}

⌧(e0
↵0�!) = {e1, e2}

⌧(e1
↵1�!) = {e3}

⌧(e2
↵2�!) = {e4, e5}

There are two agents, Ag1 and Ag2, with respect
to this environment:

Ag1(e0) = ↵0 Ag2(e0) = ↵0

Ag1(e1) = ↵1 Ag2(e2) = ↵2

The probabilities of the various runs are
as follows:

P (e0
↵0�! e1 | Ag1, Env1) = 0.5

P (e0
↵0�! e2 | Ag1, Env1) = 0.5

P (e1
↵1�! e3 | Ag1, Env1) = 1.0

P (e0
↵0�! e1 | Ag2, Env1) = 0.1

P (e0
↵0�! e2 | Ag2, Env1) = 0.9

P (e2
↵2�! e4 | Ag2, Env1) = 0.4

P (e2
↵2�! e5 | Ag2, Env1) = 0.6

Assume the utility function u1 is defined
as follows:

u1(e0
↵0�! e1) = 4

u1(e0
↵0�! e2) = 3

u1(e1
↵1�! e3) = 7

u1(e2
↵2�! e4) = 3

u1(e2
↵2�! e5) = 2

What are the expected utilities of the agents
for this utility function?



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example 2 solution

72

Agent 1

e0

e1

e2

p(e0⟶
 e1)=

0.5
e3

p(e1⟶ e3)=1.0

p(e0⟶
 e2)=0.5 e0

e2

e4

e5

p(e0⟶
 e1)=

0.1

p(e0⟶
 e2)=0.9 p(e2⟶

 e4)=
0.4

p(e2⟶
 e5)=0.6

e1

Agent 2



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example 2 solution

73

Agent 1

e0

e1

e2

p(e0⟶
 e1)=

0.5
e3

p(e1⟶ e3)=1.0

p(e0⟶
 e2)=0.5

e0

e3

e2

p=0.5 ⨉1.0 = 0.5

p=0.5

e0

e2

e4

e5

p(e0⟶
 e1)=

0.1

p(e0⟶
 e2)=0.9 p(e2⟶

 e4)=
0.4

p(e2⟶
 e5)=0.6

e1

Agent 2

e0

e1

e5

p=0.1

p=0.9⨉0.6=0.54

e4p=0.9⨉0.4=0.36



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example 2 solution

74

Agent 1

e0

e1

e2

p(e0⟶
 e1)=

0.5
e3

p(e1⟶ e3)=1.0

p(e0⟶
 e2)=0.5

e0

e3

e2

p=0.5 ⨉1.0 = 0.5

p=0.5

e0

e2

e4

e5

p(e0⟶
 e1)=

0.1

p(e0⟶
 e2)=0.9 p(e2⟶

 e4)=
0.4

p(e2⟶
 e5)=0.6

e1

Agent 2

e0

e1

e5

p=0.1

p=0.9⨉0.6=0.54

e4p=0.9⨉0.4=0.36

Find sum of 
utilities for 
each run

u(e0⟶
 e1)=

4

u(e0⟶
 e2)=3

u=3

u=4+7=11

u(e1⟶ e3)=7

u(e0⟶
 e1)=

4

u(e0⟶
 e2)=3

u(e2⟶
 e5)=2

u(e2⟶
 e4)=

3

u=4

u=3+2=5

u=3+3=6



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example 2 solution

75

Run Utility Probability

Agent 1 e0⟶ e3 u=11 p=0.5
e0⟶ e2 u=3 p=0.5

Agent 2 e0⟶ e1 u=4 p=0.1
e0⟶ e4 u=6 p=0.36
e0⟶ e5 u=5 p=0.54

Ag1= (11 ⨉ 0.5) + (3 ⨉ 0.5) = 5.5 + 1.5 = 7
Ag2= (4 ⨉ 0.1) + (6 ⨉ 0.36) + (5 ⨉ 0.54)
      = 0.4 + 2.16 + 2.7 = 5.26



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Bounded Optimal Agents
• Some agents cannot be implemented on some computers  

• The number of actions possible on an environment (and consequently the number of 
states) may be so big that it may need more than available memory to implement.  

• We can therefore constrain our agent set to include only those 
agents that can be implemented on machine m: 

• The bounded optimal agent, Agbopt, with respect to m is then. . . 

76

AGm = {Ag | Ag 2 AG and Ag can be implemented on m}.

Agbopt = arg max
Ag2AGm

EU(Ag,Env)



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Predicate Task Specifications
•A special case of assigning utilities to histories is to assign 

0 (false) or 1 (true) to a run.  
• If a run is assigned 1, then the agent succeeds on that run, otherwise it 

fails.  

•Call these predicate task specifications.  
• Denote predicate task specification by Ψ: 

77

 : R! {0, 1}



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Task Environments
•A task environment is a pair <Env, Ψ>, where Env is an 

environment, and the task specification Ψ is defined by:  

•Let the set of all task environments be defined by: 

•A task environment specifies: 
• the properties of the system the agent will inhabit; 
• the criteria by which an agent will be judged to have either failed or 

succeeded.

78

 : R! {0, 1}

T E



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Task Environments
•To denote set of all runs of the agent Ag in environment Env that satisfy Ψ, we 

write: 

•We then say that an agent Ag succeeds in task environment <Env, Ψ > if 

• In other words, an agent succeeds if every run satisfies the specification of the 
agent.

79

A more optimistic idea of success is:

which counts an agent as successful as soon as it 
completes a single successful run.

9r 2 R(Ag, Env),we have (r) = 1
We could also write this as: 

However, this is a bit pessimistic: if the agent 
fails on a single run, we say it has failed overall. 

8r 2 R(Ag, Env),we have (r) = 1

R (Ag,Env) = {r | r 2 R(Ag, Env) and  (r) = 1}.

R (Ag,Env) = R(Ag, Env)



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

The Probability of Success
• If the environment is non-deterministic, the τ returns a set 

of possible states.  
• We can define a probability distribution across the set of states.  
• Let P(r | Ag, Env) denote probability that run r occurs if agent Ag is placed 

in environment Env.  
• Then the probability P(Ψ | Ag, Env) that Ψ is satisfied by Ag in Env would 

then simply be: 

80

P ( | Ag, Env) =
X

r2R (Ag,Env)

P (r | Ag,Env)



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Achievement and Maintenance Tasks
•The idea of a predicate task specification is admittedly 

abstract. 

• It generalises two common types of tasks, achievement 
tasks and maintenance tasks: 
1. Achievement tasks: Are those of the form “achieve state of affairs φ”. 
2. Maintenance tasks: Are those of the form “maintain state of affairs ψ”.

81



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Achievement and Maintenance Tasks
•An achievement task is 

specified by a set G of “good” 
or “goal” states: G ⊆ E.  
• The agent succeeds if it is 

guaranteed to bring about at least 
one of these states (we don’t care 
which, as all are considered good). 

• The agent succeeds if in an 
achievement task if it can force the 
environment into one of the goal 
states g ∈ G. 

•A maintenance goal is 
specified by a set B of “bad” 
states: B ⊆ E. 
• The agent succeeds in a particular 

environment if it manages to avoid all 
states in B — if it never performs 
actions which result in any state in B 
occurring. 

• In terms of games, the agent 
succeeds in a maintenance task if it 
ensures that it is never forced into 
one of the fail states b ∈ B.

82



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Summary
•This chapter has looked in detail at what 

constitutes an intelligent agent.  
• We looked at the properties of an intelligent agent and the 

properties of the environments in which it may operate.  
• We introduced the intentional stance and discussed its use.  
• We looked at abstract architectures for agents of different 

kinds; and  
• Finally we discussed what kinds of task an agent might 

need to carry out.  

•In the next chapter, we will start to look at how 
one might program an agent using deductive 
reasoning. 

83

Class Reading (Chapter 2): 

“Is it an Agent, or Just a Program?: A 
Taxonomy for Autonomous Agents”, Stan 
Franklin and Art Graesser. ECAI '96 
Proceedings of the Workshop on Intelligent 
Agents III, Agent Theories, Architectures, 
and Languages.  pp 21-35 

This paper informally discusses various 
different notions of agency.  The focus 
of the discussion might be on a 
comparison with the discussions in 
this chapter


