
COMP310
Multi-Agent Systems

Dr Terry R. Payne
Department of Computer Science

Chapter 4a - Jason and AgentSpeak

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

The Jason Agent Programming Language
•In this lecture we will look at a BDI-based

Agent Programming Language
• AgentSpeak (originally developed by Rao, 1996)

•Jason is an open-source interpreter for an
extended version of AgentSpeak
• Based on:

• PRS architecture
• BDI logics
• Logic Programming (Prolog)

• Became the language of choice for Multi-Agent
Programming Contest

2

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Programming Languages for Agents

•Desirable properties for Agent Programming Languages
• Support delegation at the level of goals

• Focusing on the what, not how

• Support goal-directed problem solving
• Agents acting to achieve their delegated goals

• Should be responsive their environment
• Environment should be compatible with other frameworks, or simulators

• Should support knowledge-level communication and cooperation
• Exchange beliefs, goals and plans

3

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

AgentSpeak as an Agent Architecture
•The variant of AgentSpeak interpreted by Jason

is based on a BDI architecture (similar to PRS)

•A Reactive Planning System
• Permanently running, responding to events by executing

plans
• Actions then affect the environment
• The agent reasons about how to act to achieve its goals

•Practical Reasoning
• Achieved through the use of a Plan Library
• Similar to that used by PRS

4

intentions

interpreter

beliefs

desires

plan library

actions

percepts

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Jason
•Developed by Jomi F. Hübner & Rafael H.

Bordini
• Source is available from:

• https://sourceforge.net/projects/jason/

•Implements the operational semantics of an
extended version of AgentSpeak
• Highly customisable, with extensions to other Agent

Frameworks (including JADE)
• Optional programmable Environment (Java)

•Book published by John Wiley & Sons.
• http://jason.sf.net/jBook/

5

https://sourceforge.net/projects/jason/

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Hello World (in AgentSpeak)
•The iconic “Hello World”

• Line 4 - we create the belief started
• Here we have a symbol, but beliefs can also be predicates

• Line 7 - we have a plan that is triggered by the
addition of the belief started
• Means “…when you come to believe ‘started’, then print some

text…”
• The “+” here signifies when you acquire the belief…

•Plans can have contexts
• Different plans may be triggered for a belief,

depending on the context
6

1. // Taken from Programming Multi-Agent
2. // Systems in AgentSpeak using Jason
3. /* my initial belief */
4. started.
5.
6. /* Plans */
7. +started <- .print("Hello World.”).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Factoral (in AgentSpeak)
•This example uses goals

• Line 2 - add the goal print_fact(5)
• Here we have a symbol, but beliefs can also be predicates

• Line 5 - the plan for print_fact(5)
• The upper-case N is a variable, instantiated by the goal (i.e. N=5)

• Line 6 - create the goal fact(N,F) which will instantiate the variable F
• Line 7 - when achieved, print the values of N and F

• Line 9 - the plan for fact(N,1)
• Only triggers for the context N == 0

• Instantiates the value of the second variable (i.e. F) to be 1
• Means that the value is 1 for the factorial of 0

• Line 11 - the plan for fact(N,F)
• Only triggers for the context N > 0

• Generates the factorial of N-1 (by creating a new goal)
• Then instantiates the new value of F

7

1. /* Initial achevement goal */
2. !print_fact(5).
3.
4. /* Plans */
5. +!print_fact(N)
6. 	 <- !fact(N,F);
7. 	 	 .print ("Factorial of ", N, " is ", F).
8.
9. +!fact(N,1) : N == 0.
10.
11.+!fact(N,F) : N > 0
12.	 <- !fact(N-1, F1);
13.	 	 F = F1 * N.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

AgentSpeak as an Agent Architecture
•There are three main

language constructs in
AgentSpeak:
• Beliefs
• Goals
• Plans

• The architecture of
AgentSpeak has four main
components:
• Belief Base
• Plan Library
• Set of Events
• Set of Intentions

8

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Beliefs
•Beliefs are simple Prolog statements, stored

in a Belief Base.

•Two kinds of statement.
• Facts

• Simple propositions (prolog atoms) or predicates relating propositions

• Axioms (or rules)
• Allow inference of new beliefs from existing ones
• Instantiates the values of logical variables through unification

•Modalities of Truth
• Beliefs refer to what they agent believes about the world,

not ground truth
9

Facts

Propositions or Predicates

starting
academic(terry)
teaches_comp310(terry)
parent(terry, alessandro)

Beliefs can be negated

~starting
~teaches_comp101(terry)

The symbol ~ should read not

Note that atoms and predicates start
with a lower case letter

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Variables, Rules and Unification
•Belief Axioms look a lot like rules

in Prolog.
• child(X, Y) :- parent(Y, X).

• Read the rule
• a :- b as “a holds if b holds” or “if b then a”.

• These axioms allow agents to
infer new predicates
• For example: parent(bob, jane) matches

parent(Y, X) if Y = bob, and if X = jane
• The agent can then infer child(jane, bob)  

•Rules are allowed to be more
complex than this.
• For example: grandparent(X, Z) :-

parent(X, Y) & parent (Y, Z).

• The “&” represents conjunction, and is
what we usually mean by “and”.

• So, given:
• parent(eric, bob) parent(bob, jane).

• the agent can infer:
• grandparent(eric, jane)

10

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

What can be inferred?
• Rules and Axioms

• grandparent(X, Z) :- parent(X, Y)
& parent (Y, Z).

• child(X, Y) :- parent(Y, X).

• son(X, Y) :- child(X, Y) & male(X).

• daughter(X, Y) :- child(X, Y) &
female(X).

• parent(eric, hilary)

• parent(hilary, jane)

• parent(hilary, david)

• female(jane)

• male(david)

• Possible Inference?
• grandparent(eric, jane)

• child(hilary, eric)

• child(jane, hilary)

• child(david, hilary)
• son(david, hilary)

• daughter(jane, hilary)

• Note that we don’t know the
gender of hilary

11

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

What can be inferred?
• Rules and Axioms

• grandparent(X, Z) :- parent(X, Y)
& parent (Y, Z).

• child(X, Y) :- parent(Y, X).

• son(X, Y) :- child(X, Y) & male(X).

• daughter(X, Y) :- child(X, Y) &
female(X).

• parent(eric, hilary)

• parent(hilary, jane)

• parent(hilary, david)

• female(jane)

• male(david)

• Possible Inference
• grandparent(eric, jane)

• child(hilary, eric)

• child(jane, hilary)

• child(david, hilary)
• son(david, hilary)

• daughter(jane, hilary)

• Note that we don’t know the
gender of hilary

12

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Belief Annotations

•Logical Formulae in Jason can be annotated
• Strongly associates additional information to a belief

• Represented as Prolog lists

• More elegant than stating additional beliefs, or having beliefs of beliefs
• Facilitates organisation and management of beliefs

• Most annotations mean nothing to the interpreter

• However, java can be used to manage the belief base

13

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Belief Annotations

•Annotated predicate
ps(t1,…,tn)[a1,…,am]

• Where ai are first order terms

•All predicates in the belief base have
a special annotation:

source(si)

• where si ∈ {self,percept} ∪ agentId

14

Examples

busy(john) [expires(autumn)]
The agent believes that john is busy, but when
autumn starts, this belief no longer holds

~colour(box1,white) [source(percept)]

The agent believes, based on perceiving the
world, that the colour of box1 is not white

liar(bob) [source(self),degOfCert(0.2)]

The agent believes bob is a liar, based on its
own evidence, but with only a 0.2 degree of
certainty

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Belief Annotations
•Source annotations have a specific meaning within Jason

• Perceptual information [source(percept)]
• If an agent acquires beliefs from sensing its environment, then it is annotated as a percept

• Communication [source(agentID)]
• If agents communicate, then beliefs that are shared are annotated with the sender’s ID

• Mental Notes [source(self)]
• Beliefs that are added by the agent itself can help it remember past activities. These are things that the agent can

use to remind itself in the future.

•Beliefs given to the agents without annotations are assumed to be
mental notes
• And are annotated as such!

15

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Belief Dynamics
•By perception

• Beliefs annotated with source(percept) are automatically
updated according given any perceptions of the agent

•By intention
• The plan operators + and - can be used to add and

remove beliefs annotated with source(self)
• mental notes

•By communication
• When an agent receives a tell message, the content is a

new belief annotated with the sender of the message

16

Belief Dynamics

By intention:

+friend(bob);

// adds friend(bob)[source(self)]
-friend(eric);

// removes friend(bob)[source(self)]

By communication:

.send(alice, tell, friend(bob)); // sent by ian

// adds friend(bob)[source(ian)]
// to ian’s set of beliefs

etc

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Not & Strong Negation
• The problem with the closed world assumption

• It assumes that anything that is not believed to be true must be false
• But what if you want to refer to:

• Things the agent believes to be true
• Things the agent believes to be false
• Things the agent doesn’t have beliefs about (whether or not they are true or false)?

• Logically, not only allows the negation of a formula
• We can check if something is true, or if something is not true (i.e. false)
• But this says nothing about what it is that is believed!

17

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Strong Negation
•The operator ‘~’ represents strong

negation
• i.e. an agent explicitly believes something to be

false

•The operator ‘not’ represents weak
negation
• i.e. logically, an expression is not true, and

therefore an agent doesn’t have the belief
• Whether or not the belief is that something is true or false

18

Beliefs

Consider the following beliefs:

colour(box1, blue)[source(bob)]
~colour(box1, white)[source(john)]

The agent believes that the colour of box1 is
blue, and that the colour of box one is not white.

Now consider these negated beliefs:

not shape(box1, cube)[source(percept)]
not ~shape(box1,sphere)[source(self)]

The agent does not have the belief that the
shape of box1 is a cube. But conversely, it does
not have a belief that the shape isn’t a sphere,
either.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

More on rules
•Consider the rules opposite:

• The first states that the most likely colour of some
object B is the colour the agent deduced earlier,
or the one it perceived

• If this fails, then the likely colour of B should be:
• the one with the highest degree of certainty associated with it
• Provided that there is strong evidence (i.e. that the agent

believes) that object B is not colour C.

•This is an example of theoretical
reasoning
• In Jason, practical reasoning is achieved

through plans
19

Rules for ‘likely_colour’

likely_colour(C,B)
:- colour(C,B)[source(S)] &

(S == self | S == percept).

likely_colour(C,B)
:- colour(C,B)[degOfCert(D1)] &

not (colour(_,B)[degOfCert(D2)] & D2 > D1) &
not ~colour(C,B).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Goals
•Goals represent the properties of the

state of the world that the agent wishes
to bring about

•Two types of goals:
• Achievement goals (i.e. to do): !g

• This is a goal the agent wants to bring about
• The goal is not currently believed to be true, and therefore the agent

will aim to resolve this
• Typically involves executing an associated plan

• Test goals (i.e. to know): ?g
• More similar to Prolog goals (or queries) - the agent wants to check if

the goal is true
20

Achievement Goals

!own(house)
The agent will try to bring about the state where
the belief own(house) is true.

Test Goals

?teaches(terry, Module)

The agent needs to establish a value for the
variable Module that makes this belief true.

Often this is used to unify a variable, but in
certain circumstances, test goals may also lead
to the execution of plans.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Plans
•Plans are recipes for action, representing the agents

know-how
• Intentions are plans instantiated to achieve some goal

•Each plan has three distinctive parts:
• The triggering event denotes the events the plan is meant to handle
• The context represents the circumstances in which the plan can be

used
• The body is the actual plan to handle the event if the context is

believed true at the time a plan is being chosen
• Plans can also have an optional label

•When the trigger happens, test the context, and if it is
true, then execute the plan

21

Plan Syntax

triggering event : context <- body.

Plan Syntax (with label)

@label te : context <- body.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Triggering Events
•Events happen as a consequence of changes in the

agents beliefs or goals
• An agent reacts to events by executing plans
• Types of plan triggering events:

22

+b Belief addition

-b Belief deletion

+!g Achievement-gaol addition

-!g Achievement-gaol deletion

+?g Test-goal addition

-?g Test-goal deletion

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example plans
•A plan that responds to a change in

belief.
• Triggering Event

• When the belief green_patch(Rock) is added.
• i.e. when you realise that the rock has a green patch

• Context
• If battery charge is not low

• i.e we don’t have the belief battery_charge(low)

• Body
• Find the location of the rock - using a test goal
• Go to that location - achieve the goal at(Coordinates)
• Examine the rock - achieve the goal examine(Rocks)

23

+green_patch(Rock) : not battery_charge(low)
<- ?location(Rock,Coordinates);

!at(Coordinates);
!examine(Rock).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

AgentSpeak Plans
•Plans are a bit like STRIPS actions:

• Preconditions (i.e. the context)
• What you do (i.e. the plan body)

•However, plans also contain more than
one action

•Plans are also a bit like STRIPS plans
• Sequence of things to do…
• …but they also have preconditions and subgoals.

24

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Example plans
•A plan that responds to the addition of a goal.

• Triggering Event
• Get to a set of coordinates - i.e. achieve the goal !at(Coordinates)

• Context
• If not at the coordinates (i.e. we don’t have that belief)…
• …and there is the belief that there is not an unsafe path to the coordinates

• Body
• Move towards the coordinates
• This would result in the action move_towards(Coordinates) being called in the Environment
• Assert (again) the goal of being at the coordinates

• This recursive setting allows for plans that partially achieve the goal.
25

+!at(Coordinates) : not at(Coordinates)
& ~ unsafe_path(Coordinates)

<- move_towards(Coordinates);
!at(Coordinates).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Actions
•An Agent needs to be able to act within

an environment
• Note that actions in an AgentSpeak program are

logical statements (predicates)
• A predicate in the context is interpreted as a belief
• A predicate in the plan is interpreted as an action

• Actions are ground predicates
• i.e. any variables should be instantiated before the action is

performed
• In the plan opposite, the action move_towards(Coordinates)

results in some method being called in the environment.java object

• Actions prefixed with the ‘.’ refer to internal actions
• E.g. ‘.print’ and ‘.send’

26

+!at(Coordinates) : not at(Coordinates)
& ~ unsafe_path(Coordinates)

<- move_towards(Coordinates);
!at(Coordinates).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Internal Actions
•Jason can be used to support advanced

BDI agents
• Including the definition of maintenance and

achievement goals
• The types of commitment (blind, single-minded etc)
• Several internal actions have been provided to support

this
• ‘.desire’, ‘.intend’, ‘.succeed_goal’, ‘.fail_goal’ etc

•Chapter 8 in Rafaels book provides a
number of patterns
• for defining such goals, commitments etc

27

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Summary
•This lecture introduced the syntax of AgentSpeak

•We discussed its main constructs:
• beliefs
• goals
• plans

•These slides are based on Chapter 3 of Rafael’s
book on Jason
• Optional activities will be posted on the website
• More advanced patterns for Commitment Strategies, an explicitly

modelling desired and intentions are also discussed in Chapter 8
• We’ll come back to AgentSpeak later in the module

28

Class Reading (Chapter 4a):

Anand S. Rao, 1996. AgentSpeak(L): BDI
Agents Speak Out in a Logical Computable
Language. Proceedings of Seventh
European Workshop on Modelling
Autonomous Agents in a Multi-Agent World
(MAAMAW-96)

This paper gives an initial description
of the original AgentSpeak(L)
languages, as well as its formal
properties.

